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wherex stands for an arbitrarfrdependent entry which ig (- 2) and
(d — 1) times continuously differentiable, respectively. Abstract—In this note, a new observer is developed to determine

The next simple example shows that Theorem 2.1 makes a M@4Rge information (and, hence, the three-dimensional (3-D) coordinates)

refined statement about noncontrollability if the structure of the matriX an object feature moving with affine motion dynamics (or the more
A is known in more detail. general Ricatti motion dynamics) with known motion parameters. The
unmeasurable range information is determined from a single camera

ul(t)) Range Identification for Perspective Vision Systems

ua(?) W. E. Dixon, Y. Fang, D. M. Dawson, and T. J. Flynn

Example 3.2: Consider the control system provided an observability condition is satisfied that has physical signif-
a(t) 1 2 1 icance. To develop the observer, the perspective system is expressed in
o 1 4 2|et|0]ac terms of the nonlinear feature dynamics. The structure of the proposed
r = <% u(t). observer is inspired by recent disturbance observer results. The proposed
2 2 7 0 technique facilitates a Lyapunov-based analysis that is less complex than
- - . : e sliding-mode based analysis derived for recent observer designs.
Although this system 1S n(_)t of one of the types given in Example 3'Ephe analysis demonstrates that the 3-D task-space coordinates of the
our Theorem 2.1 yields with feature point can be asymptotically identified. Simulation results are
1 0 0 01 2 1 provided that illustrate the performance of the observer in the presence
- of noise.
A,=(10 0 O A, =11 4 2 B=1|0
00 0 2 9 7 0 Index Terms—Affine system, nonlinear observer, visual servoing.
and the following nonzero matrix products in (2.2):
1 0 5 |. INTRODUCTION
AiB=A1A1B=|0|, A2B=4A,B=(1], A24>B=[ 8 The objective of most vision problems involves interpreting the mo-
0 2 16 tion of features of a three-dimensional (3-D) object through two-dimen-

that this system in not totally controllable. sional images that are projected perspectivétpm the 3-D feature;
Example 3.3: With the same method, we get the following fourneNce, as stated in [6] vision systems are inherently perspective. Most
dimensional classes of systems which are not totally controllable: research related to perspective systems have targeted the identification
of the motion parameters (e.g., feature velocities) by using measureable

KoRokx * 0 state information. For example, for the following second-order system
A L I n 0 = up () [6]:
A [CRNNCRECO B 0 0 s ()
00 0 00 {rl] _ {m az] [rl} )
and o as a4 T2
¥ ok % % x 0 the typical problem is to utilize the measureable stai¢s) andz2(t)
, x ok k% 0 =x wi (t) to determine the unmeasurable parameig(s) Vi = 1, 2, 3, 4 and
TTlo o0 s o« |7 + 00 wa(t) ) possibly the unknown initial conditions, (to) andz2(to). An excel-
0 0 % = 0 0 lent overview of research that has targeted this and similar problems
(typically using an extended Kalman filter) is provided in [5], [6], and
[8].
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known along with the image-space feature coordinates, and the goalésivative of (3) and utilizing (2), the image-space trajectory of the ob-
to determine the unknown states (i.e., the actual 3-D position of tfezt feature can be obtained as follows:

feature). For example, a recursive identifier based observer was devel-

oped in [8] to exponentially identify range information of features (i.e., Y
points, lines, and planar curves) on an affine plane from successive im-

_anxy + a2 + a3z + by
X3
a1 (az121 + asere + aszas + bs)

ages of a camera that is moving in a known manner (i.e., with known = 4)

motion parameters). In [1], Chen and Kano develop a new observer for o3

a more general perspective system that exponentially forces the obser- G = az1 21 + a2z + a2373 + bo

vation error to an arbitrarily small neighborhood [i.e., uniformly ulti- 3

mately bounded (UUB)]. _ w2 (ag1@1 + asae + agzas + bs) )
In this note, we develop an observer to determine range information x3 '

