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SUMMARY
This paper provides a solution to the composite adaptive
output feedback tracking control problem for robotic
manipulators. The proposed controller utilizes an update
law that is a composite of a gradient update law driven by
the link position tracking error and a least squares update
law driven by the prediction error. In order to remove the
controller's dependence on link velocity measurements, a
linear filter and a new prediction error formulation are
designed. The controller provides semi-global asymptotic
link position tracking performance. Experimental results
illustrate that the proposed controller provides improved
link position tracking error transient performance and faster
parameter estimate convergence in comparsion to the same
controller using a gradient update law.

KEYWORDS: Robot control; Output feedback; Tracking
performance; Update law.

1. INTRODUCTION
Robot manipulators are nonlinear, multi-input/multi-output
mechatronic systems that have well defined dynamic
models; however, exact knowledge of the parameters
needed to complete the model are often not known
precisely. In order to provide for robustness, many research-
ers have design full-state feedback adaptive controllers that
compensate for parametric uncertainty (See reference 1 for
a review paper on this topic). Much of the previous full-state
feedback adaptive control work focused on the use of a
standard gradient update to compensate for parametric
uncertainty. In comparison with a least-squares update law,
a gradient-type update law often exhibits slower parameter
convergence, and hence suffers from slower link position
tracking error transient response. In order to incorporate the
desirable features of using a least-squares update law,
Middleton et al.2 augmented the adaptive controller of
reference 3 with additional terms which allowed the closed-
loop error system to be written as a stable, linear,
strictly-proper, transfer function with the link position
tracking error as the output and a prediction error related

term as the input. Provided the estimated inertia matrix was
forced to be positive-definite (PD), i.e. a projection-type
algorithm was required, this novel input-output relationship
facilitated the design of a least squares update law driven by
the prediction error* while also fostering a bounded-input,
bounded-output, global asymptotic link position tracking
stability result. Later, the restriction involving the estimated
inertia matrix required in reference 2 was removed in
references 4, 5 and 6; however, none of these algorithms
utilized the traditional least squares update law driven by the
prediction error. Specifically, Slotine et al.4 removed the
restriction on the estimated inertia matrix required in
reference 2 by utilizing a composite update law (i.e. the
composite update law was the sum of a least-squares update
law driven by the prediction error and a modified† gradient
update law driven by the link position/velocity tracking
error). Lozano Leal et al.5 utilized the flexibility provided by
previous passivity-based adaptive control designs to con-
struct a modified least-squares update law with the link
position/velocity tracking error as the input. As time goes to
infinity, the parameter estimates in this modified least-
squares update law converge to the parameter estimates
generated by a standard least squares update law driven by
the link position/velocity tracking error. A modified least-
squares update law driven by the link position/velocity
tracking error was also proposed by Sadegh et al.6 in the
design of an exponentially stable desired trajectory-based
controller. This exponential tracking result was predicated
on the assumption that the desired regression matrix
satisfies a semi-persistency of excitation condition; fur-
thermore, the modified least-squares update law requires the
calculation of a matrix dependent on the excitation condi-
tion. In Tang et al.7 developed an adaptive controller which
included the standard gradient update law, the composite
adaptation update law, and an averaging gradient update law
as special cases. Recently, de Queiroz et al.8 illustrated how
a modification of the controller/update law modularity
technique developed in reference 9 could be used to design
a least squares update law driven by the prediction error
while also fostering a bounded-input, bounded-output
stability result; however, the global asymptotic link position
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* The prediction error is defined as the difference between an
estimated, filtered version of the the robot dynamics and a filtered
version of the input torque.
† The modified gradient update law uses the same time-varying
adaptation gain as the least-squares update law.
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tracking stability result still mandated that the estimated
inertia matrix be positive definite. It should be noted the all
of the above robot controllers required link position and link
velocity measurements.

