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a DCAL-based feedforward term, a different filter structure, and a diBased on the definition of (7), it can easily be shown that the following
ferent error system development/analysis allows us to extend the exaetjualities hold fow¢, v € R™:
model knowledge controller for one DOF systems given in [18] to un- | ‘ , ;
certain,n DOF robot manipulators. stantt ([|¢]1) < In(cosh(||¢]))
<> In(eosh(&)) < JI€)1°
=1

Il. ROBOT MANIPULATOR MODEL AND PROPERTIES

The system model for am-rigid link, revolute, direct-drive robot is tanit (||¢]]) < ||Tanh(&)||*> = Tanh (¢) Tank¢) 9)
assumed to be of the following form [16]:
and
M(@)i + V(4. 0)d + G(a) + Fag = 7 (1) " "
cos <Z &) — cos <Z 1/,)‘

whereg, ¢, § € R™ denote the link position, velocity, and acceleration i=1 i=1
vectors, respectively (¢) € R**" represents the link inertia matrix, "
Vin(q,4) € R™*" represents centripetal-Coriolis matri%(q) € R" S SZ |tanh(&; — v )|
represents the gravity effectg, € R"*" is the constant, diagonal, " = "
positive-definite, viscous friction coefficient matrix, ande R™ rep- €in (Z &) _sin (Z yl_) ‘
resents the torque input vector. We will assume that the left-hand side = =

of (1) is first-order differentiable. n
The dynamic equation of (1) has the following properties [16], [20] <8 Z [tank(&: — vi)| (10)
that will be used in the controller development and analysis. i=1
Property 1: Theinertia matrix}M (¢) is symmetric and positive-def- whereg;, v; denote théth elements of the vectoes v, and| - | denotes
inite and satisfies the following inequality: the standard absolute value operation.
Assumption 1: The positive constants,., ¢,, and(.» are assumed

milg]? <€M)€ < mal€ll*,  VEER" (2) o exist for all¢, v € R" such that
wherem, mo are known positive constants, afjd || denotes the [|M(&) — M(v)|| < mllTank(E — v)||,
standard Euclidean norm. 1G(&) = G(v)|| < ¢l Tank(E — v)|

Property 2: The inertia and centripetal-Coriolis matrices satisfy the
following relationship: |

Vinl€.4) = Vi (v, DIl < Ceallg ]l TanKE — v)]. (1)

Ty i . n In Appendix A, we illustrate how the bounds given in (11) hold for the
& (3 M(g) = Vin(q,:9)) =0, VEER (3)  six DOF Puma robot. In a similar manner to that provided in Appendix
A, we can show that the bounds given in (11) hold for other revolute

wherel(q) is the time derivative of the inertia matrix. robots; hence, from a practical point of view, Assumption 1 resembles
Property 3: The dynamic equation of (1) can be linear parameteg property more than an assumption.

ized as
. .. .. . L. . Ill. CONTROL DEVELOPMENT
Ya(qd, qd, §a)0 = M(qa)ga + Vin(qd, da)ga + G(qa) + Faqa (4)

The control objective is to design a global link position tracking con-
where¥ € RP contains the constant system parameters, anditbieed  troller® for the robot manipulator model given by (1) under the given
regression matri®’y(qa4, 41, 42) € R"*P contains known functions constraints that only the link position variahjds available for mea-
of the desired link position, velocity, and acceleratign(t), ¢.(t), surementand that the parameter veétdefined in (4) is an unknown
da(t) € R™, respectively. constant vector. We will quantify the control objective by defining the

Property 4: There exist positive scalar constatis .1 such that link position tracking erroe(t) € R" as follows:

i R . . n > = — 12
IEl <o WVinlg Dl < Callill Ya.d€R™. (5) €=di=4q (12)

. L . o . where we assume thai(#), defined in Property 3, and its first three
Property 5: The centripetal-Coriolis matrix satisfies the followingyjme derivatives are bounded functions of time. In addition, we define
relationship: the difference between the actual and estimated parameters as follows:

Viulq, E)v = Viulq,v)€, V& v €R". (6) 6=6-6 (13)

To aid the subsequent control design and analysis, we define Weered € R represents the parameter estimation error vector, and
vector function Tanh) € R™ and the matrix function Cogh € R**" ¢ € R’ represents a dynamic estimatefiodefined in (4).