(and, hence, the 3-D task-space coordinates) for an object featygeryijitate subsequent analysis, the time derivative of the inverse of
moving with general affine motion dynamics with known mOtIOnr;;(t) is determined as follows:

parameters. As in [1] and [11], the perspective system examined
in this note and the preliminary work in [3] is more general than d (1 _ T31%1 — d3a¥y — d33d3 — bs 6)
the skew-symmetric system examined in [8]. The unmeasurable dt \ x3 '

range information is determined from a single camera provided @8 yjlizing (3), the expressions given in (4)=(6) can be rewritten as
observability condition similar to [1] and [8] is satisfied. As state

2

in [6], many geometric structures of a perspective system are Iost? lows:

they are studied via linearization; hence, to develop the observer, the 91 =aiz+(an — ass) y1+a1ays —az1y; —aseyry2+ f1
perspective system is transformed into a nonlinear dynamic system @)
(i.e., the image-space feature dynamics). Based on the nonlinear . 5

dynamics of the image-space signals an observer is designed that J2 =azstazyi+(az—ass) y2—as2ys —anyiy2 +f2

is inspired by the recent disturbance observer results in [4] and [9]. (8)
The structure of the proposed observer facilitates a Lyapunov-based [/ 1 1 b3

analysis that is less complex than the sliding-mode based analysig; (g) N (as1y1 + as2y> + ass) = 2 ©)

derived for the observer design of [1]. More significantly, the unknown o ; le sianaldefi
states can be exactly determined rather than “almost” determin‘gaerefl(df“yl)' f2(ws,y2) € R are unmeasurable signaldefined
as in the UUB result in [1]. The analysis demonstrates that the 335 follows:

task-space coordinates of the feature point can be asymptotically f1 éi (b1 — bsy1) (10)
identified. The proposed observer can also be applied to object motion x3 )

described by Riccati dynamics and can be extendeddonensional fo éi (bs — b3ys) (11)
perspective systems. Simulation results are provided that illustrate 3 o

the performance of the observer. For the perspective system given in (2) and (3), the following assump-

The note is organized in the following manner. In Section I, th§ons are made [1].
general perspective system is presented and the image-space featyi@symption 1:The known motion parameters:; ;(¢) and
dynamics are determined. In Section lll, the observation problem is q)(;(f) Vi,j = 1, 2, 3 introduced in (2) are bounded functions of time

fined, and the observer is developed. The observation error is provemgparameter&,j(t) are first order differentiable, and the parameters

be asymptotically regulated through a Lyapunov-based analysis in Sg%) are second-order differentiable.

tion IV. Simulation r_esults are provided in Section V, and concluding Assumption 2:The image-space feature coordinates?) and
remarks are made in Section V1. y=(t) are bounded functions of time (i.@4(%), y2(t) € L).

Assumption 3: The object feature motion avoids the degenerate case
where the feature intersects the image plane. That{$) > =, where

Consider an object feature undergoing an affine motion as follows € R is an arbitrarily small positive constant and, henigexs (1) €
[4], [24]: L. Moreover, we also assume tha{(t) € L.

Remark 1: Assumptions 2 and 3 are standard assumptions (see also
[1] and [8]) that are practically properties of the physical system rather
: than assumptions.

3 @31 ds2 as3] L¥3 b Remark 2: Based on Assumptions 1-3, the expressions given in (2)
wherezx; (1), x2(t), 23(t) € R denote the unmeasurable task-spacand (7)—(11) can be used to determine thdt ), j(t), d/dt (1/x3(t)),
coordinates of an object feature along &g}, andZ axes of aniner- fi(zs, y1), f2(23,y2) € L. Given that these signals are bounded,
tial reference frame, respectively, with tHeaxis being perpendicular the development provided in the Appendix can be used along with
with an image plane formed by a camera (i.e., the coordinate) Assumptions 1-3to also determine thiat:), f>(-), f1(-), andf(:) €
denotes the depth from the image plane to the task-space object #a-
ture along the optical axi&). In (2), the parameters; ;(t) € R and
bi(t) Vi,j = 1,2,3 denote the known motion parameters [1], [11]. I1l. OBSERVATION PROBLEM
The affine motion dynamics introduced in (2) are expressed in a gep- Objective
eral form that describes an object motion that undergoes a rotation,
translation, and linear deformation [11]. The measurable image-spacdhe objective in this note is to determine the unmeasurable state

