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u2(t)

where� stands for an arbitraryt-dependent entry which is (d� 2) and
(d� 1) times continuously differentiable, respectively.

The next simple example shows that Theorem 2.1 makes a more
refined statement about noncontrollability if the structure of the matrix
A is known in more detail.

Example 3.2: Consider the control system

x
0 =

a(t) 1 2

1 4 2

2 2 7

x+

1

0

0

u(t):

Although this system is not of one of the types given in Example 3.1,
our Theorem 2.1 yields with

A1 =

1 0 0

0 0 0

0 0 0

A2 =

0 1 2

1 4 2

2 2 7

B =

1

0

0

and the following nonzero matrix products in (2.2):

A1B=A1A1B=

1

0

0

; A2B=A2A1B=

0

1

2

; A2A2B=

5

8

16

that this system in not totally controllable.
Example 3.3: With the same method, we get the following four-

dimensional classes of systems which are not totally controllable:

x
0 =

� � � �

� � � �

� � � �

0 0 0 �

x+

� 0

0 �

0 0

0 0

u1(t)

u2(t)

and

x
0 =

� � � �

� � � �

0 0 � �

0 0 � �

x+

� 0

0 �

0 0

0 0

u1(t)

u2(t)
:

ACKNOWLEDGMENT

We thank the referees for comments leading to the improvement of
this note.

REFERENCES

[1] M. Fliess, “Some basic structural properties of generalized linear sys-
tems,”Syst. Control Lett., vol. 15, no. 5, pp. 391–396, 1990.

[2] E. B. Lee and L. Markus,Foundations of Optimal Control Theory, 2nd
ed. Melbourne, Australia: Robert E. Krieger Publishing, 1986.

[3] H. Leiva and B. Lehman, “Algebraic Rank Test for Complete Control-
lability of Non-Autonomous Linear systems,” Georgia Inst. Technol.,
Atlanta, GA, CDSNS 91–92, 1992.

[4] H. Leiva and H. Zambrano, “Rank condition for the controllability of a
linear time-varying system,”Int. J. Control, vol. 72, pp. 929–931, 1999.

[5] W. E. Schmitendorf and B. R. Barmish, “Null controllability of linear
systems with constrained controls,”SIAM J. Control Optim., vol. 18,
no. 4, pp. 327–345, 1980.

[6] L. M. Silverman and H. E. Meadows, “Controllability and observability
in time-variable linear systems,”SIAM J. Control, vol. 5, pp. 64–73,
1967.

[7] F. Szigeti, “A differential-algebraic condition for controllability and ob-
servability of time varying linear systems,”IEEE Proc. 31st Conf. De-
cision Control, pp. 3088–3090, 1992.

[8] J. Wei and E. Norman, “On global representation of the solutions of
linear differential equations as a product of exponentials,” inProc. Amer.
Math. Soc., vol. 15, 1964, pp. 327–334.

Range Identification for Perspective Vision Systems

W. E. Dixon, Y. Fang, D. M. Dawson, and T. J. Flynn

Abstract—In this note, a new observer is developed to determine
range information (and, hence, the three-dimensional (3-D) coordinates)
of an object feature moving with affine motion dynamics (or the more
general Ricatti motion dynamics) with known motion parameters. The
unmeasurable range information is determined from a single camera
provided an observability condition is satisfied that has physical signif-
icance. To develop the observer, the perspective system is expressed in
terms of the nonlinear feature dynamics. The structure of the proposed
observer is inspired by recent disturbance observer results. The proposed
technique facilitates a Lyapunov-based analysis that is less complex than
the sliding-mode based analysis derived for recent observer designs.
The analysis demonstrates that the 3-D task-space coordinates of the
feature point can be asymptotically identified. Simulation results are
provided that illustrate the performance of the observer in the presence
of noise.

Index Terms—Affine system, nonlinear observer, visual servoing.