as follows: )
A. Control Formulation

Tanh§) = [tanh(&;), - - - . tank(&,)] " 7 To facilitate the design of the controller, we define a filtered tracking

error-like variablen € R™ as follows:
and
n = ¢+ Tanhe) 4+ TanHey) (14)
Coshig) = diag{cosh(&1), -+, cosh(&n)} (8) 3Here, global link position tracking means that the controller must drive the
" " . . link position tracking error to zero asymptotically for any finite, initial position,
where{ = [¢1,---,£,]" € R", and diad-} denotes the operation of and velocity tracking errors with no conditions on the size of the initial tracking
forming a matrix with zeros everywhere except for the main diagonakrors.
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wheree and Tanli-) were defined in (12) and (7), respectively, and Remark 2: By exploiting the fact that the desired trajectory is
ey € R™ is an auxiliary filter variable which is defined to have thebounded, Properties 1and 4, and the properties of hyperbolic functions,

following dynamics: we note tha (e, e, n,¢) of (20) can be upper bounded as follows:
é5 = — Tanh(es) + Tanh(e) — k CosH (e). Xl < Culfll (23)
ef(0)=0 (15) where(; is some positive bounding constant that depends on the me-

chanical parameters and the desired trajectoryaad®*” is defined
with & being a positive scalar control gain and CesHbeing defined P J y#oe

in (8). Based on the subsequent error system development and the cor-
responding stability analysis, we propose the following torque input: x = [Tanh (¢) Tanh (ef) 7"]". (24)

T = Y46 — I CosH (e;) TanHe;) + Tanh(e) (16)  Furthermore, by utilizing the fact that the desired trajectory is bounded

and Assumption 1, it can be shown tfate, es,n,t) of (21) can be
wheref is the same control gain defined in (15), and the parametgpper bounded as follows:

estimate vectaof is generated on-line according to the following update ~
law: 1Y) < Gll«l (25)

§=TY. Ty (17) Whereg, is also some positive bounding constant that depends on the
mechanical parameters and the desired trajectory.

with ' € RP*? being a constant, diagonal, positive-definite, adaptatlon
gain matrix.

Remark 1: Based on the definition of given in (14), we can see that  Theorem 1: Given the robot dynamics of (1), the proposed adaptive
link velocity measurements are required for control implementation gontroller of (15)—(17) ensures global asymptotic link position tracking
(15)—(17). However, after the stability proof, we will illustrate how thén the sense that
proposed controller has an equivalent form which only depends on link

C. Stability Analysis

position measurements. thj& e(t) =0 (26)
B. Error System Development provided the control gaik is chosen as follows:
. ) . 1 .
We begin the error system development by first calculating the b= - (L4 k(G 4+ G)P) @7)
1

open-loop filtered tracking error dynamics. To this end, we take the
time derivative of (14), multiply both sides of the equation®(¢).  wherem,, ¢;, and¢, are constants defined in (2), (23), and (25), re-
and then substitute (1) fa¥/ (¢)¢ in the resulting expression to yield spectively, and,, is a control gain that must satisfy the following suf-
. . . . ficient condition:
M(q)) =M(q)ja+ Vin(q,§)q + G(q) + Fug — 7
+ M(q) cOsh*Z( )é ko > 1. (28)

+ M(q) Cosh*(ef)é . (18) Proof: We start the proof by defining the following nonnegative

After adding and subtracting;# of (4) to the right-hand side of (18), function? ’
Vie,er,n,0 Zln h(ei)) + ZIH(COSh(Eyf,')

we can utilize (12), (14), and (15) to rewrite the open-loop dynamics
for n as follows: gt

M(Q)i = —Vi(ad)n — kM(Qn+Yad +x+Y =7 (19) +3n M(gn+ 56776 (29)

wheree, ey; are theith elements of the vectoesande; defined in

wherex(e, ez, n,t),Y(e,er,n,t) € R* are defined as _ . ) N
x(esersmt),Yie,er,m.1) (12) and (15), respectively. After taking the time derivative of (29), we

X = M(q)Costi(e) (n — Tanh(e;) — Tanh(e)) obtain the following expression fdr (e, ¢, 1, 6):
+ M(q) Costi*(es) (~Tanh(ey) + Tant(e)) Vie,er,n,0) =Tanh (e)é + Tanh (ep)é; +n' M(q)i
+ Vi (g: 4a + Tanf(ey) + Ly Mgy -6"T7"% (30)
+ Tanhe))(Tanhey) + Tanh(e)) . .
+ Vin(q. a)(Tanke ;) + Tank(e)) where we have used the fact from (13) tlla= —6¢. We can now