Il. PERSPECTIVESYSTEM

iy a a2z a3 x4 b

To | = |azr aze a3 z2 | 4+ | b2 (2)

coordinate of a feature, denoted pft) € R?, is given as follows: 5(t) of the perspective vision system described by (2) and (3). From
N , 1 ¥y (3) and the fact thay: (¢) andy2(¢) are measurable, it is clear that
y=[y 2] = [g U_s] . (3) if xs(t) is identified then the complete 3-D task-space coordinate of

The affine dynamics introduced in (2) and the image-space signal in2the signalsf, (z1, y1), and fz (2, y-) are unmeasurable due to a de-
troduced in (3) define the perspective system [1]. After taking the tinpendence on the unmeasurable stafét).
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the feature can be determined. To achieve this objective, an observer By taking the time-derivative of (13), the following error dynamics
constructed based on the unmeasurable image-space dynamigs for can be obtained for(¢):

To quantify the performance of the observer, a measurable observer ,

estimation error signal, denoted bft) € R?, is defined as follows: fi— f1 4 (f1 — fl)

o, ” T = . (20)
e2ler el =ln—i p-il (12) fo= fo +as (fz—fz)
~ A ra ~ T .
wherej(t) = [§:1(1).92(t)]" € R* denotes a subsequently designegyhere (19) and the time derivative of (19) have been utilized. Based on

observer signal. To facilitate the subsequent development, a filtekgd structure of (20) and the subsequent analysis, the estifidtes
observation error signal, denotedly) € R?, is designed as follows: andf»(t) are designed as follows

T é [7'1 ) ]1 = [61 =+ 1€ ég =+ Q2€9 ]T (13) N N
f1= = (ke + a1)fi + 7sguler) + arksien (21)
where oy, a2 € R denote positive constant gains. Based on the " .
dynamics in (7) and (8) and the definitions introduced in (12) and fo=— (ks + a2) f2 + yosgn(ez) + azkszen (22)
(13), it is clear thatr(¢) is unmeasurable due to the fact thdt)

is a function of the unmeasurable disturbance tefis:s, y1) and wherek,y, ks2, 11, 72 € R denote constant observer gains and the

) - : tationsgn(-) is used to indicate the standard, signum function. After
f2(z3,y2). The subsequent development will target the design o X . )
ezsiin’slatés forfy (s, y1) and fa(xs, y») based on the strategy thatsubstltutlng (21) and (22) into (20), and then adding and subtracting

if the mismatch between the estimates and the disturbance tefi& tsrmsé-;l_fl (d‘??”yl) andk.z f>(x3,y2), the following expression
fi(zs,y1) and f2(zs,y2) can be driven to zero, thers(¢) can be can be obtained:

identified by exploiting the fact thdt (¢) Vi = 1,2,3 and the states . Esiri + visgn(er) 23
y1(t) andy: (t) are measurable. Specifically, from (10) and (11), the "T T ara + vasgn(en) (23)
inverse of the square af;(¢) can be determined as follows:
R o wheren(t) £ [1: n2]" € R? is defined as follows:
<i)'_ £+ 12 @ o
3 (b1 — bsy1)® + (ba — bsy2)” N2 |:f1 + (ko + ) fl} . (24)
fo+ (kso 4+ a2) fo

Based on the structure of (14), itis clear that the following observability
condition must be satisfied: Remark 4: The time derivative of (24) can be determined as follows:

by — bsyn)® + (ba — bsy)® > 0. 15 g = f.1+("’sl+“1)f1}

(b1 — bsyn)* + (b2 — bayo) (15) i [fz+(lasz+az)f2 . (25)

That is,z3(t) can be identified once the mismatch between the distu- .
bance terms, (3, y1) and o (3, y») and the respective estimates arlégrom (24) and (25), the statements in Remark 2 can be used to conclude

driven to zero thats(t),7(t) € Lo.
Remark 3: The observability condition introduced in (15) is not re- Remark 5: The structure of the disturbance observer given by (21)

quired by the subsequent analysis to prove that the observer designaﬂed- (22) contains discontinuous terms; hov_vever, itis mte_restlng t(.) note
that the overall structure of the observer yields the continuous signals

mains bounded. That is, the subsequent analysis can be used to pro - . S .
that f1 (xs,y1) andf2(xs, y2) can be identified independently of (15); lete) andfz.(t). That IS, after a close examination of (17) and (18), it

however, (15) is required to prove tha(¢) can be identified. In [8], a IS clearthay, (¢) andy, (¢) only contain the low pass filtered outputs
discussion is provided regarding the physical justification of (15) with: (¥) and f2(#) of the discontinuous terms in (21) and (22).
regard to the focus of expansion.