I. INTRODUCTION

The objective of most vision problems involves interpreting the mo-
tion of features of a three-dimensional (3-D) object through two-dimen-
sional images that are projected perspectively1 from the 3-D feature;
hence, as stated in [6] vision systems are inherently perspective. Most
research related to perspective systems have targeted the identification
of the motion parameters (e.g., feature velocities) by using measureable
state information. For example, for the following second-order system
[6]:

_x1
_x2

=
a1 a2

a3 a4

x1

x2
(1)

the typical problem is to utilize the measureable statesx1(t) andx2(t)
to determine the unmeasurable parametersai(t) 8i = 1, 2, 3, 4 and
possibly the unknown initial conditionsx1(t0) andx2(t0). An excel-
lent overview of research that has targeted this and similar problems
(typically using an extended Kalman filter) is provided in [5], [6], and
[8].

In contrast to the class of perspective problems associated with using
the measureable states to determine the parameters, several researchers
have recently investigated the problem when the motion parameters are
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known along with the image-space feature coordinates, and the goal is
to determine the unknown states (i.e., the actual 3-D position of the
feature). For example, a recursive identifier based observer was devel-
oped in [8] to exponentially identify range information of features (i.e.,
points, lines, and planar curves) on an affine plane from successive im-
ages of a camera that is moving in a known manner (i.e., with known
motion parameters). In [1], Chen and Kano develop a new observer for
a more general perspective system that exponentially forces the obser-
vation error to an arbitrarily small neighborhood [i.e., uniformly ulti-
mately bounded (UUB)].

In this note, we develop an observer to determine range information
(and, hence, the 3-D task-space coordinates) for an object feature
moving with general affine motion dynamics with known motion
parameters. As in [1] and [11], the perspective system examined
in this note and the preliminary work in [3] is more general than
the skew-symmetric system examined in [8]. The unmeasurable
range information is determined from a single camera provided an
observability condition similar to [1] and [8] is satisfied. As stated
in [6], many geometric structures of a perspective system are lost if
they are studied via linearization; hence, to develop the observer, the
perspective system is transformed into a nonlinear dynamic system
(i.e., the image-space feature dynamics). Based on the nonlinear
dynamics of the image-space signals an observer is designed that
is inspired by the recent disturbance observer results in [4] and [9].
The structure of the proposed observer facilitates a Lyapunov-based
analysis that is less complex than the sliding-mode based analysis
derived for the observer design of [1]. More significantly, the unknown
states can be exactly determined rather than “almost” determined
as in the UUB result in [1]. The analysis demonstrates that the 3-D
task-space coordinates of the feature point can be asymptotically
identified. The proposed observer can also be applied to object motion
described by Riccati dynamics and can be extended ton-dimensional
perspective systems. Simulation results are provided that illustrate
the performance of the observer.

The note is organized in the following manner. In Section II, the
general perspective system is presented and the image-space feature
dynamics are determined. In Section III, the observation problem is de-
fined, and the observer is developed. The observation error is proven to
be asymptotically regulated through a Lyapunov-based analysis in Sec-
tion IV. Simulation results are provided in Section V, and concluding
remarks are made in Section VI.

II. PERSPECTIVESYSTEM

Consider an object feature undergoing an affine motion as follows
[1], [11]:

_x1
_x2
_x3

=

a11 a12 a13
a21 a22 a23
a31 a32 a33

x1
x2
x3

+

b1
b2
b3

(2)

wherex1(t), x2(t), x3(t) 2 denote the unmeasurable task-space
coordinates of an object feature along theX, Y , andZ axes of an iner-
tial reference frame, respectively, with theZ axis being perpendicular
with an image plane formed by a camera (i.e., the coordinatex3(t)
denotes the depth from the image plane to the task-space object fea-
ture along the optical axisZ). In (2), the parametersai;j(t) 2 and
bi(t) 8i; j = 1; 2; 3 denote the known motion parameters [1], [11].
The affine motion dynamics introduced in (2) are expressed in a gen-
eral form that describes an object motion that undergoes a rotation,
translation, and linear deformation [11]. The measurable image-space
coordinate of a feature, denoted byy(t) 2 2, is given as follows:

y [ y1 y2 ]
T =

x1
x3

x2
x3

T
: (3)

The affine dynamics introduced in (2) and the image-space signal in-
troduced in (3) define the perspective system [1]. After taking the time

derivative of (3) and utilizing (2), the image-space trajectory of the ob-
ject feature can be obtained as follows:

