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Re s > 0. Moreover, we may differentiate past the integral to see by
parts that

F 0(s) = �
1

0

t sin(t2=2)e�st dt

= e�st cos(t2=2)
1

t=0
+ s

1

0

cos(t2=2)e�st dt

= �1 + s
1

0

cos(t2=2)e�st dt: (4)

Differentiating again by the product rule and integration by parts
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(5)

Combining (4) and (5), we see thatF (s) satisfies the second-order
differential equation

sF 00(s)� F 0(s) + s3F (s) = 1 (6)

everywhere on the open right half-planeRe s > 0.
But the ordinary differential equation

sw00 � w0 + s3w = 1 (7)

has, as can be seen in the usual way, a full complement of series solu-
tions

w =

1

n=0

cns
n (8)

abouts = 0, wherec0 and c2 can be freely chosen, wherec1 =
�1; c3 = 0, and where

cn+4 =
�cn

(n+ 4)(n+ 2)
: (9)

Because the recursion (9) forces factorial growth in the denominators
of the coefficients, it is clear that each series solution (8) has an infinite
radius of convergence and converges to an entire (everywhere analytic)
function. Since all other pointss0 6= 0 are ordinary points of (7), each
solution of (7) nears = s0 is the sum of a fixed particular solution
plus a linear combination of two fixed independent homogeneous so-
lutions—all three of which can be supplied by the series solutions (8)
abouts = 0. Hence our transfer functionw = F (s), itself a solution
to (7) on the open right half-plane, has a unique analytic extension to
the entire complex plane.

IV. SUMMARY

There exist BIBO-unstable SISO plants whose transfer functions
have no singularities in the finite plane.
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Comments on “Sliding-Mode Motion/Force Control of
Constrained Robots”

W. E. Dixon and E. Zergeroglu

Index Terms—Constrained robots, motion/force control, sliding-mode.

This note addresses the proposed sliding-mode solution of the mo-
tion/force control problem for constrained robots given in the above-
mentioned paper. In the above paper1 the authors claim their control
law ensures the motion and force errors are asymptotically driven to
zero and that the actual forces will asymptotically approach the de-
sired forces; however, the authors’ claim is invalid due to an error in
the sliding-mode control stability analysis. Specific details of the er-
rors1 are given below with the equation numbers referring to those in
the paper.1

In the paper1 the authors develop the following closed-loop error
system:

M _s = Y (�)� � Cs�K sgn(s)� Y (�)' (7)

wheresgn(�)denotes the standard signum function, the switching func-
tion '(t) 2 <r is designed as follows:

' = �i sgn

n

j=1

sjYji ; i = 1; 2; � � � ; r

andM 2 <n�n; C 2 <n�n; K 2 <n�n; Y (�) 2 <n�r; � 2 <r;
s(t) 2 <n are explicitly defined in the paper.1 Through a Lyapunov-
based stability analysis, the authors assert that

lim
t!1

ep; _ep; ef = 0

whereep(t) 2 <n represents the motion error, andef(t) 2 <n is
defined as the accumulated force tracking error as follows:

ef = AT
t

0

(�d � �) dt
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while �d(t) 2 <n represents the desired force,�(t) 2 <n represents
the actual force, andA 2 <

n�n is defined in the paper.1 To show that
the actual force tracks the desired force, the authors claim that_ef (t);
�ef(t) 2 L1 [which is a sufficient condition for_ef(t) to be uniformly
continuous] in order to invoke Barbalat’s lemma to conclude that

lim
t!1

_ef = 0:

However, the claim that�ef(t) 2 L1 is predicated on the fact that
�s(t) 2 L1; which due to the discontinuous nature of the closed-loop
error system given in (7) is not true.