IV. ANALYSIS

B. Observer Design and Error System The following theorem and associated proof can be used to conclude

By taking the time-derivative of (12) the following error dynamicshat the observer design of (17), (18), (21), and (22) can be used to
can be obtained for(t): identify the unmeasurable state(¢).
) Theorem 1: Given the perspective systemin (2) and (3), the unmea-
E=y—179 . (16) surable state;(¢) (and, hence, the 3-D task-space coordinates of the
object feature) can be asymptotically determined using the observer de-
Based on the structure of (7), (8), and (16), the elements of the obserg@h given in (17), (18), (21), and (22) provided the constantand
signalj(t) are designed as follows: 2 introduced in (21) and (22) are selected according to the following
. ) sufficient conditions:
Gr=ais + (a1 — ass) y1 + arzys — as y? —as2y1y2 + fi
17) Y2 || =+ || Y2 2> 2| + |92 (26)

Go=a23 + a21y1 + (a22 — ass) y2 — az2ys — az1y1ys + f2 wherer)(t) is defined in (24), and the observability condition intro-
(18) duced in (15) is satisfied.
Proof: To prove Theorem 1, we first define a nonnegative func-
where f1 (1), f2(t) € R denote subsequently designed estimates ftion V' (¢) as follows:
the unmeasurable signafs(¢) and f»(¢) introduced in (7) and (8).
After substituting (7), (8), (17), and (18) into (16), the following error VA l,‘T,' . (27)
dynamics are obtained: 2

R - 3The design of the estimatg$ (£) and £, (%) is inspired by the development
e=1f—-fi fo—fl . (19) given in [4] and [9].
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Fig. 1. Observation mismatch between fa)t) and £, (t), (b) £2(¢) and£.(¢), and (c)z; (£) and the estimated value from (14) with no measurement noise.

After taking the time derivative of (27) and substituting for the erroAfter evaluating the integral expressions in (30), the following expres-
system dynamics given in (23), the following expression can I®ons can be obtained:

obtained: t
,  =er ()11 () ydr= [ e (@i (2 dor=n s (@
V= —koari — keri + (61 + aver) (i — yisgn(er)) L
+ (é2 + ase2) (2 — y2sgn(e2)). (28) =ey (t)m (t) — / e1(0)in (o) do — 71 |ex (t)]
to
—e1 (to)mi (to)+1 [er (to)]. (32)

After integrating (28) and exploiting the fact that
By performing the same operatioii; (#) can be evaluated as follows:
£ san(€) = [¢] yp 9 peratiofis, (#)
t
the following inequality can be obtained: 2 = e2 (1) n2 (1) — /1 ez (7) 72 (7) do — 2 |e2 (1)
0
—e3 (to) n2 (to) + y2 ez (to)] . (33)

t
V(t) <V(te) — kari (o) 4 keors d
() £V (to) /1,0 ( tr1 (o) 2 (U)) 7 After substituting (32) and (33) into (29) and performing some alge-
braic manipulation, the following inequality can be obtained:

tar [ e @) (0)] = 7)) do + 2, t
V() S Vito) = [ (bart (o) + kard () do + 254G (34)

i
or (e @lm (@)= o+ @) t
fo where the auxiliary term&s(t), (o € R are defined as follows:
where the auxiliary term&, (¢), Q. (¢) € R are defined as follows: A ¢
% 2 [ e @) ()] + i (0)] = ) do(35)
t t to
Q4 é/é1 (o)m (o) do— /é1 (o)sgn(eq (a))do t )
to to +az [ ex (o) (In2 (o) + 102 (0)| = 12) do
(30) Jto
o [ 7 ¢ 7 + ler (O (e (O] = 71) + ez (D] (In2 ()] = 72)
Qo :/toez (o)n2(0)do—~2 /t062 (0)sgn(ez (0))do. Go 2 —e (fo)m (fo) + 1 |er (fo)]
(31) — ez (to) n2 (to) + 72 |e2 (to)]. (36)
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Fig.2. Observation mismatch between faft) and £ (t), (b) f2(£) and#;(t), and (c)z; (t) and the estimated value from (14) with 1% measurement noise.