_y1 =
a11x1 + a12x2 + a13x3 + b1

x3

�
x1 (a31x1 + a32x2 + a33x3 + b3)

x2
3

: (4)

_y2 =
a21x1 + a22x2 + a23x3 + b2

x3

�
x2 (a31x1 + a32x2 + a33x3 + b3)

x2
3

: (5)

To facilitate subsequent analysis, the time derivative of the inverse of
x3(t) is determined as follows:

d

dt

1

x3
=
�a31x1 � a32x2 � a33x3 � b3

x2
3

: (6)

By utilizing (3), the expressions given in (4)–(6) can be rewritten as
follows:

_y1 =a13+(a11 � a33) y1+a12y2�a31y
2

1�a32y1y2+f1

(7)

_y2 =a23+a21y1+(a22�a33) y2�a32y
2

2�a31y1y2+f2

(8)
d

dt

1

x3
=�

1

x3
(a31y1 + a32y2 + a33)�

b3
x2
3

(9)

wheref1(x3; y1), f2(x3; y2) 2 are unmeasurable signals2 defined
as follows:

f1
1

x3
(b1 � b3y1) (10)

f2
1

x3
(b2 � b3y2) : (11)

For the perspective system given in (2) and (3), the following assump-
tions are made [1].

Assumption 1:The known motion parametersai;j(t) and
bi(t) 8i; j = 1, 2, 3 introduced in (2) are bounded functions of time,
the parametersai;j(t) are first order differentiable, and the parameters
bi(t) are second-order differentiable.

Assumption 2:The image-space feature coordinatesy1(t) and
y2(t) are bounded functions of time (i.e.,y1(t), y2(t) 2 L1).

Assumption 3:The object feature motion avoids the degenerate case
where the feature intersects the image plane. That is,x3(t) > "0 where
"0 2 is an arbitrarily small positive constant and, hence,1=x3(t) 2
L1. Moreover, we also assume thatx3(t) 2 L1.

Remark 1: Assumptions 2 and 3 are standard assumptions (see also
[1] and [8]) that are practically properties of the physical system rather
than assumptions.

Remark 2: Based on Assumptions 1–3, the expressions given in (2)
and (7)–(11) can be used to determine that_x3(t), _y(t),d=dt (1=x3(t)),
f1(x3, y1), f2(x3; y2) 2 L1. Given that these signals are bounded,
the development provided in the Appendix can be used along with
Assumptions 1–3 to also determine that_f1(�), _f2(�), �f1(�), and �f2(�) 2
L1.

III. OBSERVATION PROBLEM

A. Objective

The objective in this note is to determine the unmeasurable state
x3(t) of the perspective vision system described by (2) and (3). From
(3) and the fact thaty1(t) andy2(t) are measurable, it is clear that
if x3(t) is identified then the complete 3-D task-space coordinate of

2The signals ( ), and ( ) are unmeasurable due to a de-
pendence on the unmeasurable state( ).
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the feature can be determined. To achieve this objective, an observer is
constructed based on the unmeasurable image-space dynamics fory(t).
To quantify the performance of the observer, a measurable observer
estimation error signal, denoted bye(t) 2 2, is defined as follows:

e [ e1 e2 ]
T = [ y1 � ŷ1 y2 � ŷ2 ]

T (12)

whereŷ(t) [ŷ1(t); ŷ2(t)]
T 2 2 denotes a subsequently designed

observer signal. To facilitate the subsequent development, a filtered
observation error signal, denoted byr(t) 2 2, is designed as follows:

r [ r1 r2 ]
T = [ _e1 + �1e1 _e2 + �2e2 ]

T (13)

where�1, �2 2 denote positive constant gains. Based on the
dynamics in (7) and (8) and the definitions introduced in (12) and
(13), it is clear thatr(t) is unmeasurable due to the fact that_y(t)
is a function of the unmeasurable disturbance termsf1(x3; y1) and
f2(x3; y2). The subsequent development will target the design of
estimates forf1(x3; y1) and f2(x3; y2) based on the strategy that
if the mismatch between the estimates and the disturbance terms
f1(x3; y1) and f2(x3; y2) can be driven to zero, thenx3(t) can be
identified by exploiting the fact thatbi(t) 8i = 1; 2; 3 and the states
y1(t) andy2(t) are measurable. Specifically, from (10) and (11), the
inverse of the square ofx3(t) can be determined as follows:

1

x3

2

=
f21 + f22

(b1 � b3y1)
2 + (b2 � b3y2)

2
: (14)

Based on the structure of (14), it is clear that the following observability
condition must be satisfied:

(b1 � b3y1)
2 + (b2 � b3y2)

2
> 0 : (15)

That is,x3(t) can be identified once the mismatch between the distur-
bance termsf1(x3; y1) andf2(x3; y2) and the respective estimates are
driven to zero.