In Remark 11 the authors state that an additional control law can be
designed as follows:

� = Ks� T
T
A
T
�+ Y (�)'

where�(t) is defined1 to prove thats(t) andep(t) approach zero expo-
nentially fast; hence, the actual forces approach the desired forces ex-
ponentially fast. Unfortunately, this additional control law also results
in a discontinuous closed-loop error system due to the discontinuous
nature of'(t); hence, the additional control law still does not ensure
that�s(t) 2 L1. Since�s(t) 2 L1 has not been proven, it is not clear
how the additional control law ensures thatlimt!1 � = �d unless the
authors intended to craft an exact model knowledge control torque as

� = Ks� T
T
A
T
�+ Y (�)�:

It should be noted that McClamroch [3] provided an exact model
knowledge controller which yielded global exponential position and
force tracking.

In Remark 21 the authors assert that the chattering problem resulting
from the discontinuous control law can be eliminated by utilizing a
boundary layer technique or replacing the signum function with a con-
tinuous function. Unfortunately, the application of these techniques
will sacrifice the asymptotic result for a uniformly ultimately bounded
stability result. It should also be noted that full-state feedback [1],
[4], and [5] and partial state feedback [2] adaptive controllers have
been previously designed to yield asymptotic position/force tracking
for constrained robot manipulators.
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Comments on “Robust Tracking Control for Rigid Robotic
Manipulators”

Wen-Hong Zhu

Abstract—The incorrectness of a main assumption in note [1] was
pointed out by [2]. This note proposes a correction.

Index Terms—Robust control, sliding mode control, robot control,
tracking control.

The incorrectness ofAssumption 2.3with Eq. (2.7) in the authors’
previous publication [1] was pointed out by [2]. It indicates that the
uncertainty�(t) must include either acceleration�q or controlu(t). In
an authors’ late publication [3], this issue was addressed. Theorem 3.1
in [3] states that if the control inputu(t) does not contain the accel-
eration signal, then the system uncertainty�(t) can be bounded by a
positive function of position and velocity only, i.e. (20) in [3] holds
when the controlu(t) is subject to (21) in [3]. This leads to Eq. (22)
in [3] which imposes restriction on the coefficients of control bound
�0; �1, and�2 and the coefficients of uncertainty boundb0; b1, andb2.
Unfortunately, this restriction was not considered in the control design
(48) and (49) in [3]. Equation (52) in [3] indicates thatb0; b1, andb2 are
constants. Therefore,�0; �1, and�2 must have upper bounds according
to Eq. (22) in [3]. However, the authors in [3] were failed to prove that
the control laws (48) and (49), whereb̂0; b̂1, andb̂2 are nondecreasing
positive functions, still satisfy (21) in [3]. The algebraic loop problem
related to the controlu(t), the uncertainty�(t), and the acceleration�q
remains unsolved. On the other hand, in order to guarantee�1 < +1
for (22) in [3],�M(q) in (3.a) must be limited according to (13.a) in
[3] to avoid zero singular value forI +�M(q) �M0(q)

�1. However,
no guideline on choosingM0(q) is provided to guarantee�1 < +1.
Meanwhile, Remark 4.7 in [3] states that the control space is not com-
pact.

Consider that [2] didn’t present correction, this note proposes a cor-
rection to the previous publication [1]. A guideline on choosingM0(q)
is proposed and the algebraic loop issue related to the controlu(t), the
uncertainty�(t), and the acceleration�q is solved with a compact con-
trol space.

From (2.1) and (2.2) in [1], it follows that

�M(q)�q = E � (u(t)� h(q; _q)); (1)

where

E
�
= In �M0(q)M(q)�1: (2)

Note that M(q)�1 is symmetrically positive-definite. We have
M(q)�1 = T (q)T � M(q)�1 � T (q), whereM(q)�1 2 Rn�n is a
diagonal positive-definite matrix andT (q) 2 Rn�n is an orthogonal
rotational matrix subject toT (q)T = T (q)�1. If M0(q) is chosen as
(page 229 of [4])

M0 =
2

c1 + c2
� In; (3)
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