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Energy-Based Nonlinear Control of Underactuated
Euler–Lagrange Systems Subject to Impacts

G. Hu, C. Makkar, and W. E. Dixon

Abstract—In this note, Lyapunov-based methods are used to design a
class of energy-based nonlinear controllers to globally asymptotically sta-
bilize/regulate an underactuated mechanical system subject to an impact
collision. The impact model is considered as an elastic contact with finite
stiffness. One of the difficulties in controlling impact is that the equations
of motion are quite different when the system status changes from a non-
contact condition to a contact condition. Another difficulty arises when an
impact occurs with an underactuated system because the impact may lead
to instabilities or excessive transients. An energy coupling approach is de-
veloped in this paper that is motivated by the desire to improve the transient
response of the system. A Lyapunov stability analysis and numerical sim-
ulations are provided to demonstrate the stability and performance of the
developed controllers.

Index Terms—Impact, Lyapunov methods, nonlinear systems.

I. INTRODUCTION

The control of mechanical systems subject to impact is a theoret-
ically interesting problem with practical importance. Large stresses
arise as a consequence of impact, demanding that the impact forces
be properly recognized and controlled to prevent system failure. As
described in [14], some useful short-duration effects such as high
stresses, rapid dissipation of energy, and fast acceleration and decel-
eration may be achieved from low-energy sources by controlling the
impact of robots operating at low force levels. Some robotic examples
in which controlled contacts are required include the impact between
a walking robot and the ground, the interaction of a robot manipulator
with an object, multifinger grasping, and the cooperation and contact
of multirobots. One of the difficulties in controlling impact is that the
equations of motion are quite different when the system status changes
quickly from a noncontact condition to a contact condition.

For the past decade, many researchers have addressed the modeling
and control of impact [1]–[4], [8], [10]–[16]. In [2] and [11], switched
controllers are given to control robotic manipulators during contact/
noncontact conditions separately. In [16], a switching control strategy
is designed to guarantee the stability of the impact controller. In [12],
a stable discontinuous transition controller is proposed to deal with the
contact transition problem. In [10], the authors use a hybrid impedance/
time-delay controller that establishes a stable contact and achieves the
desired dynamics for contact or noncontact conditions. In [13], a dis-
continuous Lyapunov-based control scheme is introduced to regulate
the impact of a hydraulic actuator coming in contact with a nonmoving
environment. In [14], a continuous proportional derivative (PD) con-
troller is proposed to control the impact of an underactuated system
where the actuators are used to stabilize the contact coordinates, and
the noncontact coordinates are indirectly stabilized. In [8], static and
dynamic PD controllers are proposed to address the global asymptotic
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stabilization problem of the underactuated mechanical system subject
to an impact with an elastic surface with finite stiffness, but the contacts
only happen at the equilibrium points.

In this paper, we develop a new class of continuous energy-based
controllers (e.g., [5] and [6]) that achieve global asymptotic stabiliza-
tion/regulation of an underactuated Euler–Lagrange system subject to
an elastic contact with finite stiffness. Motivation for this class of con-
trollers is that when underactuated systems are subject to an impact,
excessive transient performance may exist if natural damping is not
present and the controller lacks a damping element. Hence, the devel-
oped controllers exploit the system energy to couple all the states of
the system so that transients in the unactuated states will be coupled
to the actuated states. This energy coupling idea is in contrast to linear
controllers that do not include any state coupling. The developed sta-
bilization result is obtained regardless of which states (i.e., actuated or
unactuated) undergo an impact collision. An extension is also provided
that illustrates how the actuated states can be regulated to make con-
tact, where the unactuated states converge to the resulting closed-loop
equilibrium point.

This paper is organized as follows. In Section II, the Euler–Lagrange
dynamic model subject to impact is provided along with the related as-
sumptions that are required for the control development. In Section III,
the energy coupling controller is designed to globally asymptotically
stabilize the generalized free motion and contact coordinates of an
underactuated mechanical system subject to impact conditions, and
a Lyapunov stability analysis is provided to demonstrate the stability
of the developed controller. The regulation extension is provided in
Section IV. In Sections V and VI, two examples and simulation re-
sults are provided to demonstrate the performance of the developed
controllers. Concluding remarks are provided in the last section.