Remark 3: The observability condition introduced in (15) is not re-
quired by the subsequent analysis to prove that the observer design re-
mains bounded. That is, the subsequent analysis can be used to prove
thatf1(x3; y1) andf2(x3; y2) can be identified independently of (15);
however, (15) is required to prove thatx3(t) can be identified. In [8], a
discussion is provided regarding the physical justification of (15) with
regard to the focus of expansion.

B. Observer Design and Error System

By taking the time-derivative of (12) the following error dynamics
can be obtained fore(t):

_e = _y�
�

ŷ : (16)

Based on the structure of (7), (8), and (16), the elements of the observer
signalŷ(t) are designed as follows:

�

ŷ
1
=a13 + (a11 � a33) y1 + a12y2 � a31y

2

1 � a32y1y2 + f̂1

(17)
�

ŷ
2
=a23 + a21y1 + (a22 � a33) y2 � a32y

2

2 � a31y1y2 + f̂2

(18)

wheref̂1(t), f̂2(t) 2 denote subsequently designed estimates for
the unmeasurable signalsf1(t) andf2(t) introduced in (7) and (8).
After substituting (7), (8), (17), and (18) into (16), the following error
dynamics are obtained:

_e = [ f1 � f̂1 f2 � f̂2 ]
T
: (19)

By taking the time-derivative of (13), the following error dynamics
can be obtained forr(t):

_r =
_f1�

�

f̂
1
+�1 f1 � f̂1

_f2�
�

f̂
2
+�2 f2 � f̂2

(20)

where (19) and the time derivative of (19) have been utilized. Based on
the structure of (20) and the subsequent analysis, the estimatesf̂1(t)
andf̂2(t) are designed as follows3 :

�

f̂
1
=� (ks1 + �1)f̂1 + 
1sgn(e1) + �1ks1e1 (21)

�

f̂
2
=� (ks2 + �2)f̂2 + 
2sgn(e2) + �2ks2e2 (22)

whereks1, ks2, 
1, 
2 2 denote constant observer gains and the
notationsgn(�) is used to indicate the standard, signum function. After
substituting (21) and (22) into (20), and then adding and subtracting
the termsks1f1(x3; y1) andks2f2(x3; y2), the following expression
can be obtained:

_r = � �
ks1r1 + 
1sgn(e1)

ks2r2 + 
2sgn(e2)
(23)

where�(t) [ �1 �2 ]
T 2 2 is defined as follows:

�
_f1 + (ks1 + �1) f1
_f2 + (ks2 + �2) f2

: (24)

Remark 4: The time derivative of (24) can be determined as follows:

_� =
�f1 + (ks1 + �1) _f1
�f2 + (ks2 + �2) _f2

: (25)

From (24) and (25), the statements in Remark 2 can be used to conclude
that�(t), _�(t) 2 L1.

Remark 5: The structure of the disturbance observer given by (21)
and (22) contains discontinuous terms; however, it is interesting to note
that the overall structure of the observer yields the continuous signals
f̂1(t) andf̂2(t). That is, after a close examination of (17) and (18), it

is clear that
�

ŷ
1
(t) and

�

ŷ
2
(t) only contain the low pass filtered outputs

f̂1(t) andf̂2(t) of the discontinuous terms in (21) and (22).

IV. A NALYSIS

The following theorem and associated proof can be used to conclude
that the observer design of (17), (18), (21), and (22) can be used to
identify the unmeasurable statex3(t).

