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Global Adaptive Output Feedback Tracking Control of
Robot Manipulators

F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. E. Dixon

Abstract—This paper presents a solution to the problem of global, output
feedback, tracking control of uncertain robot manipulators. Specifically, a
desired compensation adaptation law plus a nonlinear feedback term cou-
pled to a dynamic nonlinear filter is designed to produce global asymptotic
link position tracking while compensating for parametric uncertainty and
requiring only link position measurements.

Index Terms—Adaptive control, output feedback, robot manipulator,
tracking control.

I. INTRODUCTION

The problem of output feedback1 (OFB) link position tracking
control of robot manipulators has been a topic of considerable in-
terest over the past several years. In [2], Belanger provided motivation
for using control design techniques to eliminate the need for velocity
measurements by illustrating how a Kalman filter provided significant
improvement over anad hocmethod such as numerical integration
of the position measurements. A limitation that exists in almost all of
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1We use the term output feedback to denote that only robot’s link position
measurements are available.

the proposed OFB link positiontrackingcontrollers is the semiglobal
nature of the stability results. In contrast, global solutions to the OFB
link positionsetpointcontrol problem have been presented by several
researchers. For example, exact model knowledge OFB controllers,
composed of a dynamic linear feedback loop plus feedforward gravity
compensation, were proposed in [3], [7], and [13] to globally asymp-
totically stabilize the robot manipulator dynamics. In [1], Arimotoet
al. also presented an exact model knowledge, global regulating OFB
controller; however, the gravity compensation term was dependent
only on the desired link position setpoint as opposed to the actual
link position. With the intent of overcoming the requirement of exact
model knowledge, Ortegaet al. [21] designed a OFB regulator which
compensated for uncertain gravity effects; however, the stability re-
sult was semiglobal asymptotic2 . In [11], Colbaughet al. proposed
a global regulating OFB controller that compensates for uncertain
gravity effects; however, the control strategy requires the use of two
different control laws (i.e., one control law is used to drive the set-
point error to a small value, then another control law is used to drive
the setpoint error to zero).

With respect to the more general problem of OFB link position
tracking control, semiglobal results have dominated the scenario. For
example, in [3] and [17] exact model knowledge, observer-based
controllers yielded semiglobal exponential link position tracking
while in [19] a semiglobal asymptotic tracking result was achieved.
Robust, filter-based control schemes were designed in [4], [22], and
[25] to compensate for robot parametric uncertainty while producing
semiglobal uniform ultimate bounded link position tracking. In [9] and
[10], variable structure OFB controllers were designed to compensate
for uncertainty and the lack of link velocity measurements. For other
work in this area, the reader is referred to the literature review in
[17]. For other tracking control work, the reader is referred to [15].
For work on the OFB problem for rigid-link flexible-joint robots, the
reader is referred to [20] and the references therein. Finally, in [5],
[6], and [12], adaptive OFB controllers were presented which yielded
semi-global asymptotic link position tracking.

To the best of our knowledge, the only previous work which is
targeted at the global OFB tracking control problem is given in
[18] and [8]. Specifically, in [18], Loria developed an exact model
knowledge controller that yields global uniform asymptotic stability
of the closed-loop system; however, the control was designed only
for a nonlinear, one degree-of-freedom (DOF) system. In [8], Burkov
used a singular perturbation analysis to show that an exact model
knowledge controller, used in conjunction with a linear observer, can
force the link position to asymptotically track a trajectory from any
initial condition; however, as pointed out in [18], no explicit bound on
the singular perturbation parameter was given.

In this paper, we design a global, adaptive, OFB tracking controller
for uncertain robot manipulators. The control law is composed of: i) a
desired compensation adaptation law (DCAL) [23] feedforward term
to compensate for parametric uncertainty and ii) a nonlinear feedback
term coupled to a nonlinear, dynamic filter to compensate for the lack
of velocity measurements and the difference between the actual system
dynamics and the feedforward term based on the desired trajectory.
That is, the proposed controller ensures global asymptotic link posi-
tion tracking while compensating for parametric uncertainty and lack of
link velocity measurements. While the structure of the proposed torque
input control law resembles that of [18] in certain aspects, the use of

2It is interesting to note that the adaptive OFB link position tracking
controller proposed in [5] yields as a subresult, a PID regulator that also
semiglobally asymptotically stabilizes the robot dynamics with uncertain
gravity effects.
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a DCAL-based feedforward term, a different filter structure, and a dif-
ferent error system development/analysis allows us to extend the exact
model knowledge controller for one DOF systems given in [18] to un-
certain,n DOF robot manipulators.

