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Fig. 15. Track seeking performance of the hard disk servo system.

APPENDIX A
PROOF OFTHEOREM 1

By the stability assumption,jS(j!)j is continuous and bounded.
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is satisfied. Using (A.1) and the fact thatkF (s; 
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The termM2
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)j2d! can be made arbitrarily small

if 
 is sufficiently small. Hence, we obtain

jRS(
)2 � jS(j0)j2j < � (A.3)

for 
 sufficiently small. This proves i).
Part ii) can be proved similarly. Finally, part iii) follows directly from

(4).
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Comments on “A Composite Energy Function-Based
Learning Control Approach for Nonlinear Systems

With Time-Varying Parametric Uncertainties”

W. E. Dixon and J. Chen

Abstract—In the above paper, a composite energy function learning con-
trol approach was proposed to asymptotically eliminate the mismatch be-
tween the desired and actual periodic trajectory of a system. Upon review
of this result, there appear to be several philosophical and technical issues
that invalidate the result including the use of a resetting condition and the
lack of boundedness of the learning estimate. The intent of this comment is
to highlight these technical errors, especially since the boundedness of the
learning estimate has historically been a problematic issue.

Index Terms—Learning systems, Lyapunov methods, periodic systems.

I. COMMENTARY

In [11], a so-called composite energy function (CEF)-based
learning control approach was proposed to asymptotically eliminate
the mismatch between the desired and actual periodic trajectory of
a system containing nonglobal Lipschitzian functions and unknown,
time-varying periodic parameters. This is an important problem that
has been examined by various researchers using Lyapunov-based
techniques. A few examples of these results are provided in [3]–[6],
and [8] (for an in-depth overview of various learning controllers, see
[9] and [10]). Although eliminating the mismatch between the desired
and actual periodic trajectory of a system containing a general periodic
nonlinear function is well motivated, the result in [11] formulates the
problem in a manner that yields an impractical controller that lacks
robustness. For example, the problem formulated in [11] requires
that the parametric uncertainty of the actual system be periodic.
It is not clear what actual control problem has naturally occurring
time-varying, periodic parametric uncertainty. A more realistic (and
previously solved) problem is based on the practical assumption
that the desired trajectory is periodic, resulting in a disturbance by
a nonlinear function that is composed of parametric uncertainty as a
function of the desired trajectory that can be bounded by a known
constant. The CEF approach is also predicated on the restrictive
resetting condition (i.e., as stated in [11, Remark 3], the assumption
that ei(0) = 0 8i 2 N+ is crucial for the CEF algorithm). That
is, the system is required to return to the same initial configuration
after each learning trial. This assumption is similar to the early
betterment learning controllers (see [1] and [2]). However, several
authors have demonstrated the deficiency and lack of robustness of
controllers that are formulated based on this assumption. For example,
Heinzingeret al. provided several examples in [7] that illustrated
the lack of robustness of these controllers to variations in the initial
conditions of the system. Motivated by the results from the betterment
learning research, several researchers investigated the use of repetitive
learning controllers. One of the advantages of the repetitive learning

Manuscript received December 4, 2002. Recommended by Associate Editor
W. Kang. This work was supported in part by the United States Department
of Energy (DOE) Office of Biological and Environmental Research (OBER)
Environmental Management Sciences Program (EMSP) under Project ID 82797
at Oak Ridge National Laboratory, Oak Ridge, TN.

W. E. Dixon is with the Engineering Science and Technology Division,
Robotics, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6305 USA.

J. Chen is with the Department of Electrical and Computer Engi-
neering, Clemson University, Clemson, SC 29634-0915 USA (e-mail:
dixonwe@ornl.gov).