. . , L utilize (14), (15), (22), and (17) in (30) to simplify the expression for
= Vinlg:m) (¢a + Tank(e ) + Tan(e)). (20) Ve, er,n,6) as follows:
and V = — Tanh (¢) TanKe) — Tanh' (¢;) Tanh(e;)
Y = M(q)4a+ Viul(q, da)ia + G(¢) + Fag — Y40 (21) +0 (Y 4+ ) = k' M(a)n (31)

here (3) has been employed. After applying (23), (25), (2), and (27)

where Property 5 given by (6) has been utilized. After substituting (1t (31), we obtain the following upper bound e, ¢ . 7. f):

into (19), we can form the closed-loop dynamics fcais
V < —[|Tanke)||” — [|Tank(es)[|* — [In]]*
+ (G + @l Il = Fa (S + )2 MInll)- (32)

N 4It should be noted that the first two termslii{e, e, , é) are motivated by
wheref was defined in (13). the work given in [18].

M(q)i = = Vil @)n — kM (q)n+Yaf + Y + x
+ k CosH (e;) TanHe;) — Tanhe) (22)
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After completing the squares on the bracketed term in (32), we get tiberep; is an auxiliary variable which allowg (and hence, tarfla;)

following new upper bound oﬁ(’(e, ef, 1, é): andcosh?(e ;) to be calculated with only link position measurements.
) i 1 ‘ We now illustrate how the torque control input given by (16) and
V< —l2|I” + W [|]?. (33) (17) can be computed with only link position measurements. First, we

substitute the definition of given by (14) into (17) and then formulate
Finally, if &, is selected according to (28), we can rewrite (33) as an equivalent expression as follows:

V< =gl (34) 6§=TY e+To
where3 is some positive constant. 6 =Y (44, 4a: da)(Tank(e) + y) = Vi (qa, da, Ga)e (40)

As discussed in [18], we note th&i(cosh(0)) = 0 and that .
In(cosh(:)) is a radially unbounded, globally positive-definiteWhere) we have _gtlllzed _the fact from (35) that= T&.mr(ef)” and
function. Hence, due to the structure e, ¢, 7 é) given in (29), ¢ € R? is an auxiliary variable that allows the adaptation law to be cal-
Vieser §) is a radially unbounded, /glrobally positive-definitecmated with link velocity measurements. By utilizing (39) to compute
LY y, itis now easy to see thdtcan be computed with only link position

function for all e(t), es(t), (), 6(t). andt. SinceV(e,eys,1,6) v ’ :
is negative semidefinite as illustrated by (34), we now know th easurements. After substituting (35) and (36) into (16);theom-
ponent of the torque input control can be written as follows:

V(e(t),ep(t),n(t),0(t) € Loo; hencee(t), e(t), 1(t), 8(1) € Loo
(and tjence;, due to the fact that deswgq trajectory is boundeq, = (Ydé)i Y _ +tanhe;) (41)
q(t), 6(t), 8(t) € Ls). We can now utilize (14), (15), and (22) to 1-y;

state that(t), ¢¢(¢), 17(t) € L. The above boundedness statements

(V0. g ) ;
together with the fact that the desired trajectory is bounded allow \gvshererz, (Yq#), are theith element of the vectors Ya9, respectively,

to conclude thafi(t), 7(t) € £ Is computed using (40), and is computed using (39).

From the above information, we can state from the definition of (2%)u';$ Eaark 3t)|t s clelafrofrrc;rlT tEanE:a) a'll'r(])diIl(jit)r;rt]eatihr;qtutstwti:Z(;:tlir;\%ig d
thatz(t), @(t) € Lo (note thati(t) € Lo is a sufficient condition fy:(0)] < )

ccur, first, note that since;(0) = 0 [see (15)], we know from (35)

for 2:(¢) being uniformly continuous). From (34), itis easy to show th % , - .
2(t) € L». We can now apply Barbalat's lemma [24] to conclude tha aty(0) = 0. Secondly, from the proof of Thoerem 1, it follows that

lim¢—oo x(¢) = 0. From the definition given in (24), we can now seeef‘(t) € Loo; hence, we can use the definition given by (35) and the

thatlim;_.. Tan(¢(#)) = 0; hence, the properties of the hyperboli(,fmpert'es of the hyperbolic functions to show that?)| < 1 for
tangent function lead to the result given by (26). >