Theorem 1: Given the perspective system in (2) and (3), the unmea-
surable statex3(t) (and, hence, the 3-D task-space coordinates of the
object feature) can be asymptotically determined using the observer de-
sign given in (17), (18), (21), and (22) provided the constants
1 and

2 introduced in (21) and (22) are selected according to the following
sufficient conditions:


1 � j�1j + j _�1j 
2 � j�2j + j _�2j (26)

where�(t) is defined in (24), and the observability condition intro-
duced in (15) is satisfied.

Proof: To prove Theorem 1, we first define a nonnegative func-
tion V (t) as follows:

V
1

2
r
�
r : (27)

3The design of the estimateŝ( ) and ^ ( ) is inspired by the development
given in [4] and [9].
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(a)

(b)

(c)

Fig. 1. Observation mismatch between (a)( ) and ^ ( ), (b) ( ) and ^ ( ), and (c) ( ) and the estimated value from (14) with no measurement noise.

After taking the time derivative of (27) and substituting for the error
system dynamics given in (23), the following expression can be
obtained:

_V = �ks1r
2

1 � ks2r
2

2 + ( _e1 + �1e1) (�1 � 
1sgn(e1))

+ ( _e2 + �2e2) (�2 � 
2sgn(e2)) : (28)

After integrating (28) and exploiting the fact that

� � sgn(�) = j�j

the following inequality can be obtained:

V (t) �V (t0)�
t

t

ks1r
2

1 (�) + ks2r
2

2 (�) d�

+ �1

t

t

je1 (�)j (j�1 (�)j � 
1)) d� + 
1

+ �2

t

t

je2 (�)j (j�2 (�)j � 
2) d� +
2 (29)

where the auxiliary terms
1(t),
2(t) 2 are defined as follows:


1

t

t

_e1 (�)�1 (�)d��
1

t

t

_e1 (�) sgn(e1 (�))d�

(30)


2

t

t

_e2 (�)�2 (�)d��
2

t

t

_e2 (�) sgn(e2 (�))d�:

(31)

After evaluating the integral expressions in (30), the following expres-
sions can be obtained:


1 =e1 (�)�1 (�) j
t

t d��
t

t

e1 (�) _�1 (�)d��
1 je1 (�)j j
t

to

=e1 (t)�1 (t)�
t

t

e1 (�) _�1 (�)d� � 
1 je1 (t)j

�e1 (t0)�1 (t0)+
1 je1 (t0)j : (32)

By performing the same operations,
2(t) can be evaluated as follows:


2 = e2 (t)�2 (t)�
t

t

e2 (�) _�2 (�)d� � 
2 je2 (t)j

�e2 (t0)�2 (t0) + 
2 je2 (t0)j : (33)

After substituting (32) and (33) into (29) and performing some alge-
braic manipulation, the following inequality can be obtained:

V (t) � V (t0)�
t

t

ks1r
2

1 (�) + ks2r
2

2 (�) d� + 
3 + �0 (34)

where the auxiliary terms
3(t), �0 2 are defined as follows:


3 �1

t

t

je1 (�)j (j�1 (�)j+ j _�1 (�)j � 
1) d�(35)

+ �2

t

t

je2 (�)j (j�2 (�)j+ j _�2 (�)j � 
2) d�

+ je1 (t)j (j�1 (t)j � 
1) + je2 (t)j (j�2 (t)j � 
2)

�0 �e1 (t0)�1 (t0) + 
1 je1 (t0)j

� e2 (t0)�2 (t0) + 
2 je2 (t0)j : (36)
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(a)

(b)

(c)

Fig. 2. Observation mismatch between (a)( ) and ^ ( ), (b) ( ) and ^ ( ), and (c) ( ) and the estimated value from (14) with 1% measurement noise.