II. ROBOT MANIPULATOR MODEL AND PROPERTIES

The system model for ann-rigid link, revolute, direct-drive robot is
assumed to be of the following form [16]:

M(q)�q + Vm(q; _q) _q +G(q) + Fd _q = � (1)

whereq; _q; �q 2 n denote the link position, velocity, and acceleration
vectors, respectively,M(q) 2 n�n represents the link inertia matrix,
Vm(q; _q) 2 n�n represents centripetal-Coriolis matrix,G(q) 2 n

represents the gravity effects,Fd 2 n�n is the constant, diagonal,
positive-definite, viscous friction coefficient matrix, and� 2 n rep-
resents the torque input vector. We will assume that the left-hand side
of (1) is first-order differentiable.

The dynamic equation of (1) has the following properties [16], [20]
that will be used in the controller development and analysis.

Property 1: The inertia matrixM(q) is symmetric and positive-def-
inite and satisfies the following inequality:

m1k�k
2 � �

T
M(q)� � m2k�k

2
; 8� 2 n (2)

wherem1; m2 are known positive constants, andk � k denotes the
standard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis matrices satisfy the
following relationship:

�
T ( 1

2

_M(q)� Vm(q; _q))� = 0; 8� 2 n (3)

where _M(q) is the time derivative of the inertia matrix.
Property 3: The dynamic equation of (1) can be linear parameter-

ized as

Yd(qd; _qd; �qd)� = M(qd)�qd + Vm(qd; _qd) _qd +G(qd) + Fd _qd (4)

where� 2 p contains the constant system parameters, and thedesired
regression matrixYd(qd; _qd; �qd) 2 n�p contains known functions
of the desired link position, velocity, and acceleration,qd(t); _qd(t);
�qd(t) 2

n; respectively.
Property 4: There exist positive scalar constants�f ; �c1 such that

kFdk � �f ; kVm(q; _q)k � �c1k _qk 8q; _q 2 n
: (5)

Property 5: The centripetal-Coriolis matrix satisfies the following
relationship:

Vm(q; �)� = Vm(q; �)�; 8�; � 2 n
: (6)

To aid the subsequent control design and analysis, we define the
vector function Tanh(�) 2 n and the matrix function Cosh(�) 2 n�n

as follows:

Tanh(�) = [tanh(�1); � � � ; tanh(�n)]
T (7)

and

Cosh(�) = diagfcosh(�1); � � � ; cosh(�n)g (8)

where� = [�1; � � � ; �n]
T 2 n; and diagf�g denotes the operation of

forming a matrix with zeros everywhere except for the main diagonal.

Based on the definition of (7), it can easily be shown that the following
inequalities hold for8�; � 2 n:

1

2
tanh2(k�k) � ln(cosh(k�k))

�

n

i=1

ln(cosh(�i)) � k�k2

tanh2(k�k) �kTanh(�)k2 = TanhT (�) Tanh(�) (9)

and

cos

n

i=1

�i � cos

n

i=1

�i

� 8

n

i=1

jtanh(�i � �i)j

sin

n

i=1

�i � sin

n

i=1

�i

� 8

n

i=1

jtanh(�i � �i)j (10)

where�i; �i denote theith elements of the vectors�; �; andj � j denotes
the standard absolute value operation.

Assumption 1:The positive constants�m; �g; and�c2 are assumed
to exist for all�; � 2 n such that

kM(�)�M(�)k � �mkTanh(� � �)k;

kG(�)�G(�)k � �gkTanh(� � �)k

kVm(�; _q)� Vm(�; _q)k � �c2k _qkkTanh(� � �)k: (11)

In Appendix A, we illustrate how the bounds given in (11) hold for the
six DOF Puma robot. In a similar manner to that provided in Appendix
A, we can show that the bounds given in (11) hold for other revolute
robots; hence, from a practical point of view, Assumption 1 resembles
a property more than an assumption.

