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This note addresses the proposed sliding-mode solution of the mo-
tion/force control problem for constrained robots given in the above-
mentioned paper. In the above p&péne authors claim their control

Combining (4) and (5), we see thal(s) satisfies the second-order
differential equation

sF"(s) = F'(s)+s"F(s) =1 (6) law ensures the motion and force errors are asymptotically driven to
_ zero and that the actual forces will asymptotically approach the de-
everywhere on the open right half-plafie s > 0. sired forces; however, the authors’ claim is invalid due to an error in
But the ordinary differential equation the sliding-mode control stability analysis. Specific details of the er-
sw' —w' 4+ Sw =1 ) rorst are given below with the equation numbers referring to those in
the papet
has, as can be seen in the usual way, a full complement of series soldn the pape¥ the authors develop the following closed-loop error
tions system:
w= i @ Mi=Y ()8~ Cs— Ksgn(s) = Y(-)p (7)
n=0 wheresgn(-) denotes the standard signum function, the switching func-
abouts = 0, wherec, andcs can be freely chosen, where = tion(t) € R is designed as follows:
—1,¢3 = 0, and where 3 n
—Cn 59291 Sgn<291y7]l> 5 i = 1-,29"'771
Cn44 — (9) j=1

(n+4)(n+2)

EvVi nxXn ¥ nXn - spnXxXn (. pPnRXT r

Because the recursion (9) forces factorial growth in the denominat6¥id ! EBR Ole I§Rd f,’ I‘de E ’Yé(_j_)he Rh ’L‘g € ®7,
of the coefficients, it is clear that each series solution (8) has an infin g) € are exp 'C't_y efined in the papérrhrough a Lyapunov-
%ﬁed stability analysis, the authors assert that

radius of convergence and converges to an entire (everywhere anal
function. Since all other points, # 0 are ordinary points of (7), each lim ey, ép,ep =0

solution of (7) near = s, is the sum of a fixed particular solution f=oo

plus a linear combination of two fixed independent homogeneous swoheree,(t) € R™ represents the motion error, apd(t) € R” is
lutions—all three of which can be supplied by the series solutions (8fined as the accumulated force tracking error as follows:
abouts = 0. Hence our transfer functiom = F(s), itself a solution .t

to (7) on the open right half-plane, has a unique analytic extension to ey = AT / (Mg — ) dt

the entire complex plane. 0
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while A4 () € R" represents the desired forcez) € R" represents Comments on “Robust Tracking Control for Rigid Robotic

the actual force, and € R"*" is defined in the papérTo show that Manipulators”
the actual force tracks the desired force, the authors clain gay,
és(t) € Lo [which is a sufficient condition foé s (¢) to be uniformly Wen-Hong Zhu

continuous] in order to invoke Barbalat's lemma to conclude that

Abstract—The incorrectness of a main assumption in note [1] was
lim éy = 0. pointed out by [2]. This note proposes a correction.

t—oo
Index Terms—Robust control, sliding mode control, robot control,

However, the claim thaé;(t) € L. is predicated on the fact that tracking control.

§(t) € Lo, which due to the discontinuous nature of the closed-loop

error system given in (7) is not true. The incorrectness okssumption 2.8vith Eq. (2.7) in the authors’
In Remark 1 the authors state that an additional control law can hgrevious publication [1] was pointed out by [2]. It indicates that the
designed as follows: uncertaintyp(t) must include either acceleratignor controlu(¢). In

an authors’ late publication [3], this issue was addressed. Theorem 3.1
in [3] states that if the control input(¢) does not contain the accel-
eration signal, then the system uncertaipty) can be bounded by a
positive function of position and velocity only, i.e. (20) in [3] holds
whereT(t) is defined to prove thak(t) ande, (t) approach zero expo- when the controk(t) is subject to (21) in [3]. This leads to Eq. (22)
nentially fast; hence, the actual forces approach the desired forcesigx3] which imposes restriction on the coefficients of control bound
ponentially fast. Unfortunately, this additional control law also results,, A, and\, and the coefficients of uncertainty bould b, andbs.
in a discontinuous closed-loop error system due to the discontinuauisfortunately, this restriction was not considered in the control design
nature ofe(t); hence, the additional control law still does not ensur@8) and (49) in [3]. Equation (52) in [3] indicates tttat b; , andb, are
that3(t) € L. Sinces(t) € L has not been proven, it is not clearconstants. Thereforay, A1, and\. must have upper bounds according
how the additional control law ensures that: ... A = A4 unlessthe to Eq. (22) in [3]. However, the authors in [3] were failed to prove that
authors intended to craft an exact model knowledge control torque @se control laws (48) and (49), whelg, b, , andb. are nondecreasing
positive functions, still satisfy (21) in [3]. The algebraic loop problem
F=Ks—TTATA 4+ Y (6. relate_d to the contral (), the uncertaint_yv(t), and the acceleratioh
remains unsolved. On the other hand, in order to guarantee +oc
for (22) in [3], AM (q) in (3.a) must be limited according to (13.a) in
It should be noted that McClamroch [3] provided an exact modgs] to avoid zero singular value fdr+ AM (q) - Mo(q)~". However,
knowledge controller which ylelded global exponential pOSitiOﬂ an,do guide"ne on ChOOSianfo (Cj) is pro\/ided to guaranta@l < 4o0.
force tracking. Meanwhile, Remark 4.7 in [3] states that the control space is not com-
In Remark 2 the authors assert that the chattering problem resultipgct.
from the discontinuous control law can be eliminated by Utl'lZIng a Consider that [2] didn’t present correction, this note proposes a cor-
boundary layer technique or replacing the signum function with a cofection to the previous publication [1]. A guideline on choosidg(¢)
tinuous function. Unfortunately, the application of these techniqu@sproposed and the algebraic loop issue related to the caritrpithe

will sacrifice the asymptotic result for a uniformly ultimately boundeqincertaintyp(¢), and the acceleratiojis solved with a compact con-
stability result. It should also be noted that full-state feedback [Lfol space.

[4], and [5] and partial state feedback [2] adaptive controllers havefrom (2.1) and (2.2) in [1], it follows that
been previously designed to yield asymptotic position/force tracking
for constrained robot manipulators. AM(q)i=E - (u(t) — h(¢. §)), 1)

T=Ks—T A" \+Y()p

where

A —i
E =1, — M M . 2
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