Provided the constants and~. are selected according to the inequalandg: (t) approachy: () andy. (¢) ast — oo, respectively. Therefore,
ities introduced in (26)23(¢) will always be negative or zero; hence,the expression in (19) can be used to determine fht and f- ()

the following upper bound can be developed:

V(t) < Vty) — /)(kgf%(ﬂ)%—kgT%(J))dU%—Gy (37)

Jtg

approachf; (t) and f(¢) ast — oc. If the observability condition
given in (15) is satisfied (i.e., if eithef; (23, y1) or fo(xs,y2) are
nonzero), then the result thAt(#) andf2 (¢) approachy, (t) andfa(t)
ast — oo, the factthat the parametérst) Vi = 1, 2, 3 are assumed to
be known, and the fact that the image-space sigt¥alis measurable

From (27) and (37), the following inequalities can be determined: can be used to identify the unknown task-space pararmeteéy from

Vt)+ 6>V () >0

(14). Oncers(t) is identified, the complete 3-D task-space coordinates
(38) of the object feature can be determined from (3).
Remark 2: In addition to the general affine motion model consid-

hencey(t) € L. The expression in (37) can be used to determirgred in (2), several results in literature have examined the following

that Riccati motion dynamics (e.g., [1], [5], and [7])
/ (k‘sﬂ“% (J) + k‘,qQ?“g (J)) do Tl ar;r a2 a3 T by
0 i T2 | = | a21 a2z ass x2 | + | b2
S ‘/f (0) + <0 - V (%) S .['/r (0) + CO < 00 (39) TJ a3 as2 ass T3 bJ
y
By definition, (39) can now be used to prove théat) € L£.. From the er ¢ es5 0 0 ?‘ ?2
fact thatr(t) € Lo, (12) and (13) can be used to prove thet), é(t), +10 &4 0 e e 0 L;;i"‘ . (40)
§(t),andy (t) € L. The expressionsin (17), (18), (21), and (22) can 0 0 1 0 c¢2 c3 -2
A - ~ s Toa3
be used to determine thfi(t), f2(t), f, (¢),andf, (t) € L. Based 22

on the facts thafi(xs, y1), fo(x3,92), fi(-), andf2(-) € L, the

expressions in (23) and (24) can be used to provejfiatr (t) € L. Forthese dynamics, the same expressions given in (7)—(11) can be ob-
Based on the fact tha{t), 7(¢) € L. and that-(¢t) € £, Barbalat's tained and, hence, the observer design in (17), (18), (21), and (22) still
Lemma [10] can be used to prove thla(t)|| — 0 ast — oo; hence, applies for this motion field. Note that the observer developed in [1]
[2, Lemma 1.6] can be used to prove thatt)|| — 0 and||é(¢)|| — 0  for the affine motion dynamics in (2) can also be applied to the motion
ast — oo. Based on the fact thdlz(¢)|| — 0 and||e(¢)|| — 0 as dynamicsin (40). As in [1], the observer system design in this note can
t — oo, the expression givenin (12) can be used to determingtigt  also be extended to generalddimensional perspective systems.
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V. SIMULATION EXAMPLES APPENDIX

In this section, numerical simulation results are presented to demonTo prove thatf, (-), f2(-) € Lo, the time derivative of (10) and (11)
strate the performance of the algorithm developed in (17)—(22). In tieedetermined as follows:
first example, the image-space data is considered to be noise free, and d
in the second example, the measured image data is assumed to be cor- /1 = (bl — byyr — bsyl) T < > (bi—bsy1)  (45)
rupted by 1% with random noise as in [1]. ) ! ] ) g /1