In addition to providing robustness for parametric
uncertainty, many researchers have also been motivated to
reduce system cost and complexity by reducing the number
of required sensors. That is, researchers have been moti-
vated to design adaptive or robust output feedback (OFB)
controllers which only require measurement of link posi-
tion. For example, robust, OFB high-gain controllers, based
on linear filtering of the link position signal were utilized to
achieve semi-global, uniform ultimately bounded stability
results in references 10, 11 and 12. Through the use of a
linear filtering tool, adaptive OFB controllers that incorpo-
rated gradient update laws driven by the link position
tracking error were utilized to achieve semi-global asymp-
totic stability results in references 13 and 14. Zhang et al.15

utilized a nonlinear filtering scheme (derived from a
modified version of the controller given in reference 13) to
obtain global asymptotic link position tracking.

In this paper, we redesign the full-state feedback,
composite adaptive controller given4 such that link velocity
measurements are not required. Similar to the controller
given in reference 4, the proposed controller holds the
potential of improved link position tracking error transient
response since the update law includes a least squared term
driven by prediction error. The elimination of link velocity
measurements is achieved by: (i) utilizing a linear dynamic
filter whose output serves as a surrogate for link velocity
measurements, (ii) constructing the prediction error as the
difference between the filtered torque control input and a
filtered version of the desired regression matrix-parameter
estimate formulation, and (iii) using a linear, high-gain
feedback term to compensate for the difference between the
actual dynamics (i.e. dynamic terms that are functions of
link position and link velocity) and the desired dynamics
(i.e. dynamic terms with the link position and link velocity
being replaced by the desired quantities). Provided the
controller and filter gains satisfy some sufficient conditions
and the robot manipulator is initially at rest, the proposed
control delivers semi-global asymptotic link position track-
ing. To illustrate the viability and improved performance of
the OFB composite adaptive controller, an experimental
comparison is performed between the proposed control law
and the same controller with a standard gradient update law
(i.e. the controller given in reference 13).

The paper is organized as follows. Section 2 provides the
foundation for the subsequent control development and
analysis. Specifically, we present the mathematical model
for the dynamics of a n-link revolute direct drive robot and
its associated properties. In Section 3, we utilize the
properties of Section 2, for the design and analysis of the
OFB composite adaptive controller. Experimental verifica-
tion of the controller is presented in Section 4, and
concluding remarks are given in Section 5.

2. MATHEMATICAL MODEL
The mathematical model for an n-DOF revolute direct drive
robotic manipulator is assumed to have the following

form16,17

M(q)q̈ + Vm (q, q̇) q̇ + G(q) + Fd q̇ = t (1)

where q(t), q̇ (t), q̈ (t) P R n denote the link position,
velocity, and acceleration, respectively, M(q)P R n3 n repre-
sents the positive-definite, symmetric inertia matrix, Vm

(q, q̇) P R n3 n represents the centripetal-Coriolis matrix,
G(q) P R n is the gravitational vector, Fd P R n3 n denotes
the constant, diagonal, positive-definite viscous friction
matrix, and t (t) P R n represents the torque input vector.
We will assume that the left-hand side of (1) is first-order
differentiable.

The dynamic system given by (1) exhibits the following
properties that are utilized in the subsequent control
development and stability analysis.
Property 1: The inertia matrix can be upper and lower
bounded by the following inequalities16

m1 ij i2 ≤ j T M(q)j ≤ m2 ij i2 ;jPR n (2)

where m1 and m2 are positive scalar bounding constants, and
i ·i denotes the Euclidean norm.

Property 2: The inertia and the centripetal-Coriolis matri-
ces satisfy the following relationships18

Ṁ(q) = Vm (q,q̇)+V T
m (q, q̇) (3)

j TS 1
2

Ṁ(q)2Vm (q, q̇)Dj = 0 ;jPR n (4)

where Ṁ(q) represents the time derivative of the inertia
matrix.

Property 3: The centripetal-Coriolis matrix satisfies the
following relationship16

Vm (q, n)j = Vm (q, j )n ;j, nPR n. (5)

Property 4: The norm of the centripetal-Coriolis matrix, the
dynamic friction matrix, and the time derivative of inertia
matrix can be upper bounded as follows16

iVm (q, q̇) i i∞ ≤ zc1 i q̇ i , iFd i ≤ z fd, iṀ(q) i i∞ ≤ zm1iq̇i, (6)

where zc1, z fd, and z m are positive scalar bounding
constants, and i·i i∞ denotes the induced infinity norm of a
matrix.