Provided the constants
1 and
2 are selected according to the inequal-
ities introduced in (26),
3(t) will always be negative or zero; hence,
the following upper bound can be developed:

V (t) � V (t0)�
t

t

ks1r
2

1 (�) + ks2r
2

2 (�) d� + �0: (37)

From (27) and (37), the following inequalities can be determined:

V (t0) + �0 � V (t) � 0 (38)

hence,r(t) 2 L1. The expression in (37) can be used to determine
that

1

0

ks1r
2

1 (�) + ks2r
2

2 (�) d�

� V (0) + �0 � V (1) � V (0) + �0 <1 : (39)

By definition, (39) can now be used to prove thatr(t) 2 L2. From the
fact thatr(t) 2 L1, (12) and (13) can be used to prove thate(t), _e(t),

ŷ(t), and
�

ŷ (t) 2 L1. The expressions in (17), (18), (21), and (22) can

be used to determine thatf̂1(t), f̂2(t),
�

f̂
1
(t), and

�

f̂
2
(t) 2 L1. Based

on the facts thatf1(x3; y1), f2(x3; y2), _f1(�), and _f2(�) 2 L1, the
expressions in (23) and (24) can be used to prove that�(t), _r(t) 2 L1.
Based on the fact thatr(t), _r(t) 2 L1 and thatr(t) 2 L2, Barbalat’s
Lemma [10] can be used to prove thatkr(t)k ! 0 ast ! 1; hence,
[2, Lemma 1.6] can be used to prove thatke(t)k ! 0 andk _e(t)k ! 0
ast ! 1. Based on the fact thatke(t)k ! 0 andk _e(t)k ! 0 as
t!1, the expression given in (12) can be used to determine thatŷ1(t)

andŷ2(t) approachy1(t) andy2(t) ast!1, respectively. Therefore,
the expression in (19) can be used to determine thatf̂1(t) and f̂2(t)
approachf1(t) andf2(t) as t ! 1. If the observability condition
given in (15) is satisfied (i.e., if eitherf1(x3; y1) or f2(x3; y2) are
nonzero), then the result thatf̂1(t) andf̂2(t) approachf1(t) andf2(t)
ast!1, the fact that the parametersbi(t)8i = 1, 2, 3 are assumed to
be known, and the fact that the image-space signaly(t) is measurable
can be used to identify the unknown task-space parameterx3(t) from
(14). Oncex3(t) is identified, the complete 3-D task-space coordinates
of the object feature can be determined from (3).

Remark 2: In addition to the general affine motion model consid-
ered in (2), several results in literature have examined the following
Riccati motion dynamics (e.g., [1], [5], and [7])

_x1
_x2
_x3

=

a11 a12 a13

a21 a22 a23

a31 a32 a33

x1

x2

x3

+

b1

b2

b3

+

c1 c2 c3 0 0 0

0 c1 0 c2 c3 0

0 0 c1 0 c2 c3

x21

x1x2

x1x3

x22

x2x3

x23

: (40)

For these dynamics, the same expressions given in (7)–(11) can be ob-
tained and, hence, the observer design in (17), (18), (21), and (22) still
applies for this motion field. Note that the observer developed in [1]
for the affine motion dynamics in (2) can also be applied to the motion
dynamics in (40). As in [1], the observer system design in this note can
also be extended to generaln-dimensional perspective systems.
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V. SIMULATION EXAMPLES

In this section, numerical simulation results are presented to demon-
strate the performance of the algorithm developed in (17)–(22). In the
first example, the image-space data is considered to be noise free, and
in the second example, the measured image data is assumed to be cor-
rupted by 1% with random noise as in [1].

Example 1: For this example, the movement of an object in the task-
space is described by the following perspective system [1]:

_x1
_x2
_x3

=

�0:2 0:4 �0:6

0:1 �0:2 0:3

0:3 �0:4 0:4

x1
x2
x3

+

0:5

0:25

0:3

(41)

where

[ x1(0) x2(0) x3(0) ]
T = [ 1 1:5 2:5 ]T : (42)

The initial conditions forŷ1(t), ŷ2(t), f̂1(t), and f̂2(t) are given as
follows:

ŷ1(0) = y1(0) ŷ2(0) = y2(0)

f̂1(0) = 1 f̂2(0) = 1:
(43)

The observer gains were selected as follows:

ks1 =30 �1 = 5 
1 = 1

ks2 =40 �2 = 5 
2 = 0:1: (44)

After implementing the observer with the gains selected as in (44), the
resulting observation mismatch betweenf1(t) andf̂1(t) andf2(t) and
f̂2(t) is depicted in Fig. 1 along with the mismatch betweenx3(t) and
the estimated value from (14).