Example 1: For this example, the movement of an object in the task- fo :f (bz — byys — bgyz) +— < ) (ba—bsy2). (46)
space is described by the following perspective system [1]: 3 dt

The facts thatj(t), d/dt (1/x3(t)) € L. can be used along with

i —02 04 -0.67 [a 0.5 Assumptions 1-3 to conclude from (45) and (46) that), andfs(-) €
iy | = |01 -02 03 | 22|+ ]025 (41)  £... To prove thatf, (-), f2(-) € L, the time derivative of (45) and
T3 0.3 -04 04 a3 0.3 (46) can be determined as follows:
where fi= (;]t < ! ) (bl — bays — bgyl)
[1(0) 2(0) a3(0)]" =[1 1.5 2.5]". (42) oL (b1 i — 2hsin _bsyl)
]:I;)r:lecz)vlvr;tlal conditions fory (¢), 92(t), f1(t), and f»(¢) are given as +C(ll? (i) (b — b3J1)+TIt (i) (ln iy — bajl)
§1(0) = i(0)  §(0) = 12(0) “3) o 47)
fl(O)zl fZ(O):l- f2 =— <—) (62—1.731/2—1733]2)
The observer gains were selected as follows: n % (b2 —Tays — 2hai — Wn)
ks1=30 a1=5 m =1 d? 1 d 1 . : .
koo =40 az =5 7 = 0.1 (44) T (E) (b2 = bsw2)+ (Z) (b2 = oy =i
(48)
After implementing the observer with the gains selected as in (44), the
resulting observation mismatch betwegiit) andf, () andfa(¢) and WNere
f2(t) is depicted in Fig. 1 along with the mismatch betweefr) and i1 =dns+ (a1 —ass) yi 4+ (an — as) 9
the estimated value from (14). . . .9, .
Example 2: For this example, the same system from Example 1 was Faizys £ arngz = dsiyi =20 514
simulated with 1% random noise injected on the measured image-space —d32y1Y2 — Y1Y2 — as2y192+ f1
signalsy; (¢) andy2(¢). Using the same gain selections as in (44), the (49)
resulti_ng observer mismatch is depicte_d in Fig. 2. Fig. 2 also illustrates §i2 =a23+a2191Faz1g1 +(Ge2 —az) Yo
the mismatch betweenrs (¢) and the estimated value. .
The results depicted in Figs. 1 and 2 indicate that the developed + (”'22f033) b2
observer strategy can be used to identify the range parameter using — 32y —2az2yaPe — d31Y1Y2 — az1Y1y2
a single camera provided the observability condition is satisfied. In —az1y1 92+ fo
comparison with the simulation results for the observer presented in (50)
[1], the results in Figs. 1 and 2 illustrate that the developed observer 1 i /1
has at least similar transient performance (although the steady-state re-. '2 <7> =— — <—) (as1y1 + asoys + ass)
sponse of the observer in [1] is only proven to be bounded to a region 3 ‘_lt T3
about the origin). In comparison with the simulation results for the ob- b3 " zlhﬁ _ i((.m U1+ a1 + 3y
server presented in [8], the results in Figs. 1 and 2 illustrate superior @l a3 g i A
transient response. The impact of these results are that the developed + as292 + ass)
observer can be used to enable a monocular vision system to identify (51)

the range parameter (even in the presence of sensor noise) of an object
moving (with known motion parameters) with an affine or Riccati moand the expressions given in (7)—(11) were utilized. The expressions

tion dynamics. given in (47)-(51), Assumptions 1-3, and the facts that), 7(¢),
d/dt(1/ws(t)), fi(xs,y1), f2(x3,92) € Lo can now be used to
VI. CONCLUSION prove thatf (-), andfa(-) € £

In this note, a new observer inspired by the development in [9]
was developed to identify an unmeasurable range signal (and, hence,

] X. Chen and H. Kano, “A new state observer for perspective systems,”
the 3-D task-space coordinates of an object feature) via a smgle[ \EEE Trans. Automat. Confol. 47, pp. 658663, Apr. 2002.