III. CONTROL DEVELOPMENT

The control objective is to design a global link position tracking con-
troller3 for the robot manipulator model given by (1) under the given
constraints that only the link position variableq is available for mea-
surement and that the parameter vector� defined in (4) is an unknown
constant vector. We will quantify the control objective by defining the
link position tracking errore(t) 2 n as follows:

e = qd � q (12)

where we assume thatqd(t); defined in Property 3, and its first three
time derivatives are bounded functions of time. In addition, we define
the difference between the actual and estimated parameters as follows:

~� = � � �̂ (13)

where~� 2 p represents the parameter estimation error vector, and
�̂ 2 p represents a dynamic estimate of� defined in (4).

A. Control Formulation

To facilitate the design of the controller, we define a filtered tracking
error-like variable� 2 n as follows:

� = _e+ Tanh(e) + Tanh(ef) (14)

3Here, global link position tracking means that the controller must drive the
link position tracking error to zero asymptotically for any finite, initial position,
and velocity tracking errors with no conditions on the size of the initial tracking
errors.
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wheree and Tanh(�) were defined in (12) and (7), respectively, and
ef 2 n is an auxiliary filter variable which is defined to have the
following dynamics:

_ef = � Tanh(ef) + Tanh(e)� k Cosh2(ef)�;

ef(0) = 0 (15)

with k being a positive scalar control gain and Cosh(�) being defined
in (8). Based on the subsequent error system development and the cor-
responding stability analysis, we propose the following torque input:

� = Yd�̂ � k Cosh2(ef) Tanh(ef) + Tanh(e) (16)

wherek is the same control gain defined in (15), and the parameter
estimate vector̂� is generated on-line according to the following update
law:

_̂
� = �Y T

d � (17)

with� 2 p�p being a constant, diagonal, positive-definite, adaptation
gain matrix.

Remark 1: Based on the definition of� given in (14), we can see that
link velocity measurements are required for control implementation in
(15)–(17). However, after the stability proof, we will illustrate how the
proposed controller has an equivalent form which only depends on link
position measurements.

B. Error System Development

We begin the error system development by first calculating the
open-loop filtered tracking error dynamics. To this end, we take the
time derivative of (14), multiply both sides of the equation byM(q);
and then substitute (1) forM(q)�q in the resulting expression to yield

M(q) _� =M(q)�qd + Vm(q; _q) _q +G(q) + Fd _q � �

+M(q) Cosh�2(e) _e

+M(q) Cosh�2(ef) _ef : (18)

After adding and subtractingYd� of (4) to the right-hand side of (18),
we can utilize (12), (14), and (15) to rewrite the open-loop dynamics
for � as follows:

M(q) _� = �Vm(q; _q)� � kM(q)�+ Yd� + �+ ~Y � � (19)

where�(e; ef ; �; t); ~Y (e; ef ; �; t) 2
n are defined as

� =M(q)Cosh�2(e)(� � Tanh(ef)� Tanh(e))

+M(q) Cosh�2(ef) (�Tanh(ef) + Tanh(e))

+ Vm(q; _qd + Tanh(ef)

+ Tanh(e))(Tanh(ef) + Tanh(e))

+ Vm(q; _qd)(Tanh(ef) + Tanh(e))

� Vm(q; �) ( _qd + Tanh(ef) + Tanh(e)): (20)

and

~Y = M(q)�qd + Vm(q; _qd) _qd +G(q) + Fd _q � Yd� (21)

where Property 5 given by (6) has been utilized. After substituting (16)
into (19), we can form the closed-loop dynamics for� as

M(q) _� = � Vm(q; _q)� � kM(q)� + Yd~� + ~Y + �

+ k Cosh2(ef) Tanh(ef)� Tanh(e) (22)

where~� was defined in (13).