II. DYNAMIC MODEL

The equations of motion of an n-degrees-of-freedom (DOF)
Euler–Lagrange system subject to an impact collision are assumed to
have the following form [8], [14]:

M(q)�q + C(q; _q) _q + h(q) +R
T
Kc�(Rq � qcp) = Su: (1)

In (1), q(t), _q(t), �q(t) 2 n denote the generalized position, velocity,
and acceleration coordinates,M(q) 2 n�n denotes a positive definite
inertia matrix, C(q; _q) _q 2 n denotes the velocity-dependent force
vector, h(q) 2 n denotes a conservative force vector (e.g., spring
forces, gravity), u(t) 2 m denotes the control force/torque input,
and S 2 n�m is a transformation matrix defined as

S =
0(n�m)�m

Im
(2)

that maps the actuator space into the generalized coordinates space,
where 0(n�m)�m denotes an (n�m)�mmatrix with all the elements
equal to zero, and Im 2 m�m is an m �m identity matrix. Also in
(1), Kc� 2

r�r denotes an impact stiffness matrix defined as

Kc�
�
= diag fKc1�1(qc1; qcp1);Kc2�2(qc2; qcp2); . . . ;

Kcr�r(qcr; qcpr)g (3)

where qc(t) 2 r denotes the contact coordinates that are defined as

qc(t)
�
= Rq(t)

where R 2 r�n is a constant transformation matrix that maps the
generalized coordinates space into the contact coordinates space and

0018-9286/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 9, SEPTEMBER 2007 1743

qcp 2
r denotes the position of the constant contact surface. In (3),

the stiffness of the impact between the ith contact coordinate and the
corresponding contact surface is defined as Kci 2 , 8i = 1; . . . ; r,
where the contact event is described by the following state-triggered
discontinuous signal [8]:

�i(qci; qcpi)
�
=

0; qci < qcpi

1; qci � qcpi
(4)

where qci(t) < qcpi means the coordinate qci(t) is in a noncontact
condition and qci(t) � qcpi means qci(t) is in contact with a surface. In
the following control development, the actuated coordinates are defined
by qa(t)

�
= ST q(t) and the corresponding unactuated states are defined

as q�a(t) 2 n�m.
The energy, denoted by E(q; _q), of the system given in (1) can be

written as

E(q; _q) =
1

2
_qTM(q) _q

+ Es(q) +

r

i=1

1

2
Kci�i(qci; qcpi)(qci � qcpi)

2 (5)

where the first term denotes the kinetic energy, Es(q) 2 represents
the potential energy of the free motion, and the second term in the
brackets denotes the potential energy caused by the contact. Although
(5) contains the discontinuous function �i(qci; qcpi), the product
Kci�i(qci; qcpi)(qci � qcpi)

2 is continuously differentiable. The
proposed control development and stability analysis can be extended
to more general contact models (for instance with damping) only if
these models yield differentiable functions.

Assumption 1: The inertia matrixM(q) is assumed to be symmetric
and positive definite and can be upper and lower bounded by the fol-
lowing inequalities:

a1k�k
2 � �

T
M(q)� � a2k�k

2
; 8� 2 n (6)

where a1; a2 2 are positive constants. The following skew-sym-
metric relationship is also assumed to be satisfied:

�
T 1

2
_M(q)� C(q; _q) � = 0; 8� 2 n

: (7)

Assumption 2: Since h(q) in (1) is assumed to be a conservative
force that can be derived from the potential energy, the associated
power of the force is equal to the change in potential energy as

_Es(q)� _qTh(q) = 0: (8)

Assumption 3: The system energy E(q; _q) is continuously differen-
tiable, positive definite with respect to the point (q�; 0), where q� 2 n

denotes a constant vector of equilibrium points that correspond to the
minimum potential energy, and radially unbounded, and if E(q; _q) 2
L1, then q�a(t) 2 L1.

III. STABILIZATION CONTROL DEVELOPMENT

The stabilization problem is considered in this section, where the
contact is assumed to occur at the equilibrium point (i.e., qcp = q�).
A more general regulation problem is considered in the next section,
where the generalized coordinates can be regulated to some desired

setpoints if the actuation is only imposed on the generalized coordinates
that make contact.