Example 2: For this example, the same system from Example 1 was
simulated with 1% random noise injected on the measured image-space
signalsy1(t) andy2(t). Using the same gain selections as in (44), the
resulting observer mismatch is depicted in Fig. 2. Fig. 2 also illustrates
the mismatch betweenx3(t) and the estimated value.

The results depicted in Figs. 1 and 2 indicate that the developed
observer strategy can be used to identify the range parameter using
a single camera provided the observability condition is satisfied. In
comparison with the simulation results for the observer presented in
[1], the results in Figs. 1 and 2 illustrate that the developed observer
has at least similar transient performance (although the steady-state re-
sponse of the observer in [1] is only proven to be bounded to a region
about the origin). In comparison with the simulation results for the ob-
server presented in [8], the results in Figs. 1 and 2 illustrate superior
transient response. The impact of these results are that the developed
observer can be used to enable a monocular vision system to identify
the range parameter (even in the presence of sensor noise) of an object
moving (with known motion parameters) with an affine or Riccati mo-
tion dynamics.

VI. CONCLUSION

In this note, a new observer inspired by the development in [9]
was developed to identify an unmeasurable range signal (and, hence,
the 3-D task-space coordinates of an object feature) via a single
camera given the motion parameters of a general affine system
(or Riccati system). To develop the observer the affine perspective
system is transformed into the nonlinear feature dynamics. Through a
Lyapunov-based analysis, the observer was proven to asymptotically
regulate the observation errors. Simulation results are provided that
illustrate the performance of the observer even in the presence of
image noise.

APPENDIX

To prove that _f1(�), _f2(�) 2 L1, the time derivative of (10) and (11)
is determined as follows:

_f1 =
1

x3
_b1 � _b3y1 � b3 _y1 +

d

dt

1

x3
(b1�b3y1) (45)

_f2 =
1

x3
_b2 � _b3y2 � b3 _y2 +

d

dt

1

x3
(b2�b3y2) : (46)

The facts that_y(t), d=dt (1=x3(t)) 2 L1 can be used along with
Assumptions 1–3 to conclude from (45) and (46) that_f1(�), and _f2(�) 2
L1. To prove that�f1(�), �f2(�) 2 L1, the time derivative of (45) and
(46) can be determined as follows:

�f1 =
d

dt

1

x3
_b1 � _b3y1 � b3 _y1

+
1

x3
�b1 � �b3y1 � 2_b3 _y1 � b3�y1

+
d2

dt2
1

x3
(b1 � b3y1)+

d

dt

1

x3
_b1 � _b3y1 � b3 _y1

(47)

�f2 =
d

dt

1

x3
_b2 � _b3y2 � b3 _y2

+
1

x3
�b2 � �b3y2 � 2_b3 _y2 � b3�y2

+
d2

dt2
1

x3
(b2 � b3y2)+

d

dt

1

x3
_b2 � _b3y2 � b3 _y2

(48)

where

�y1 =_a13+(_a11� _a33) y1+(a11� a33) _y1

+ _a12y2 + a12 _y2 � _a31y
2

1�2a31y1 _y1

� _a32y1y2� _y1y2 � a32y1 _y2+ _f1

(49)

�y2 =_a23+ _a21y1+a21 _y1+(_a22� _a33) y2

+ (a22�a33) _y2

� _a32y
2

2�2a32y2 _y2� _a31y1y2�a31 _y1y2

� a31y1 _y2+ _f2

(50)
d2

dt2
1

x3
=�

d

dt

1

x3
(a31y1 + a32y2 + a33)

�
_b3
x2
3

+ 2
b3 _x3
x3
3

�
1

x3
( _a31y1 + a31 _y1 + _a32y2

+ a32 _y2 + _a33)

(51)

and the expressions given in (7)–(11) were utilized. The expressions
given in (47)–(51), Assumptions 1–3, and the facts that_x3(t), _y(t),
d=dt (1=x3(t)), f1(x3; y1), f2(x3; y2) 2 L1 can now be used to
prove that�f1(�), and �f2(�) 2 L1.
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Transient Response Control via Characteristic
Ratio Assignment

Y. C. Kim, L. H. Keel, and S. P. Bhattacharyya

Abstract—This note develops an approach to directly control the tran-
sient response of linear time-invariant control systems. We begin by con-
sidering all-pole transfer functions of order for which we introduce a
set of parameters = 1 . . . called the characteristic ratios. We
also introduce ageneralized time constant . We prove that and can
be used to characterize the system overshoot to a step input and the speed
of response, respectively. By independently adjusting and in all-pole
systems, arbitrarily small or no overshoot as well as arbitrarily fast speed
of response can be achieved. These formulas are used to develop a pro-
cedure to design feedback controllers with feedforward or two parameter
output feedback type for achieving time response specifications. For a min-
imum phase plant we show that arbitrary transient response specifications,
namely one with independently specified overshoot and specified rise time
or speed of response can be exactly attained.