Property 5: The robot dynamics given in (1) can be
linearly parameterized as follows16

Y(q, q̇, q̈)u = M(q)q̈ + Vm (q, q̇)q̇ + G(q) + Fd q̇ (7)

where uPR p contains the unknown constant system
parameters, and Y(q, q̇, q̈)PR n3 p denotes the known regres-
sion matrix that is a function of q(t), q̇(t), q̈(t)PRn. The
regression matrix formulation of (7) is also written in terms
of the desired trajectory in the following manner

Yd(qd , q̇d, q̈d)u = M(qd)q̈d + Vm (qd, q̇d)q̇d + G(qd) + Fd q̇d (8)

where the desired regression matrix is defined by Yd(qd , q̇d,
q̈d) PR n3 p which is a function of the desired link position,
velocity, and acceleratino vectors denoted by qd (t), q̇d (t),
q̈d (t)PR n, respectively.
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Property 6: The inertia, centripetal-Coriolis, and gravity
terms of (1) can be upper bounded as follows19

iM(j )2M(n)i i∞ ≤ zm 2 i (j2n) i ;j, nPRn

iVm (j, q̇)2Vm(n, q̇) i i∞ ≤ zc2 i q̇ i i (j2n)i ;j, nPRn (9)

iG(j )2G(n) i ≤ zg i (j2n) i ;j, nPRn

where zm 2 , zc2 , and zg are positive bounding constants.

Assumption 1: In the subsequent design/analysis, we must
assume that the initial desired velocity of the system is zero
(i.e. q̇d(0)=0) and that the system is initially at rest (i.e.
q̇(0)=0). It is important to note that although we must
assume q̇d(0)= q̇(0)=0, which is the case with most
practical applications, we do not require the initial link
position tracking error to be zero.

3. CONTROL DEVELOPMENT
In order to quantify the control objective, we define the link
position tracking error, e(t)PRn as the difference between
the desired link position and the actual link position as
shown below

e = qd 2q (10)

where we assume the first three time derivatives of the
desired link position trajectory, defined in (8), are bounded
functions of time. To facilitate the design of a link velocity
independent controller, we define a filtered tracking error-
like variable h(t)PRn as follows 20

h = ė + a1e + a2ef (11)

where ė(t)PRn denotes the time derivative of e(t) given in
(10), the filter variable ef (t)PRn is defined by the following
dynamic relationship 

ėf = 2a3ef + a2e2kh ef (0) = 0, (12)

and k, a1, a2, a3 PR1 are positive, constant control gains. To
quantify the performance of the adaptation algorithm, we
define the parameter estimation error signal, denoted by
ũ (t)PRp, as follows 

ũ = u2û (13)

where û (t)PRp denotes the yet to be defined dynamic
parameter estimate of u.

3.1 Torque Filtering
To facilitate the construction of a composite adaptive
controller that utilizes a prediction error-based update law,
we filter the torque input signal according to the standard
procedure given in references 16 & 21 as follows

t f = f * t (14)

where t f (t)PRn denotes the measurable filtered torque
signal, * denotes the standard convolution operation, t (t)
was defined in (1), and the filter function, denoted by
f (t)PR1, is given by

f=b exp(2bt) (15)

where b PR1 denotes a positive filter constant. After
substituting the left-hand side of (1) into (14) for t (t), we

can utilize standard convolution properties and (7) to rewrite
(14) in terms of the following linear parameterization

t f = Yf u (16)

where u denotes the same unknown parameter vector
defined in (7), Yf (q, q̇)PRn3 p denotes the known, filtered
regression matrix which does not depend on link accelera-
tion measurements and is explicitly given by

Yf u = ḟ(t) * {M(q(t))q̇(t)} + f(0)M(q(t))q̇(t)

2 f(t)M(q(0))q̇(0)

+ f(t)* {2Ṁ(q(t))q̇(t) + Vm (q (t),q̇(t)) q̇(t)

+ G(q(t)) + Fd q̇(t) }
(17)

and ḟ (t)PR1 is given by

ḟ (t) = 2b 2 exp(2b t). (18)

To facilitate the removal of link velocity measurements
from the controller, we utilize the structure of (17) to define
the following additional linear parameterization

Ydf u = ḟ(t) * {M(qd (t))q̇d (t)} + f(0)M(qd (t)) q̇d (t)

2 f(t)M(qd (0))q̇d (0)

+ f(t)* {2Ṁ(qd (t))q̇d (t) + Vm (qd (t),q̇d (t)) q̇d (t)

+ G(qd (t)) + Fd q̇d (t) }
(19)

where u denotes the same unknown parameter vector
defined in (7), and Ydf (qd , q̇d )PRn3 p denotes the known,
desired filtered regression matrix.