A. Control Objective

The motivation of this research is to globally asymptotically stabi-
lize the states of an underactuated system to equilibrium points that are
defined by impact and nonimpact conditions (i.e., (q; _q) ! (q�; 0)).
The control objective is based on the assumption that q(t) and _q(t)
are measurable, and the states q(t) and _q(t) satisfy the zero-state-ob-
servability-like assumption with respect to the output _qa(t). The fol-
lowing stabilization errors, denoted by e(t) 2 n, ec(t) 2 r , and
ea(t) 2

m, are introduced to quantify the control objective

e = q � q
�

ec = Re ea = S
T
e (9)

where e(t), ec(t), and ea(t) denote the stabilization error for the gen-
eralized coordinates, contact, and actuated coordinates, respectively.
Based on (9), the subsequent control development will also exploit the
following zero-state-observability-like assumption.

Assumption 4: The system (1) with output _ea(t) is assumed to sat-
isfy a zero-state-observability-like assumption,1 in the sense that no
solution of (1) with u(t) equal to a constant that is negatively propor-
tional to ea(t) can stay identically in the set � = f(q(t); _q(t)) 2
n � n : k _ea(t)k = 0g other than the trivial solution given by
k _e(t)k = ke(t)k = 0.

Remark 1: Assumption 4 is comparable to [14, Assumptions 6 and
7], which are required in [14] to guarantee the steady-state solution
is unique, q(t) = q� and k _q(t)k = 0. Some academic mechanical
examples are presented in Section V to illustrate the implications of
Assumption 4.

B. Open-Loop Error System

The following expression can be obtained after taking the second
time derivative of e(t) and utilizing (1) and (6)

�e = M
�1(q) Su� C(q; _q) _q � h(q)�R

T �Kc�Re (10)

where

�Kc�
�
=diagfKc1�1(ec1; 0);Kc2�2(ec2;0); . . . ;Kcr�r(ecr;0)g:

(11)
After premultiplying (10) by ST , the dynamics of the contact coordi-
nates can be written as

�ea =
P (q)u+W (q; _q)

det (M(q))
(12)

where the auxiliary signals P (q) 2 m�m and W (q; _q) 2 m are
defined as

P (q)
�
=S

T
adj (M(q))S (13)

W (q; _q)
�
= � S

T
adj (M(q))

� C(q; _q) _q + h(q) +R
T �Kc�Re (14)

where adj(M) denotes the adjoint matrix of M .
Based on (5) and (9), the system energy E(q; _q) can be rewritten as

E(q; _q) =
1

2
_eTM(q) _e+ Es(q) +

r

i=1

1

2
Kci�i(eci;0)e

2

ci: (15)

1See [9, p. 243] for further details regarding zero-state observability.
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Taking the derivative of (15) and substituting (10) into the resulting
expression yields

_E(q; _q) = _eT
1

2
_M(q)� C(q; _q) _e

+_eT (Su� h(q)) + _Es(e+ q
�): (16)

The expression in (16) can be reduced as

_E(q; _q) = _eTSu = _eTa u (17)

by utilizing (7) and (8).

C. Nonlinear Energy Coupling Controller

Based on (12), (17), and the subsequent stability analysis, a nonlinear
energy coupling controller is designed as

u = [
(q; _q)]�1 �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))
(18)

where 
(q; _q) 2 m�m is defined as


(q; _q)
�
= KEE(q; _q)Im +

KvP (q)

det (M(q)) :
(19)

Kd, Kp, Kv , and KE 2 are positive constant feedback gains and
P (q) and W (q; _q) were defined in (13) and (14), respectively. Since
E(q; _q) and M(q) are assumed to be positive definite, [7, Theorem
4.2.1] can be invoked to ensure that 
(q; _q) is positive definite; hence,

(q; _q) is invertible. After substituting (18) into (12), the closed-loop
error system for �ea(t) can be obtained as

�ea =
1

det (M(q))
P (q) [
(q; _q)]�1

� �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))
+

W (q; _q)

det (M(q))
: (20)

After substituting (18) into (17), the derivative for the system energy
can be obtained as

_E(q; _q) = _eTa [
(q; _q)]�1 �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))
:

(21)
Theorem 1: The equilibrium points of the system in (1) with the

controller defined in (18) are globally asymptotically stable in the sense
that

q(t)! q
� and _q(t)! 0 as t!1: (22)

Proof: Let V1(e; _e) 2 denote the following continuously dif-
ferentiable, positive definite, radially unbounded function (i.e., a Lya-
punov function candidate)

V1(e; _e) =
1

2
KEE

2(q; _q) +
1

2
Kpe

T
a ea +

1

2
Kv _e

T
a _ea: (23)

Based on the closed-loop error systems in (20) and (21), the time
derivative of (23) can be expressed as

_V1(e; _e) =KEE(q; _q) _eTa [
(q; _q)]�1

� �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))

+Kp _e
T
a ea +Kv _e

T
a

W (q; _q)

det (M(q))

�
Kv _e

T
a

det (M(q))
P (q) [
(q; _q)]�1

� Kd _ea +Kpea +
KvW (q; _q)

det (M(q))
: (24)

The expression in (24) can be rewritten as

_V1(e; _e) = _eTa KEE(q; _q)Im +Kv

P (q)

det (M(q))

� [
(q; _q)]�1 �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))

+Kp _e
T
a ea +Kv _e

T
a

W (q; _q)

det (M(q))
: (25)

The expression in (25) can be simplified as

_V1(e; _e) = �Kd _e
T
a _ea � 0 (26)

where (19) was utilized (i.e., _V1(e; _e) is negative semidefinite). From
(23) and (26), the origin of the closed-loop system is stable in the sense
of Lyapunov and V1(e; _e) 2 L1; hence, E(q; _q), ea(t), and _ea(t) 2
L1. Since E(q; _q) 2 L1, (15) can be used to prove that _e(t) 2 L1
and Assumption 3 can be used to conclude that q�a(t) 2 L1; hence,
e(t) 2 L1. Since e(t), _e(t) 2 L1, (9) can be used to prove that
q(t), _q(t) 2 L1. The definitions in (13), (14), and (19) can now be
used to prove that P (q), W (q; _q), and 
(q; _q) 2 L1. The proceeding
arguments can be used along with (18) to prove that u(t) 2 L1.

Based on the fact that all of the closed-loop signals remain bounded,
LaSalle’s invariance theorem can now be utilized to prove Theorem 1.
To this end, let �� denote the following set:

�� = (e; _e) 2 n
�

n : _V1(e; _e) = 0 : (27)

In the set ��, it is clear from (26) that

_ea(t) = 0 �ea(t) = 0 (28)

and hence, from (21), we can conclude that

_E(q; _q) = 0: (29)

The expressions in (21), (23), and (27)–(29) can be used to prove that
ea(t),E(q; _q), and V1(e; _e) are constant. To prove that u(t) is constant
in ��, we rewrite (12) as

1

det (M(q))
W (q; _q) = �ea �

1

det (M(q))
P (q)u (30)

and substitute (30) into (18) to obtain the following expression:

u = [
(q; _q)]�1 (�Kd _ea �Kpea �Kv

� �ea �
1

det (M(q))
P (q)u : (31)

After multiplying 
(q; _q) on both sides of (31), the following simpli-
fied relationship can be developed:

u =
1

KEE(q; _q)
(�Kd _ea �Kpea �Kv�ea): (32)

Since ea(t) andE(q; _q) have been proven to be constant in ��, (32) can
be used to conclude that u(t) is equal to the following constant:

u = �
1

KEE(q; _q)
Kpea: (33)

Since _ea(t) is equal to zero, u(t) and E(q; _q) are constant and satisfy
(33), and the zero-state-observability-like assumption (i.e., Assump-
tion 4) can be used to conclude the result in (22).

Remark 2: One advantage with the controller in (18) proposed in
this paper is that the stability conditions in (26) do not depend on the
contact stiffness, contrary to some conditions that may be found in the
literature. However, the resulting controller may yield high gains be-
cause of the inclusion of the contact stiffness in the control input.
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Remark 3: In Section V, two examples are provided to illustrate the
physical implications of the zero-state-observability-like assumption.