Index Terms—Characteristic ratios, generalized time constant, over-
shoot, transient response.

I. INTRODUCTION

Feedback control system design has to deal with the following prob-
lems: 1) asymptotic tracking and disturbance rejection of classes of
signals such as steps, ramps, sinusoidal inputs; 2) stability and robust
stability; and 3) transient response control. The first two topics have re-
ceived a great deal of attention. (see [1]–[3] and the references therein).
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On the other hand, there are very few results dealing with the
problem of transient response control, despite the fact that good
transient response is one of the most important requirements for every
control system. For a certain class of transfer functions whose poles
are all real, negative, and distinct, analytical expressions of transient
responses were provided in [4]. It was also shown that this formula in
closed form can be used to determine the zeros that result in minimum
transient time. In [5]–[7], some limitations on transient response are
studied in terms of poles and zeros of the system. The`1 optimal
control approach proposed in [8] specifically deals with the worst case
time domain response under bounded amplitude inputs and is one of
few “modern” approaches to time response control (also see [9] for
other optimization based approaches). Based on asymptotic time scale
and eigenstructure assignment, a solution to a robust perfect tracking
problem for minimum phase multiple-input–multiple-output systems
in the presence of initial conditions and external disturbances has been
reported in [10]. In [11] and [12], the relationship of undershooting
step responses and nonminimum phase zeroes has been studied, and
in [13] and [14] the design of nonovershooting controllers for discrete
time systems have been proposed. A good summary of classical
control approaches can be found in [15] and [16].

This note presents some new results to directly address the transient
response control problem. The main ideas are based on certain rela-
tions between characteristic polynomial coefficients and time domain
responses. These relations were initially presented by Naslin in the
1960s [17]. An important contribution in this regard is due to Manabe
[18] who investigated the problem of obtaining good transient response
in control systems. His investigation focused on studying the generic
behavior of the plant in the context of the so-called coefficient diagram
that depicts the coefficients of the plant and characteristic polynomial
on a logarithmic scale. Using this diagram, he successfully designed
controllers for many industrial systems.

In this note, we begin by defining two important sets of pa-
rameters called heregeneralized time constantand characteristic
ratios, respectively. These parameters are written in terms of coef-
ficients of a polynomial. The properties of these parameters with
respect to time domain response, in particular speed of response and
overshoot, are then derived analytically. These properties are later
used to construct a desired transfer function and a controller design
procedure for minimum phase plants to achieve a transient response,
with independentlyspecified overshoot and rise time. The controller
can be of state feedback plus feedforward or of two parameter type.
The same procedure can be used for non minimum phase systems
where reduced overshoot and increased speed of response may be
obtained although they may not be independently specifiable.

II. STEP RESPONSESPEED-UP

In this section, we develop some preliminary results on “speeding
up” (or “slowing down”) the step response of a system. Ifx(t) is a
signalw(t) = x(�t) is a time scaled version ofx(t) and is speeded up
if � > 1 and slowed down if0 < � < 1.

Let y(t) denote the forced response, to a stepr(t), of a system with
transfer functionG(s). We are interested in determining a system with
transfer functionH(s) so that its forced response tor(t) is y(�t) for
a given� > 0. We say thatH(s) speeds up the step response ofG(s)
by a factor�. Let

G(s) =
N(s)

D(s)
=
nms

m + nm�1s
m�1 + � � �+ n1s+ n0

dnsn + dn�1sn�1 + � � �+ d1s+ d0

=
K (s� z1) (s� z2) � � � (s� zm)

(s� p1) (s� p2) � � � (s� pn)
(1)
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