Digital Object Identifier 10.1109/TAC.2003.817003

0018-9286/03$17.00 © 2003 IEEE



1672 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 9, SEPTEMBER 2003

scheme is that the requirement for the system to return to the exact
same initial condition after each learning trial is replaced by the less
restrictive requirement that the desired trajectory of the system be
periodic (the result in [11] requires both assumptions). An example
of a Lyapunov-based controller that solves the problem of eliminating
the mismatch between the desired and actual periodic trajectory of a
system containing a general unknown and bounded, time-varying peri-
odic nonlinear function is provided in [4]. A hybrid learning/adaptive
controller is also presented in [4] that illustrates how controllers can
be constructed to compensate for periodic disturbances via a learning
control element and nonperiodic disturbances via an adaptive control
element.

From a review of the CEF approach, there also appear to be several
technical issues. The first issue is concerned with the proof that the time
derivative of the nonnegative CEF is negative. Specifically, to examine
the stability of the developed controller, a CEF denoted byEi(t) 2 ,
is defined in [11] as follows:

Ei = V (ei) +
1

2�v

t

0

trace[(	i ��)T (	i ��)] d� (1)

8i 2 N+ whereV (ei) 2 is a nonnegative function,�v 2 de-
notes a learning gain,�(t) 2 m�n is an unknown continuous and
bounded, time-varying periodic parameter matrix,	i(t) 2

m�n is
learning estimate for�(t), andei(t) 2 n denotes the tracking error
during theith learning cycle defined as follows:

ei = xi � xd 8i 2 N+: (2)

In (2), xi(t) 2 n denotes the output state, andxd(t) 2 n denotes
the desired state. Development is then provided to prove that the time
derivative of (1) can be upper bounded during the first learning cycle
as follows:
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In (3), 3 2 denotes a positive bounding function, and�(xi; t) 2
n denotes a known vector function that may include global and local

Lipschitzian functions as a subset. An assertion is then made that since
�(t) is a continuous and bounded function, there will always exist a
sufficiently large errore1(t) such that

3(ke1k) �
1

2�v
trace(�T�) (4)

then

_E1(t) � 0: (5)

However, there is no development that proves thate1(t) will not re-
main small for large�(t) and, hence, the inequality given in (4) may
be invalid, and the time derivative of the CEF may be positive. Thus,
the CEF may become unbounded. Moreover, since [11, Part B] is pred-
icated on (5), perfect learning convergence may not be ensured.

The boundedness of the learning estimate and the control is a second
technical issue. Specifically, [11] asserts that

T

0

trace[(	i ��)T (	i ��)] d� � 2�vE1(T ): (6)

However, as stated previously,E1(T )may not be upper bounded due to
the possible fallacy of (4). Moreover, assuming (4) could somehow be
proven to be valid, the result in [11] only asserts that the control input
is a member ofL2 over an interval. However, the fact that the control

input is a member ofL2, does not prove that the control (or the learning
estimate) is bounded (i.e., a member ofL1). The lack of boundedness
of the learning estimate is a significant problem that has historically
been an issue for learning controllers. An in-depth discussion of this
issue is provided in [4].
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Authors’ Reply

Jian-Xin Xu and Ying Tan

I. COMMENTARY

First of all, we would like to thank Drs. Dixon and Chen for their
comments on our paper [1], which presents a new iterative learning
control (ILC) scheme based on the composite energy function (CEF)
approach, and handles systems with local Lipschitz nonlinearities and
time-varying parametric uncertainties.

According to Drs. Dixon and Chen’s comments [2], there exist four
problems in our paper. Let us briefly summarize them as follows.

1) Our control problem, formulated with the periodic time-varying
parametric uncertainty, is not practical.

2) Our assumption on identical initialization condition (i.i.c.),
which assumes a restrict resetting condition, lacks robustness.

Manuscript received May 19, 2003. Recommended by Associate Editor
W. Kang.

J.-X. Xu is with the Department of Electrical and Computer Engineering,
National University of Singapore (e-mail: elexujx@nus.edu.sg).

Y. Tan is with the Department of Chemical Engineering, Mcmaster Univer-
sity, Hamilton, ON L8S 4L7, Canada.

Digital Object Identifier 10.1109/TAC.2003.817004

0018-9286/03$17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