We now define the measurable prediction error signal
«(t)PRn as shown below

« = t f 2Yd fû (20)

where û(t)PRp denotes the yet to be defined dynamic
parameter estimate of u, and Ydf (qd, q̇d ) was defined in (19).
To facilitate the subsequent control design and stability
analysis, we substitute the right-hand side of (16) for t f (t) in
(20), and then add and subtract Ydf (·)u to the right-hand side
of the resulting expression to obtain

« = Yf u2Ydf u + Ydf u2Ydf û = V + Ydf ũ (21)

where ũ (t) was defined in (13), and V(t)PRn denotes the
following unmeasurable, auxiliary function

V =
n

Yf u2Yd fu (22)

Based on (15), (17), (18), (19), (22), and Assumption 1, it is
easy to upper bound V(t) in the following manner

i V i ≤ bz 2 i x i + bz3 i x i2 (23)

where z2 and z3 are positive constant scalar bounding terms,
b is the same constant weighting term defined in (15), and
x(t)PR3n is defined as follows

x = [eT eT
f hT ]T (24)

where e(t), ef (t), and h (t) were defined in (10), (12), and
(11), respectively.

3.2 Control Formulation
Based on the subsequent open-loop error dynamics, and the
corresponding stability analysis, we propose the following
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control torque input

t = Yd û 2k Ks ef + Ks e (25)

where Ks PRn3 n is a diagonal positive definite constant
weighting matrix, the desired regression matrix Yd (·) was
defined in (8), and the parameter estimate vector û (t) is
computed on-line according to the following composite
update law

˙̂u = PY T
df e + PY T

dh (26)

where Ydf (·) was defined in (19), «(t) was defined in (20),
h(t) was defined in (11), and P(t)PRp3 p is a time-varying,
gain matrix which is updated according to

Ṗ = 2PYT
df Ydf P (27)

where P (0) is selected to be a positive definite, symmetric
matrix. Based on the definition given in (27), we can use the
matrix equality, Ṗ21 = 2P21ṖP21, to determine the follow-
ing dynamic expression for Ṗ21(t)

Ṗ21 = YT
df Ydf (28)

where P 21(0) is also a positive definite, symmetric matrix
because P(0) has been selected to a positive definite,
symmetric matrix. Since YT

df (·)Ydf (·) is a positive semi-
definite, symmetric matrix, we can see from (28) that P21(t)
will remain a positive definite, symmetric matrix for all
time.

Remark 1. Based on the structure of h(t) defined in (11), it
is clear that link velocity measurements are required for the
implementation of (11), (12), (25), and (26); however, we
can construct a link velocity independent, implementable
form of the control algorithm. Specifically, based on (11)
and (12), we can construct the following linear link-velocity
independent filter

ẇ = 2 (w2ke)(a3 + ka2 )2e(ka1 2a2 ) w(0) = ke(0)

ef = w2ke
(29)

where w(t)PRn is an auxiliary filter variable. In addition,
the adaptive update law given by (26) and (27) can be
integrated by parts to yield the following link velocity-
independent form for the update law

û = PY T
d e +Et

0

(P(s)YT
df (s)«(s)

+ P(s)Y T
d(s)(a1e(s) + a 2ef (s))) ds (30)

2Et

0
S2P(s)YT

df (s)Ydf (s)P(s)YT
d(s)e(s)

+ P(s)ẎT
d(s)e(s)Dds

where (27) has been utilized, and Ẏd (·) can be calculated by
taking the time derivative of the regression matrix formula-
tion given by (8). Hence, the control law can be calculated
using only link position measurements via the use of (20),
(25), (27), (29), and (30).