IV. REGULATION EXTENSION

In the previous section, a nonlinear controller was designed to stabi-
lize the generalized coordinates to the equilibrium points in both con-
tact and free motion conditions. In this section, the control objective is
extended from a stabilization problem to a regulation problem when the
actuation is only imposed on the contact coordinates (i.e., RT = S).
The actuated coordinates can be asymptotically regulated to some con-
stant desired position where contact occurs. To satisfy this objective,
the regulation problem is transformed into a stabilization problem for
a new virtual system that has dynamics similar to the original system.
The design method in Section III is then used to control the transformed
system.

For the control objective in this section, let qd 2 n denote the
known constant desired setpoints, where qad 2 m denotes a subset
of qd corresponding to the desired positions of the actuated coordinates
qa(t). The dynamics given in (1) can be expressed in terms of the de-
sired setpoints as

M(qd)�qd+C(qd; _qd) _qd+h(qd)+R
T ~Kc�(Rqd�qcp) = Sud (34)

where ~Kc� = diagfKc1�1(qc1d; qcp1);Kc2�2(qc2d; qcp2); . . . ;
Kcr�r(qcrd; qcpr)g, ud 2 m denotes a known residual force, and
qcid denotes the constant desired contact coordinates 8i = 1; 2; . . . ; r.
Since qd is a constant and Rqd is assumed to equal qcp for the
regulation problem, (34) can be simplified as

h(qd) = Sud: (35)

Based on (1) and (35), the following open-loop error system can be
obtained:

M(q)�q+C(q; _q) _q+h(q)�h(qd)+R
T
Kc�(Rq�qcp)=S(u�ud): (36)

The energy of the system, denoted by E(q; _q), given in (36) can be
written as

E(q; _q) =
1

2
_qTM(q) _q

+ Esv(q) +

r

i=1

1

2
Kci�i(qci; qcpi)(qci � qcpi)

2 (37)

where Esv(q) denotes the known potential energy with respect to the
conservative forces h(q) and h(qd). Based on (36), the time derivative
of (37) can be obtained as

_E(q; _q) = _eTS(u� ud) = _eTa (u� ud)

where the regulation error e(t) 2 n and the regulation error for the
actuated coordinates ea(t) 2 m are defined as

e = q � qd ea = S
T
e = qa � qad: (38)

Based on the subsequent development, the force control input u(t)
is designed as follows for the regulation problem:

u = [
(q; _q)]�1 �Kd _ea �Kpea �
KvW (q; _q)

det (M(q))
+ ud (39)

Fig. 1. The mass spring system represents an academic example of a general
underactuated Euler–Lagrange system with contact and noncontact states.

where P (q) and 
(q; _q) are defined in (13) and (19), respectively, and
W (q; _q) is now defined as

W (q; _q) = �ST adj (M(q)) (C(q; _q) _q + h(q)

�h(qd) +R
T
Kc� (Rq � q

�

c ) : (40)

Theorem 2: Under Assumptions 1–4, the controller in (39) yields
globally asymptotic regulation in the sense that

q(t)! qd and _q(t)! 0 as t!1: (41)

Proof: See the proof for Theorem 1.

V. EXAMPLES

In this section, two examples are given to show the performance of
the proposed control design method. These examples also illustrate the
physical implications of the zero-state-observability-like assumption.

A. Example 1

An example of the class of systems considered in this paper can be
described by the mass spring system introduced in [8] that is depicted
in Fig. 1. As the figure shows, the system consists of two masses M1

and M2 that are coupled to each other and to a fixed surface through
springs. The objective for this academic example is to design an input
force u(t) so that M2 is regulated to be in contact with the surface of
a fixed object while M1 is regulated to a stable noncontact equilibrium
point.

The equations of motion of the system are given by the following
differential equations:

M1�q1 + (K1 +K2) (q1 � q
�

1)�K2 (q2 � q
�

2) =0

M2�q2 �K2 (q1 � q
�

1) + (K2 +Kc1�1 (q2; q
�

2)) (q2 � q
�

2) =u

(42)

where q1(t), q2(t) denote the positions of M1 and M2, respectively,
and q�1 , q�2 denote the equilibrium points of M1 and M2, respectively.
After utilizing (9), the dynamics in (42) can be expressed as

M1�e1 + (K1 +K2)e1 �K2e2 =0

M2�e2 �K2e1 +K2e2 +Kc1�1(e2;0)e2 =u: (43)

Based on (43), it is straightforward to verify that Assumption 1 is sat-
isfied.