Remark 4: From the proof of Theorem 1, it also follows th%(t) €

D. Output Feedback Form of the Controller L ande(t) € L; hence, itis now easy to see that all of the signals

) . . in the OFB form of the control given by (39), (41), and (40) remain
We now illustrate how the control law proposed in Section llI-A hag, nded for all time (.ei(t), pit) 6, (1), 7e(t), 0i(t) € Loo).

an equivalent form which only requires link position measurements. gemark 5: It should be noted that since the proposed controller is a
Note that the torque control input given by (16) and (17) does nfy hosition tracking controller, a simplified version of the controller

actually require the computation ef; rather, only of Tantes) and 4 pe used for global setpoint control (i.g:,= constantj, = 0).
CosH (ey). Hence, if we define the following relationship: Specifically,Y;# defined in (4) now becomes
yi = [Tanf'(e,f)]i = tanl‘(ef;) (35) i,fd(qd)(_) = Glqq) (42)

then according to standard hyperbolic identities
1 1
T 1—tantf(es) 1-y? (36) §=TY]e+Typ
.y )
wherey, is theith element of the vectay € R™. 6 =Y (qa)(Tank(e) + y) (43)

We will now show thay; [and hence tarfla ;) andcosh® (e :)] €@ The filter given by (39) and the torque control input given by (41) are
be calculated with only link position measurements. First, note thgfijized to complete the structure of the adaptive setpoint controller.
filter given by (15) can be written in terms of ifh component as  Remark 6: If we assume exact model knowledge, the torque input

and hence, the update law given by (40) simplifies as follows:

cosh® (e i)

follows: can be redesigned as follows:
épi = —tankey;) + tanh(e;) — k cosh®(esi)n:, T =M(q)ga + Vin(q,qa)ga + G(q) + Faga
eri(0) =0 @7 — k CosH(ey) Tanh(es) + TanHe); (44)

wherer; is theith element of the vectoy defined in (14). After taking ) .
the time derivative of (35), we can substitute (37) and (36) into thheence, the closed-loop dynamics fpbecomes

resulting expression to obtain M(q)i = — Vila,d)n — EM(¢)n+Y +y
§i = cosh (e )épi = —(1— y2) (y; — tank(e;)) + k Cosli(e;) Tanhe;) — TanHe) (45)
— k(éi +tank(e;) +yi),  4:(0) = 0. (38)  wherex(e, e, 1. t) is still given by (20), but now’ (e, ¢ 7, 1, ¢) is de-
Itis now straightforward to utilize (38) to construct the following ﬁlterﬁned as
which also computes; : vV = —Fye. (46)
pi = — (1= (pi — ke;)?) (pi — ke; — tank(e;))

Note thatY’(-) of (46) can now be bounded as in (25) but without the
— k(tank(ei) +pi — keq), pi(0) = kei(0) need for Assumption 1. By slightly modifying the stability analysis
yi =pi — ke; (39) givenin Theorem 1, itis easy to show that the controller given by (44)
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yields global asymptotic link position tracking. In a similar manner ahe centripetal-Coriolis matrix [i.e¥»53(q, ¢)] for the six DOF Puma
done for the adaptive controller, it is also easy to show that the cawwbot manipulator has the following form [16]:
troller given by (44) can be computed with only link position measure-

ments. Furthermore, since the parameter error term is not required in Vinsa =[0.0025 cos(qz2 + ¢3) sin(ga) sin(gs)
the nonnegative function given by (29) for the exact model knowledge + 0.00064 cos(qz + g3) sin(q4)] g1 (51)
case, we can employ Property 5 to bound the nonadaptive version of
(29) as follows: whereg; denotes théth element of the link position vectgre R°. If
we define
A In(cosh([|=]) <V < Aol 47) R

wherez € R*" is defined as

then, according to (51), the mismatch for elem€nt; (¢, ¢) becomes

z= [eT erf nT]T (48) - . .