Remark 2: By exploiting the fact that the desired trajectory is
bounded, Properties 1and 4, and the properties of hyperbolic functions,
we note that�(e; ef ; �; t) of (20) can be upper bounded as follows:

k�k � �1kxk (23)

where�1 is some positive bounding constant that depends on the me-
chanical parameters and the desired trajectory, andx 2 3n is defined
as

x = [TanhT (e) TanhT (ef) �
T ]T : (24)

Furthermore, by utilizing the fact that the desired trajectory is bounded
and Assumption 1, it can be shown that~Y (e; ef ; �; t) of (21) can be
upper bounded as follows:

k~Y k � �2kxk (25)

where�2 is also some positive bounding constant that depends on the
mechanical parameters and the desired trajectory.

C. Stability Analysis

Theorem 1: Given the robot dynamics of (1), the proposed adaptive
controller of (15)–(17) ensures global asymptotic link position tracking
in the sense that

lim
t!1

e(t) = 0 (26)

provided the control gaink is chosen as follows:

k =
1

m1

(1 + kn(�1 + �2)
2) (27)

wherem1; �1; and�2 are constants defined in (2), (23), and (25), re-
spectively, andkn is a control gain that must satisfy the following suf-
ficient condition:

kn > 1: (28)

Proof: We start the proof by defining the following nonnegative
function4

V (e; ef ; �; ~�) =

n

i=1

ln(cosh(ei))+

n

i=1

ln(cosh(efi)

+ 1

2
�
T
M(q)�+ 1

2

~�T��1~� (29)

wheree; efi are theith elements of the vectorse andef defined in
(12) and (15), respectively. After taking the time derivative of (29), we
obtain the following expression for_V (e; ef ; �; ~�):

_V (e; ef ; �; ~�) =TanhT (e) _e+ TanhT (ef) _ef + �
T
M(q) _�

+ 1

2
�
T _M(q)�� ~�T��1

_̂
� (30)

where we have used the fact from (13) that_~� = �
_̂
�: We can now

utilize (14), (15), (22), and (17) in (30) to simplify the expression for
_V (e; ef ; �; ~�) as follows:

_V = � TanhT (e) Tanh(e)� TanhT (ef) Tanh(ef)

+ �
T ( ~Y + �)� k�

T
M(q)� (31)

where (3) has been employed. After applying (23), (25), (2), and (27)
to (31), we obtain the following upper bound for_V (e; ef ; �; ~�):

_V � � kTanh(e)k2 � kTanh(ef)k
2 � k�k2

+ [(�1 + �2)kxk k�k � kn(�1 + �2)
2k�k2]: (32)

4It should be noted that the first two terms inV (e; e ; �; ~�) are motivated by
the work given in [18].
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After completing the squares on the bracketed term in (32), we get the
following new upper bound on_V (e; ef ; �; ~�):

_V � �kxk2 +
1

kn
kxk2: (33)

Finally, if kn is selected according to (28), we can rewrite (33) as

_V � ��kxk2 (34)

where� is some positive constant.
As discussed in [18], we note thatln(cosh(0)) = 0 and that

ln(cosh(�)) is a radially unbounded, globally positive-definite
function. Hence, due to the structure ofV (e; ef ; �; ~�) given in (29),
V (e; ef ; �; ~�) is a radially unbounded, globally positive-definite
function for all e(t); ef(t); �(t); ~�(t); and t: Since _V (e; ef ; �; ~�)
is negative semidefinite as illustrated by (34), we now know that
V (e(t); ef(t); �(t); ~�(t)) 2 L1; hence,e(t); ef(t); �(t); ~�(t) 2 L1
(and hence, due to the fact that desired trajectory is bounded,q(t);

_q(t); �̂(t);
_̂
�(t) 2 L1). We can now utilize (14), (15), and (22) to

state that_e(t); _ef(t); _�(t) 2 L1: The above boundedness statements
together with the fact that the desired trajectory is bounded allow us
to conclude that�q(t); � (t) 2 L1:

From the above information, we can state from the definition of (24)
thatx(t); _x(t) 2 L1 (note that_x(t) 2 L1 is a sufficient condition
for x(t) being uniformly continuous). From (34), it is easy to show that
x(t) 2 L2: We can now apply Barbalat’s lemma [24] to conclude that
limt!1 x(t) = 0: From the definition given in (24), we can now see
that limt!1 Tanh(e(t)) = 0; hence, the properties of the hyperbolic
tangent function lead to the result given by (26).