The total energy of the system is given by

E =
1

2
K1e

2

1 +
1

2
K2(e1 � e2)

2 +
1

2
Kc1�1(e2; 0)e

2

2

+
1

2
M1 _e

2

1 +
1

2
M2 _e

2

2 (44)

where the first two terms in (44) denote the potential energy of the free
motion system, the third term denotes the potential energy generated by
contact, and the last two terms represent the kinetic energy. Based on
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Fig. 2. The mass spring system represents an academic example of a general
underactuated Euler–Lagrange system where contact coordinates are different
to actuated coordinates.

(42), the matrix S and the definitions in (13) and (14) can be expressed
as

S = [0 1]T (45)

P =M1 (46)

W =M1 (K2e1 �K2e2 �Kc1�1(e2; 0)e2) : (47)

Based on (42) and (45)–(47), the energy-based controller given in (18)
can be expressed as

u =
M2

KEEM2 +Kv

(�Kd _e2 �Kpe2

�
Kv

M2

(K2(e1 � e2)�Kc1�1(e2;0)e2) : (48)

The conservative spring force for the example mass spring problem
is given by

h(q) =
(K1 +K2) (q1 � q�1)�K2 (q2 � q�2)

�K2 (q1 � q�1) +K2 (q2 � q�2)
(49)

and the potential energy of the system can also be written as

Es =
1

2
K1 (q1 � q

�

1)
2
+

1

2
K2 (q1 � q2 � q

�

1 + q
�

2)
2
: (50)

The differential expression in (8) of Assumption 2 is satisfied for (49)
and (50). Based on (44), it is clear that Assumption 3 is also satisfied.

To verify Assumption 4, we consider the system in (43). If _e2(t)
is equal to zero, then e2(t) is constant. Hence, the forces that act on
M1 are balanced. If e1(t) changes, then the force on the spring K2

changes, which causes M2 to move. If M2 moves, then e2(t) and u(t)
will not remain constant, which is a contradiction (hence, e1(t) is also
constant). Based on the form of (33) and (48), the control input can be
expressed as u(t) = �c1e2(t), where c1 is a positive constant. Since
e1(t) and e2(t) are constant, (43) can be expressed as

K1e1 +K2(e1 � e2) = 0 (51)

�c1e2 �Kc1�1(e2;0)e2 +K2(e1 � e2) = 0: (52)

The expressions in (51) and (52) are linearly independent; therefore,
e1(t) = e2(t) = 0 [i.e., the zero-state-observability-like assumption
(Assumption 4) is satisfied].

B. Example 2

In the previous example, the actuation is applied to the contact co-
ordinates. In this example, the contact coordinates are not the same as
actuated coordinates. Specifically, as indicated in Fig. 2, the actuation
is applied to M1, whereas the contact occurs between M2 and the sur-
face.

The equations of motion of the system in Fig. 2 are

M1�q1 + (K1 +K2) (q1 � q
�

1)�K2 (q2 � q
�

2) =u

M2�q2 �K2 (q1 � q
�

1) + (K2 +Kc1�1 (q2; q
�

2)) (q2 � q
�

2) =0:

(53)

After utilizing (9), the dynamics in (53) can be expressed as

M1�e1 + (K1 +K2)e1 �K2e2 =u

M2�e2 �K2e1 +K2e2 +Kc1�1(e2;0)e2 =0: (54)

Based on (54), the matrix S and the definitions in (13) and (14) can be
expressed as

S = [1 0]T P = M2 (55)

W = �M2 ((K1 +K2)e1 �K2e2) : (56)

Based on (54)–(56), the energy-based controller given in (18) can be
expressed as

u =
M1

KEEM1 +Kv

�Kd _e1 �Kpe1

�
Kv

M1

(K2e2 � (K1 +K2)e1) : (57)

Since the models depicted in Figs. 1 and 2 have the same structure,
Assumptions 1–3 can be satisfied as stated in the previous example.
Likewise, using the same arguments as in the previous example, the
zero-state-observability assumption can be verified.