3.3 Error System Development
After taking the time derivative of (11), pre-multiplying the
result by the inertia matrix M (q), making substitutions for
(1), (10), (11) and (12), adding and subtracting the term
Yd (·)u, and making use of Property 3, the dynamics for h(t)
can be written as follows

M(q)ḣ = 2Vm (q, q̇ )h2a2kM(q)h + Yd u + x2t (31)

where the auxiliary function x (e, e f , h, t)PRn is defined
as

x = M(q)q̈d + Fd q̇ + G(q)2Yd u+ a1M(q)(h2a1e2a2ef )

+ a2M(q)(2a3e f + a2e)

2Vm (q, h)(q̇d + a1e + a2ef ) + Vm(q, q̇d )q̇d (32)

+ Vm(q, q̇d )(a1e + a2ef )

+ Vm(q, q̇d + a1e + a2e f )(a1e + a2e f ).

The closed-loop dynamics for h (t) can be obtained by
substituting the control torque input given in (25) and (31)
as shown

M(q)ḣ = 2Vm(q, q̇)h2a 2kM(q)h + Yd ũ + x

+ kKs ef 2Ks e. (33)

Remark 2. Based on the expression given in (32), we can
utilize Properties 4 thru 6, (10), and (11) to upper bound
x (t) as follows

i x i ≤ z 0 ix i + z 1 ix i 2 (34)

where z0, z1 are positive scalar bounding constants, and x(t)
was defined in (24). Based on the bound given by (34), the
control gain k introduced in (12) and (25) is selected to
facilitate the stability analysis as follows

K =
1

m1

(1 + kn (z 2
0 + z 2

1 )) (35)

where m1 was defined in (2), and kn PR1 denotes a positive
nonlinear damping gain.

3.4 Stability Analysis

Theorem 1. The proposed controller yields semi-global
asymptomatic link position tracking control in the sense
that

lim
t→∞

e(t) = 0

provided the robot manipulator is initially at reset (i.e.
q̇(0)=0), the initial desired velocity is selected as q̇d (0)=0)
the control gain k of (12) and (25), and the filter constant b
of (15) are selected sufficiently large and sufficiently small,
respectively, to satisfy the following conditions

l1Smin{a1lmin {Ks},a3lmin {Ks},a2}2
1

a2kn

2bz2D
1

a2kn

+ bz3

> g0

(36)

b <
1

2(z2 + z3)
(37)
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where g0 PR1 is defined as

g0 =
1

2 Se (0)T Kse (0) + eT
f (0)Ks ef (0) + hT (0)M(q(0))h (0)

+ ũ T (0)P 21(0) ũ (0)D ,

l1 PR1 is defined as

l1 =
1

2
min [l min {Ks }, m1, l min {P 21(0)}] , (38)

and lmin {·} denotes the minimum eigenvalue of a matrix.

Proof: In order to prove Theorem 1, we define the
following non-negative function

V =
1
2

eT Ks e +
1
2

eT
f Ks ef +

1
2

h T M(q)h +
1
2

ũ T P 21ũ . (39)

Based on the structure of (39), we can utilize Property 1 and
(28) to lower bound V(t) as follows

l1 i z i2 ≤ V(z(t), t) (40)

where l1 was defined in (38), and z(t)PR3n+ p is defined as

z(t) =F eT eT
f hT ũ T GT

. (41)

After taking the time derivative of (39), utilizing Property 2,
and making substitutions for (11), (12), (21), (26), (28) and
(33), we have

V̇ = 2a1e
T Kse2a3e

T
f Ksef 2a2khT M(q)h + hTx

2
1
2

iYdf ũ i2 2ũT YT
df V (42)

We can now utilize Property 1, the triangular inequality
(23), (34), and (35) to upper bound (42) as follows

V̇ ≤ 2a1lmin{Ks}ie i2 2a3l min {Ks} ief i2 2a2 ih i2

2
1
2
IYd f ũ I2

+ bz2SIYd fũ I2

+ ix i2D
+ bz3SIYd f ũ I2

+ ix i4D
(43)

+ [z 0 ih i ix i 2kna2z 2
0 ihi2 + z1 ih i ixi 2

2kna2z
2
1 ih i2].