D. Output Feedback Form of the Controller

We now illustrate how the control law proposed in Section III-A has
an equivalent form which only requires link position measurements.
Note that the torque control input given by (16) and (17) does not
actually require the computation ofef ; rather, only of Tanh(ef) and
Cosh2(ef): Hence, if we define the following relationship:

yi = [Tanh(ef)]i = tanh(efi) (35)

then according to standard hyperbolic identities

cosh2(efi) =
1

1� tanh2(efi)
=

1

1� y2i
(36)

whereyi is theith element of the vectory 2 n:

We will now show thatyi [and hence tanh(efi) andcosh2(efi)] can
be calculated with only link position measurements. First, note that
filter given by (15) can be written in terms of itsith component as
follows:

_efi = � tanh(efi) + tanh(ei)� k cosh2(efi)�i;

efi(0) = 0 (37)

where�i is theith element of the vector� defined in (14). After taking
the time derivative of (35), we can substitute (37) and (36) into the
resulting expression to obtain

_yi = cosh�2(efi) _efi = �(1� y
2

i ) (yi � tanh(ei))

� k( _ei + tanh(ei) + yi); yi(0) = 0: (38)

It is now straightforward to utilize (38) to construct the following filter
which also computesyi:

_pi = � (1� (pi � kei)
2) (pi � kei � tanh(ei))

� k(tanh(ei) + pi � kei); pi(0) = kei(0)

yi = pi � kei (39)

wherepi is an auxiliary variable which allowsyi (and hence, tanh(efi)
andcosh2(efi)) to be calculated with only link position measurements.

We now illustrate how the torque control input given by (16) and
(17) can be computed with only link position measurements. First, we
substitute the definition of� given by (14) into (17) and then formulate
an equivalent expression as follows:

�̂ =�Y T
d e+ �%

_% =Y
T
d (qd; _qd; �qd)(Tanh(e) + y)� _Y T

d (qd; _qd; �qd)e (40)

where we have utilized the fact from (35) thaty = Tanh(ef); and
% 2 p is an auxiliary variable that allows the adaptation law to be cal-
culated with link velocity measurements. By utilizing (39) to compute
y; it is now easy to see that̂� can be computed with only link position
measurements. After substituting (35) and (36) into (16), theith com-
ponent of the torque input control can be written as follows:

�i = (Yd�̂)i � k
yi

1� y2i
+ tanh(ei) (41)

where�i; (Yd�̂)i are theith element of the vectors�; Yd�̂; respectively,
�̂ is computed using (40), andyi is computed using (39).

Remark 3: It is clear from (35) and (41) thatyi must be restricted
such thatjyi(t)j < 1 for all time. To illustrate that this does indeed
occur, first, note that sinceef(0) = 0 [see (15)], we know from (35)
thaty(0) = 0: Secondly, from the proof of Thoerem 1, it follows that
efi(t) 2 L1; hence, we can use the definition given by (35) and the
properties of the hyperbolic functions to show thatjyi(t)j < 1 for
t > 0:

Remark 4: From the proof of Theorem 1, it also follows that�̂(t) 2
L1 ande(t) 2 L1; hence, it is now easy to see that all of the signals
in the OFB form of the control given by (39), (41), and (40) remain
bounded for all time (i.e.,pi(t); _pi(t); �̂i(t); �i(t); %i(t) 2 L1):

Remark 5: It should be noted that since the proposed controller is a
link position tracking controller, a simplified version of the controller
can be used for global setpoint control (i.e.,qd = constant,_qd = 0):
Specifically,Yd� defined in (4) now becomes

Yd(qd)� = G(qd) (42)

and hence, the update law given by (40) simplifies as follows:

�̂ =�Y T
d e+ �%

_% =Y
T
d (qd)(Tanh(e)+ y) (43)

The filter given by (39) and the torque control input given by (41) are
utilized to complete the structure of the adaptive setpoint controller.