VI. NUMERICAL SIMULATION

To illustrate the performance of the energy-based controller in (18),
numerical simulations were performed for the example system depicted
in Fig. 1. The performance of the proposed energy coupling controller
is compared with the following PD controller:

u = �(Kd _e2 +Kpe2): (58)

For the simulation, the physical parameters of the mass spring system
were selected as

M1 =1 [kg]; M2 = 1 [kg]

K1 =103 [N/m]; K2 = 5� 103 [N/m]

Kc1 =105 [N/m]:

The equilibrium positions of M1 and M2 were set to the following
values:

[q�1 q
�

2 ]
T
= [�0:5 0]T [m]

and the initial conditions for q1(t) and q2(t) were selected as

[q1(0) q2(0)]
T = [�1:0 � 0:5]T [m]:

For the continuous energy-based controller proposed in (18) and the PD
controller in (58), the resulting control gains from each controller are
given in Table I. The resulting positions of M1 and M2 and the input
force are shown in Fig. 3 for the PD control law and Fig. 4 for the energy
coupling control law. The performance of the proposed controller in
(18) and the PD controller in (58) is quantified in Table II in terms
of the settling time Ts (determined as the time required to reach the
equilibrium point where jei(t)j < 0:01, i = 1; 2) and the integral of
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TABLE I
CONTROL GAINS FOR THE CONTINUOUS ENERGY-BASED CONTROLLER AND A

PD CONTROLLER

Fig. 3. Results for the PD controller where contact is shown. The top figure
depicts the control input where the steady-state control force is zero for the sta-
bilization problem. In the bottom figure, the solid curve is the position ofM
and the dashed curve is the position ofM .

Fig. 4. Results for the energy-based coupling controller where contact is
shown. The top figure depicts the control input where the steady-state control
force is zero for the stabilization problem. In the bottom figure, the solid curve
is the position ofM and the dashed curve is the position ofM .

the error squared. The respective control input for each controller is
provided in Table III in terms of the maximum force and the integral
of the force squared.

Based on the results given in Tables II and III and illustrated in Figs. 3
and 4, it is clear that the energy coupling control laws exhibit improved
transient performance (while requiring less control effort) when com-
pared to the PD controller in (58). The improved performance sup-
ports the hypothesis that improved response will be obtained by incor-
porating the system energy in the control development. By including
the system energy in the control design, the states become coupled,

TABLE II
PERFORMANCE COMPARISON FOR THE CONTINUOUS ENERGY-BASED

CONTROLLER AND A PD CONTROLLER

TABLE III
CONTROL EFFORT COMPARISON FOR THE CONTINUOUS ENERGY-BASED

CONTROLLER AND A PD CONTROLLER

whereas the PD controller only uses the position and velocity informa-
tion of the contact states.

VII. CONCLUSION

A continuous energy-based control method is proposed to stabilize/
regulate the states of a general class of underactuated Euler–Lagrange
system in free motion and in contact. The efforts in this paper are in-
spired by the heuristic idea that improved transient response will result
from using the system energy to couple the states in the controller. The
class of controllers is developed through a Lyapunov-based stability
analysis. Two academic examples are provided to illustrate the theoret-
ical development, and numerical simulations are provided to demon-
strate the stability and performance of the developed controllers. The
simulation results support the hypothesis that the energy-based con-
trollers result in faster transient response than a PD controller. In fu-
ture efforts, we hope to incorporate some transient performance index
in the control design and stability analysis to develop analytical support
of the idea that the developed class of energy-based controllers leads
to improved transient response over other classes of controllers that do
not couple the underactuated states (i.e., a PD controller). Furthermore,
future efforts will focus on an adaptive and output feedback extensions
of the developed controllers to reduce the required amount of state and
model knowledge.
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Repetitive Control of Positive Real Systems via Delayed
Feedback Is Lyapunov Asymptotically Stable

Pasquale Lucibello

Abstract—In this paper, we are concerned with the analysis of linear infi-
nite-dimensional control systems that should be able to compensate and/or
track signals that are periodic. Adopting the name given in the seminal
paper by Hara et al., we call them repetitive controllers. We analyze the
asymptotic stability in the Lyapunov sense of finite-dimensional positive
real plants coupled with pure delays. For this class of systems, we initially
prove convergence in the weak topology to later deduce convergence in the
strong one.