After applying the non-linear damping tool22 to the
bracketed terms of (43), utilizing (40), and grouping
common terms, we have the following new upper bound for
V̇(t)

V̇ ≤ 2Hmin{a1l min {Ks},a3 lmin {Ks}, a2}

2
1

a2kn

2 bz2 2S 1
a2kn

+ bz3 D V(z(t), t)
l1

J ix i2

2 ( 1
2 2bz2 2bz3 ) IYdf ũ I2

. (44)

If the conditions given in (37) is satisfied along with the

Fig. 1. Link position tracking error with the composite update based controller (CL)
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following condition

min{a1 lmin{Ks }, a3 l min {Ks}, a2} ≥
1

a2kn

+ bz2

+ S 1
a2kn

+ bz3D V(z(t),t)
l1

, (45)

then we can use (44) to upper bound V̇(t) as follows

V̇ ≤ 2 l3 ix i2 (46)

where l3 PR1 is some positive bounding constant, and x(t)
was defined in (24). From (46), we have that V̇ (t) ≤ 0;
therefore,

V(z(t), t) ≤ V(z(0),0) ; t ≥ 0 (47)

where z(t) was defined in (41). We can now use (47), (46),
(45), and (39) to obtain the sufficient condition given by
(36) (for more details on the above semi-global proof, the
reader is referred to references 13 or 20).

Based on (47), (40), and (41), we can conclude that
V(t)PL ∞ and that e(t), ef (t), h(t)PLn

∞ , and ũ(t)PL p
∞ ;

hence, from (8), (13), (11), (12), (33), (29), (17), (19) and
the fact that desired trajectory is assumed to be bounded,
q(t), q̇(t), ė(t), ė f (t), ḣ(t), w(t)PLn

∞ , û (t)PLp
∞ , and Yf (q, q̇),

Ydf (qd, q̇d)PL n3 p
∞ . Next, from (16) and (20), we have that

t f(t), «(t)PLn
∞ . Due to the fact that P 21(t) is positive

definite for all time, we can conclude that P(t) is positive
definite for all time.  Since P(t) is positive definite and
Ṗ(t) ≤ 0, as given by (27), we have that P(t)PL p3 p

∞ .
Standard signal chasing arguments can now be used to

show that all signals in the controller and the robot
manipulator dynamics remain bounded during closed-loop
operation. Utilizing the above information, we can state
from the definition of (24) that x (t), ẋ (t)PL3n

∞ , which is a
sufficient condition for x (t) to be uniformly continuous.
Furthermore, from (46), we have that x (t) is square
integrable. We can now apply Barbalat’s Lemma21 to
conclude that lim

t→∞
x(t)=0; therefore, from (24), we have that

lim
t→∞

e(t)=0.h

4 EXPERIMENTAL VERIFICATION
The proposed compositive adaptative link position tracking
controller was implemented on an Integrated Motion Inc.
2-link, revolute, direct-drive robot manipulator with the
following dynamics23

Table I. Comparison of Link Position Tracking Control
Performance

CR GR

ue1ssu max (deg.) 0.08 0.1
ue2ssu max (deg.) 0.1 0.1

E40

0
e2

1 (t) 15.2503 63.1422

E40

0
e2

2 (t) 27.3991 41.0284

ut1u max (Nm) 50 42

ut2u max (Nm) 11 8.4

•ss and U• Umax are used to denote the steady state and maximum
values of the parameters, respectively

Fig. 2. Parameter estimates with the composite update based controller (CL), p̂1, p̂2, p̂3 in kg.m2, Fd1 and Fd2 in Nm.sec
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t1

t2

=
p1 + 2p3cos(q2 )
p2 + p3cos(q2 )

p2 + p3cos(q2 )
p2

q̈1

q̈2

+
2 p3sin(q2 )q̇2

p3sin(q2 )q̇1

2p3sin(q2 )(q̇1 + q̇2 )
0

(48)

q̇1

q̇2

+
Fd1

0
0

Fd2

q̇1

q̇2

where p1 =3.31 kg·m 2, p2 =0.116 kg·m 2, p3 =0.16 kg·m 2,
Fd1 =5.3 Nm·sec, and Fd2 =1.1 Nm·sec. For this dynamic
model the unknown parameter vector given in (8) is defined
as follows

u = [ p1, p2, p3, Fd1, Fd2]T (49)

The links of the manipulator are actuated by switched-
reluctance motors which are controlled through NSK torque
controlled amplifiers. A Pentium 266 MHz PC operating
under QNX hosts the control algorithm, which was
implemented via Qmotor 2.0, an in-house graphical user-
interface, to facilitate real-time graphing, data logging, and
the ability to adjust control gains without recompiling the
program (for further information on Qmotor 2.0 the reader
is referred to reference 24). Data acquisition and control
implementation were performed at a frequency of 2.0kHz
using the Quanser MultiQ I/O board.