Remark 6: If we assume exact model knowledge, the torque input
can be redesigned as follows:

� =M(q)�qd + Vm(q; _qd) _qd +G(q) + Fd _qd

� k Cosh2(ef) Tanh(ef) + Tanh(e); (44)

hence, the closed-loop dynamics for� becomes

M(q) _� = � Vm(q; _q)� � kM(q)� + ~Y + �

+ k Cosh2(ef) Tanh(ef)� Tanh(e) (45)

where�(e; ef ; �; t) is still given by (20), but now~Y (e; ef ; �; t) is de-
fined as

~Y = �Fd _e: (46)

Note that~Y (�) of (46) can now be bounded as in (25) but without the
need for Assumption 1. By slightly modifying the stability analysis
given in Theorem 1, it is easy to show that the controller given by (44)
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yields global asymptotic link position tracking. In a similar manner as
done for the adaptive controller, it is also easy to show that the con-
troller given by (44) can be computed with only link position measure-
ments. Furthermore, since the parameter error term is not required in
the nonnegative function given by (29) for the exact model knowledge
case, we can employ Property 5 to bound the nonadaptive version of
(29) as follows:

�1 ln(cosh(kzk)) � V � �2kzk2 (47)

wherez 2 3n is defined as

z = [eT e
T
f �

T ]T (48)

and�1; �2 2 1 are some positive constants. We can also use Property
5, (48), and (34) to bound the time derivative of the nonadaptive version
of (29) as follows:

_V � ��3tanh2(kzk) (49)

where�3 2 1 is some positive constant. Based on (47)–(49), it easy
to show the requirements of [14], Th. A.5 are satisfied, and hence, we
can conclude that the equilibriumz = 0 is globally uniformly asymp-
totically stable.

IV. CONCLUSION

In this paper, we presented a solution to the problem of global, output
feedback, tracking control of uncertain robot manipulators. The solu-
tion involves the use of a dynamic filter which is nonlinear in a way
fundamentally different from the linear, high-gain filters used in pre-
vious work (e.g., see linear filter structures used in [4], [25], and [5]).
Furthermore, the solution involves the use of a nonquadratic Lyapunov
function that is “softer”5 than the standard quadratic Lyapunov func-
tion. In addition, the control development/analysis and the method in
which the control is implemented exploits several properties inherent
to the robot manipulator equation. Hence, the filter structure, softness
of the Lyapunov function, and the exploitation of the robot manipulator
equation are all instrumental in the design of a controller that compen-
sates for parametric uncertainty, achieves global asymptotic link posi-
tion tracking, and only requires link position measurements. Simulation
results for the proposed controller can be found in [26].

APPENDIX A
BOUNDS FOR THEPUMA ROBOT (ASSUMPTION1)

To prove the existence of the bounds given in (11), we will make
use of the inequalities given in (10). First, note that the matrices in (11)
contain mismatchesonly in the link position variable. For revolute joint
robots, these mismatches can be arranged to have one of the following
general forms:

cos

k

i=j

�i � cos

k

i=j

�i ;

sin

k

i=j

�i � sin

k

i=j

�i (50)

where�i; �i are theith elements of8�; � 2 n; j 2 f1; 2; � � � ; ng;
k 2 fj; j + 1; � � � ; ng; andn represents the robot’s total DOF’s. That
is, all the elements of the matrices in (11) will contain terms similar
to those given by (50). For example, the most complicated elements of

5The word softer is used to illustrate the fact thatln(cosh(x)) � x :

the centripetal-Coriolis matrix [i.e.,Vm53(q; _q)] for the six DOF Puma
robot manipulator has the following form [16]:

Vm53 = [0:0025 cos(q2 + q3) sin(q4) sin(q5)

+ 0:00064 cos(q2 + q3) sin(q4)] _q1 (51)

whereqi denotes theith element of the link position vectorq 2 6: If
we define

~V
�
= Vm(�; _q)� Vm(�; _q) (52)

then, according to (51), the mismatch for elementVm53(q; _q) becomes

~V53 = 
1(�; �; _q) + 
2(�; �; _q) (53)

where
1(�; �; _q) and
2(�; �; _q) are scalar quantities defined by


1 =0:00064 _q1[cos(�2 + �3) sin(�4)

� cos(�2 + �3) sin(�4)] (54)

and


2 =0:0025 _q1[cos(�2 + �3) sin(�4) sin(�5)