Vas = Qi (& v, ) + Q2(& v, ¢) (53)

andAi, X2 € R' are some positive constants. We can also use Prope\;\%ereQ

5, (48), and (34) to bound the time derivative of the nonadaptive version ~ '
of (29) as follows:

(&, v, q) andQ2 (&, v, ¢) are scalar quantities defined by

Q1 =0.00064¢ [cos(&2 + &3) sin(&q)
17 < —A%tanh?(”;’”) (49) — COS(VQ + Vg) sin(m)] (54)

where); € R' is some positive constant. Based on (47)—(49), it ea%?d
to show the requirements of [14], Th. A.5 are satisfied, and hence, we 0. — . . .
can conclude that the equilibrium= 0 is globally uniformly asymp- {22 =0.0025¢1 [cos( &2 + &) bu.l(&) sin(&s)

totically stable. — cos(ve + vs) sin(va) sin(vs)]. (55)

Note that (54) can be rewritten as
IV. CONCLUSION

Inthis paper, we presented a solution to the problem of global, output 21 =0.000 6441 [cos(&2 + &§3) — cos(v2 + v3)] sin(&4)
feedback, tracking control of uncertain robot manipulators. The solu- + 0.000 6441 cos(v2 + v3) [sin(€4) — sin(va)]; (56)
tion involves the use of a dynamic filter which is nonlinear in a way
fundamentally different from the linear, high-gain filters used in preience, an upper bound can be placedtari as follows:
vious work (e.g., see linear filter structures used in [4], [25], and [5]).
Furthermore, the solution involves the use of a nonquadratic Lyapunov ~ [$21] <0.00064[g:1| (| cos(§2 + €3) — cos(va + v3))].
function that is “softer® than the standard quadratic Lyapunov func- + |sin(&) = sin(wa)]). (57)
tion. In addition, the control development/analysis and the method in
which the control is implemented exploits several properties inherdgpon the application of (10) to (57), we have the following new upper
to the robot manipulator equation. Hence, the filter structure, softndssund:
of the Lyapunov function, and the exploitation of the robot manipulator

equation are all instrumental in the design of a controller that compen- [€2:] £0.005 12]¢: |[[tanh(&s — v2)|

sates for parametric uncertainty, achieves global asymptotic link posi- + |tanh(&s — vs)| + [tanh(&s — va)]]. (58)

tion tracking, and only requires link position measurements. Simulation

results for the proposed controller can be found in [26]. Similar arguments can be applied to (55) to show that
APPENDIX A Qo] <0.02]¢1] [[tani(&2 — v2)| + [tanh(&s — vs)]

BOUNDS FOR THEPUMA ROBOT (ASSUMPTION1) + [tanH &y — va)| + |tanh(&s — vs)|]. (59)

To prove the e>_<i_sten(_:e Of. the bou_nds given in (11), We_Wi” _malﬁg om (58) and (59), it is clear thaks of (53) can be upper bounded
use of the inequalities given in (10). First, note that the matrices in (1 follows:

contain mismatchesnlyin the link position variable. For revolute joint
robots, these mismatches can be arranged to have one of the following [Vas| < Gssldn ] [[tanHéx — v2)| + [tank(&s — vs)]

general forms: + Jtanh€s — va)| + [tant(Es — vs)]] (60)
k k
cos <Z {,) — cos <Z 1/,;)
=3 =3

k k
sin <Z 5,;) — sin <Z 1/,)‘ (50) la| + D] < V2 la|> + b2, Va,beR (61)
i—j i—j

to show that

where(ss is some positive bounding constant. We can now use the
following inequality:

N

where¢;, v; are theith elements o¥/¢, v € R™, j € {1,2,---,n}, . -
k€ {j,j+1,---.n}, andn represents the robot's total DOF’s. That [Vas| < Cslldll I TankE — v)] (62)
is, all the elements of the matrices in (11) will contain terms similar

to those given by (50). For example, the most complicated element: ere¢;; is some positive bounding constant.

Since all of the elements &f, defined in (52), can be upper bounded
5The word softer is used to illustrate the fact thatcosh(x)) < 2. in a similar fashion as shown in (62), itis now easy to see|thdt can
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be upper bounded as in the third inequality of (11). Similar argument§6] F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. Dixon, “Global

(1

[2

(3]

(4]
(5]

(6]

can be followed to prove the other two inequalities given in (11). adaptive output feedback tracking control of robot manipulators,” in
Proc. IEEE Conf. Decision ContrglSan Diego, CA, Dec. 1997, pp.
3634-3639.
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