Index Terms—Control systems, delay systems, linear systems, Lyapunov
methods.

I. INTRODUCTION

In this paper, we deal with the problem of designing a controller for
a finite-dimensional system that has to track signals and reject distur-
bances that are periodic. For example, such a kind of problem is faced
in the case of mechanical systems, such as industrial robots and nu-
merical machines, that have to execute repetitive commands or when
disturbances depending on the frequency of the power supply have to
be rejected [1]; in the design of high-precision tracking control systems
for digital video disk players [2]; in the precise speed control for ultra-
sonic motors [3]; and when dealing with high-accuracy magnet power
supply for proton synchrotron [4]. This type of control is usually re-
ferred to as repetitive control, a name first adopted by Hara et al. [1],
who have studied a controller incorporating a pure delay.

In [5], an adaptive control scheme has been proposed that incorpo-
rates a generator of the control signal of the integral type. This scheme
suffers the shortcoming that a state trajectory to be tracked must be
known, and not just the output trajectory.

The focus of this paper is on a very peculiar aspect: the asymptotic
stability in the Lyapunov sense of the controller proposed in [1] when
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coupled with a positive real system (see, e.g., [6] for an introduction to
this class of systems and [7] for an explanation of the class of control
systems that can be transformed in a real positive one). The reason for
such a narrow focus is due to the fact that this coupled system belongs
to the class of neutral differential-difference equations, a particular type
of delay differential equations that cannot be exponentially stable [1],
[8].

This does not imply that repetitive control via delayed feedback is
not achievable at all. Indeed, for the class of strictly positive real sys-
tems, a positive result was already presented by Ikeda and Takano [9].
By using the concept of hyperstability proposed by Popov, these au-
thors proved that the tracking error of a control system of that class was
bounded and that its square integral, computed on consecutive time in-
tervals of length T (the repetitive period), tends to zero. As is typical
of the input–output approach, in their work there is no information on
the asymptotic stability of the closed-loop full state. Another positive
result can be found in [10], where, for positive real scalar systems, full
state asymptotic stability is proven. In other words, it appears that, if
one gives up with exponential stability, exact repetitive control with
some kind of robustness (see [11, Th. 4.2, p. 26]) is achievable at least
for some specific systems.

The investigation presented herein is a classical Lyapunov stability
analysis based upon a novel invariance criteria of the type due to
LaSalle and Barbashin–Krasovskii (see, e.g., [12, p. 108] or [6, p.
178]). We first prove that any solution of the system under study is
confined to a norm bounded set that in a reflexive Banach space is
weakly compact [see, e.g., [13, pp. 338–339]], and next we show that
the limit set in this bounded set coincides with the zero equilibrium
point. We develop such an investigation in a Hilbert space equipped
with the weak topology (see, e.g., [13, pp. 336–339]) by using the
setting of dynamical systems defined on topological space (see, e.g.,
[14]). We initially prove weak convergence and then, on the basis of
a wel— known property of compact operators, show that actually
convergence is strong. In this way, overall closed-loop asymptotic
stability in the Lyapunov sense is proved.

II. REPETITIVE CONTROL

Consider a finite-dimensional linear system

_x(t) =Ax(t) +Bu(t); x(t) 2 <n

A 2 <n�n; B 2 <n�m (1a)

y(t) =Cx(t); u(t); y(t) 2 <m

t 2 [0;1); C 2 <m�n (1b)

where x(t) is the plant state, u(t) the control, and y(t) the output, and
the infinite-dimensional dynamic feedback

u(t) = u(t� T )� �y(t); � 2 (0;1); T 2 <+ (1c)

with initial conditions

x(0) = x
�
; u(s) = '(s); s 2 [�T; 0): (1d)

Let Lm2 [0; T ] denote the Hilbert space of vector valued square inte-
grable functions on the interval [0,T ], equipped with the scalar product1

h'; iL =
1

T

T

0

'
0(s) (s)ds; ';  : [0; T ] ! <m

1For the sake of clarity, when considering the scalar product and the norm on
a given Hilbert space, we add its symbol as a subscript.
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