camera given the motion parameters of a general affine systentz D. M. Dawson, J. Hu, and T. C. BurdJonlinear Control of Electric
(or Riccati system). To develop the observer the affine perspective ~ Machinery New York: Marcel Dekker, 1998.

system is transformed into the nonlinear feature dynamics. Through d3] W. E. Dixon, Y. Fang, D. M. Dawson, and T. J. Flynn, “Range identifi-
Lyapunov-based analysis, the observer was proven to asymptotically ~ ¢2ion for B st %Zt;mﬁ’,hc. 2003 IEEE Amer. Control
regulate the observation errors. Simulation results are provided thaI4] Y_OEa‘ngF’J'D‘ M__Daws(’)n?r,:; Feenﬁster, and N. Jalili, “Active interac-
?Ilustrate Fhe performance of the observer even in the presence oOf * ton force identification for atomic force microscope applicatiomsgc.
Image noise. IEEE Conf. Decision Controbp. 3678-3683, 2002.
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This note presents some new results to directly address the transient
response control problem. The main ideas are based on certain rela-
tions between characteristic polynomial coefficients and time domain
responses. These relations were initially presented by Naslin in the
1960s [17]. An important contribution in this regard is due to Manabe
[18] who investigated the problem of obtaining good transient response

Abstract—This note develops an approach to directly control the tran- in control systems. His investigation focused on studying the generic
sient response of linear time-invariant control systems. We begin by con- behavior of the plant in the context of the so-called coefficient diagram
sidering all-pole transfer functions of order . for which we introduce a  that depicts the coefficients of the plant and characteristic polynomial

set of parameterse;, i = 1,...n called the characteristic ratios We 1, 5 |ogarithmic scale. Using this diagram, he successfully designed
also introduce ageneralized time constant. We prove that o, and = can . .
Jeontrollers for many industrial systems.

be used to characterize the system overshoot to a step input and the spee
of response, respectively. By independently adjustingx; and  in all-pole In this note, we begin by defining two important sets of pa-
systems, arbitrarily small or no overshoot as well as arbitrarily fast speed rameters called hergeneralized time constardnd characteristic

of response can be achieved. These formulas are used to develop a proyatios, respectively. These parameters are written in terms of coef-

cedure to design feedback controllers with feedforward or two parameter . . . . .
output feedback type for achieving time response specifications. For a min- ficients of a polynomial. The properties of these parameters with

imum phase plant we show that arbitrary transient response specifications, "€SPect to time domain response, in particular speed of response and
namely one with independently specified overshoot and specified rise time overshoot, are then derived analytically. These properties are later

Transient Response Control via Characteristic
Ratio Assignment

Y. C. Kim, L. H. Keel, and S. P. Bhattacharyya

or speed of response can be exactly attained. used to construct a desired transfer function and a controller design
Index Terms—Characteristic ratios, generalized time constant, over- Procedure for minimum phase plants to achieve a transient response,
shoot, transient response. with independentlyspecified overshoot and rise time. The controller

can be of state feedback plus feedforward or of two parameter type.

The same procedure can be used for non minimum phase systems

where reduced overshoot and increased speed of response may be
Feedback control system design has to deal with the following probtained although they may not be independently specifiable.

lems: 1) asymptotic tracking and disturbance rejection of classes of

signals such as steps, ramps, sinusoidal inputs; 2) stability and robust 1l. STEP RESPONSESPEED-UP

stability; and 3) transient response control. The first two topics have re-

ceived a great deal of attention. (see [1]-[3] and the references thereliJn

|. INTRODUCTION

n this section, we develop some preliminary results on “speeding
' (or “slowing down”) the step response of a systemz(f) is a
signalw(t) = x(5t) is atime scaled version af(t) and is speeded up
Manuscript received April 23, 2002; revised November 7, 2002, April 18f 5 > 1 and slowed down i6 < 3 < 1.
2003, and August 25, 2003. Recommended by Associate Editor F. M. Callier.Let y(¢) denote the forced response, to a stép, of a system with
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tion under Grant NCC-5228. This research was done while Y. C. Kim was &S/l functio (s) so that its forced response #6) is y(7#) for

Visiting Scholar at Tennessee State University, Nashville, TN. agivens > 0. We say thafi (s) speeds up the step responseg)
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