� cos(�2 + �3) sin(�4) sin(�5)]: (55)

Note that (54) can be rewritten as


1 =0:00064 _q1[cos(�2 + �3)� cos(�2 + �3)] sin(�4)

+ 0:00064 _q1 cos(�2 + �3) [sin(�4)� sin(�4)]; (56)

hence, an upper bound can be placed onj
1j as follows:

j
1j � 0:00064j _q1j (j cos(�2 + �3)� cos(�2 + �3)j:
+ j sin(�4)� sin(�4)j): (57)

Upon the application of (10) to (57), we have the following new upper
bound:

j
1j � 0:00512j _q1j[jtanh(�2 � �2)j
+ jtanh(�3 � �3)j+ jtanh(�4 � �4)j]: (58)

Similar arguments can be applied to (55) to show that

j
2j � 0:02j _q1j [jtanh(�2 � �2)j+ jtanh(�3 � �3)j
+ jtanh(�4 � �4)j+ jtanh(�5 � �5)j]: (59)

From (58) and (59), it is clear that~V53 of (53) can be upper bounded
as follows:

j ~V53j � �53j _q1j [jtanh(�2 � �2)j+ jtanh(�3 � �3)j
+ jtanh(�4 � �4)j+ jtanh(�5 � �5)j] (60)

where�53 is some positive bounding constant. We can now use the
following inequality:

jaj+ jbj �
p
2 jaj2 + jbj2; 8a; b 2 (61)

to show that

j ~V53j � �
53
k _qk kTanh(� � �)k (62)

where�
53

is some positive bounding constant.
Since all of the elements of~V ; defined in (52), can be upper bounded

in a similar fashion as shown in (62), it is now easy to see thatk~V k can
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be upper bounded as in the third inequality of (11). Similar arguments
can be followed to prove the other two inequalities given in (11).
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Almost Disturbance Decoupling for a Class of High-Order
Nonlinear Systems

Chunjiang Qian and Wei Lin

Abstract—The problem of almost disturbance decoupling with internal
stability (ADD) is formulated, in terms of an – (instead of an )
gain, for a class ofhigh-ordernonlinear systems which consist of a chain of
power integrators perturbed by a lower-triangular vector field. A signifi-
cant feature of the systems considered in the paper is that they are neither
feedback linearizablenor affine in the control input, which have been two
basic assumptions made in all the existing ADD nonlinear control schemes.
Using the so-calledadding a power integrator techniquedeveloped recently
in [15], we solve the ADD problem via static smooth state feedback, under
a set of growth conditions that can be viewed as ahigh-orderversion of the
feedback linearization conditions. We also show how to explicitly construct
a smooth state feedback controller that attenuates the disturbance’s effect
on the output to an arbitrary degree of accuracy, with internal stability.

Index Terms—Almost disturbance decoupling, high-order nonlinear sys-
tems, internal stability, smooth state feedback, uncontrollable lineariza-
tion.

I. INTRODUCTION

In this paper we investigate the problem of almost disturbance decou-
pling with internal stability (ADD), for a class ofhigh-ordernonaffine
systems whose Jacobian linearization at the equilibrium is notcontrol-
lable. The ADD problem was originally formulated for linear systems
by Willems [26] at the beginning of 1980’s. Since then, the problem has
attracted considerable attention and many important results have been
obtained for both linear and nonlinear systems. For reasons of space, it
will not be possible to review here all the developments in linear sys-
tems, so we refer the reader to the papers (e.g., [26] and [23]) and the
references therein for details.

For affine nonlinear systems, the problem of disturbance decoupling
was one of the main subjects in nonlinear control theory. During the
period of 1980–1990, the problem was extensively studied from a dif-
ferential geometry point of view. A complete solution to the problem
can be found now, for instance, in the textbooks [8] and [21], where
a necessary and sufficient condition is given for the problem ofexact
disturbance decouplingto be solvable by static smooth state feedback.
On the contrary, the investigation of the so-called problem ofalmost
disturbance decouplingstarted relatively late. In fact, the first paper on
the ADD problem appeared in the literature only about a decade ago
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