In order to illustrate the viability and improved perform-
ance of the composite adaptive control design, we

Fig. 3. Control torque inputs with the composite update based controller (CL)

Fig. 4. Link position tracking error with the gradient update based controller (GL)
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implemented the proposed control torque input given by
(25) and (29) using: (i) the proposed composite update law
given in (26) and (27) (hereinafter denoted as CR), and (ii)
a standard gradient update law (hereinafter denoted as GR)
as given by 

û = G E
t

0

YT
d (e + ef )dt + GYT

d e2G E
t

0

d
dt

{YT
d }e dt (50)

where GPRp3 p is a constant, positive-definite, diagonal,

Fig. 5. Parameter estimates with the gradient update based controller (GL), p̂1, p̂2, p̂3 in kg.m2, Fd1 and Fd2 in Nm.sec

Fig. 6. Control torque input with the gradient update based controller (GL)
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adaptation gain matrix. Note that the integral form of both
the CR and GR adaptation laws were computed via a
standard trapezoidal algorithm.

For both experiments, the desired position trajectories for
links 1 and 2 were selected as follows 

qd1 + 0.8 sin(2t)S12e20.3t 3D rad

qd2 = 0.8sin(2t) S12e20.3t 3D rad
(51)

while the actual link positions, velocities, and parameter
estimates were initialized to zero. The controller was tuned
with the adaptation gains and all of the initial adaptive
estimates set to zero. The feedback gains and the nonlinear
filter gains were adjusted until the link position tracking
error could not be further decreased. We then adjusted the
filter gain b and the initial conditions of the time varying
control gain matrix P(t) to allow the parameter estimation to
reduce the link position tracking error (see Figure 1 and
Table I). After the best tracking performance for the CR
controller was obtained, the final gain values were recorded
as follows 

k = diag {36.25, 30.0}, Ks = diag {85.5, 25.53},

b = 10, a1 = 10.25, a2 = 12.5, a3 = 22.25,

1.1034 0.0952 0.0165 0.21 0.01
0.0952 0.5517 0.085 0.015 0.315

P(0) = 0.0165 0.085 0.66136 0.085 0.003 .
0.21 0.015 0.085 0.60658 0.085
0.01 0.315 0.003 0.085 7.54

After replacing the composite update rule with (50) and
tuning the adaptation gains of the GR controller until the
best tracking control performance was obtained, the control
and adaptation gains were recorded as shown below

k = diag{32.25, 28.0}, Ks = diag{85.5, 25.53},

b = 10, a1 = 10.25, a2 = 12.5, a3 = 22.25,

G = diag{22.2, 0.8, 1.255, 100.6, 40.2}.

Table I provides a comparison of the absolute value of the
maximum steady state error and maximum control torque
input, and the integral of the square of the link position
tracking errors. Figures 1, 2, and 3 illustrate the link
position tracking, parameter updates, and computed control
torques for the CR controller, respectively, and Figure 4, 5,
and 6 illustrate the link position tracking, parameter
updates, and computed control torques for the GR con-
troller, respectively. From Table I and Figures 1–6 it is
evident that at the expense of slightly larger control torque
inputs, the proposed CR controller yields faster parameter
adaptation and improved transient performance results.

5 CONCLUSION
In this paper, we have provided a solution to the composite
adaptive output feedback tracking control problem for
robotic manipulators. The controller provided semi-global
asymptotic link position tracking performance. Experi-
mental results illustrated that the proposed controller

provides improved link position tracking error transient
performance and faster parameter estimate convergence in
comparison to the same controller using a gradient update
law. In the hopes of achieving even faster transient response,
future work will concentrate on the development of an OFB
adaptive controller with an update law which is solely
driven by the prediction error as previously done for the
full-state feedback case in references 2 and 8. 
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