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Composite Adaptation for Neural
Network-Based Controllers

Parag M. Patre, Shubhendu Bhasin, Zachary D. Wilcox, and
Warren E. Dixon

Abstract—With the motivation of using more information to update the
parameter estimates to achieve improved tracking performance, composite
adaptation that uses both the system tracking errors and a prediction error
containing parametric information to drive the update laws, has become
widespread in adaptive control literature. However, despite its obvious ben-
efits, composite adaptation has not been widely implemented in neural net-
work-based control, primarily due to the neural network (NN) reconstruc-
tion error that destroys a typical prediction error formulation required for
the composite adaptation. This technical note presents a novel approach to
design a composite adaptation law for NNs by devising an innovative swap-
ping procedure that uses the recently developed robust integral of the sign
of the error (RISE) feedback method. Semi-global asymptotic tracking is
proven for a Euler-Lagrange system. Experimental results are provided to
illustrate the concept.

I. INTRODUCTION

Euler-Lagrange (EL) dynamics can be used to represent a number of
practical and contemporary engineering systems. As such, nonlinear
EL systems serve as a benchmark for nonlinear control research [1].
Within this domain of research, the effects of uncertainty and distur-
bances in the dynamics continue to be a focal point. In particular, neural
networks (NNs) have found a widespread use over the last decade as
a nonmodel-based feedforward control element (cf. some pioneering
works in [2]-[11]) to approximate and compensate for uncertainties
that are not linear-in-the-parameters (i.e., non-LP). The ability of NNs
to compensate for non-LP uncertainty is due to the Universal Approxi-
mation Property [2]-[4] that states any sufficiently smooth function can
be approximated by a suitable large network for all inputs in a compact
set, and the resulting function reconstruction error is bounded. The NN
weight estimates are generated using adaptation laws that are designed
to cancel the cross terms in the Lyapunov stability analysis which leads
to an adaptation law structure that uses the system tracking errors to
update the weights. Ideally, the adaptation laws would include some
estimate of the actual mismatch between the unknown function and its
NN approximation to improve the NN estimation. To inject some mea-
sure of the adaptation error in the update law, standard adaptive control
utilizes a swapping procedure [12]-[17] to design a measurable predic-
tion error that directly relates to the parameter mismatch. The predic-
tion error is defined as the difference between the predicted parameter
estimate value and the actual system uncertainty. The advantages of im-
proved tracking control potentially enabled by prediction error based
adaptive update laws led to several results that use either the prediction
error or a composite [16] of the prediction error and the tracking error
(cf. [16]-[19] and the references within).
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However, the swapping procedure [20] used in standard adaptive
control cannot be extended to NN controllers directly. The presence
of a NN reconstruction error has impeded the development of com-
posite adaptation laws for NNs. Specifically, the reconstruction error
gets filtered and included in the prediction error destroying the typical
prediction error formulation. Using discontinuous sliding mode feed-
back, the first composite adaptation method developed for a NN-based
controller is given in [21], [22]. The approach in [21], [22] focuses on
a single-layer NN, where the adaptive control problem is formulated in
a manner similar to [23]. Then the dead zone adaptation method from
[23] is applied to compensate the disturbance terms in the prediction
error. The use of dead zone adaptation implies that the update law is
composite only for part of the control operation, when the prediction
error norm lies outside the dead zone, which is determined by the size
of the NN residual error. Thus, if the NN residual error is larger than
the prediction error, the method in [21] and [22] cannot use composite
adaptation. Using a similar dead zone adaptation-based approach, a
composite adaptation method was also developed for locally weighted
learning in [24] using a continuous feedback. However, the approach
in [24] requires measurement of the state derivative and yeilds a uni-
formly ultimately bounded tracking result.

With the motivation of achieving improved performance (inspired
by the seminal work in [16] for traditional adaptive control methods),
this technical note presents a novel approach to develop a prediction
error-based composite adaptive NN controller for an EL system using
the recent continuous robust integral of the sign of the error (RISE) [25]
technique that was originally developed in [26] and [27]. The RISE ar-
chitecture is adopted since this method can accommodate for C'? distur-
bances and yield asymptotic stability. The RISE technique was used in
[28] to prove the first ever asymptotic result for a NN-based controller
using a continuous feedback. In this technical note, the RISE feedback
is used in conjunction with a NN feedfoward element similar to [28],
however, unlike the typical tracking error-based gradient update law
used in [28], the result in this technical note uses a composite update
law driven by both the tracking and the prediction error. As opposed
to dead zone adaptation [21], [22] to compensate for the effect of NN
reconstruction error, an innovative use of the RISE structure is also em-
ployed in the prediction error update (i.e., the filtered control input es-
timate). Sufficient gain conditions are derived using a Lyapunov-based
stability analysis under which this unique double-RISE control strategy
yields a semi-global asymptotic stability for the system tracking errors
and the prediction error, while all other signals and the control input
are shown to be bounded. Since a multi-layer NN includes the first
layer weight estimate inside a nonlinear activation function, proving
that the NN weight estimates are bounded is a challenging task. A pro-
jection algorithm is used to guarantee the boundedness of the weight
estimates. However, if instead a single-layer NN is used, projection is
not required and the weight estimates can be shown bounded via the
stability analysis. The control development in this technical note can
be easily simplified for a single-layer NN by choosing a fixed set of
suitable first layer weights. Moreover, the control development can be
extended for higher order dynamic systems similar to [29], [30]. Ex-
perimental results are presented that demonstrate improved tracking
performance for the proposed composite NN law as compared to a typ-
ical gradient-based NN update law.

II. DYNAMIC SYSTEM

Consider a class of second-order nonlinear systems of the following
form:

= f(v,2)+ G2)u (L
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where x(t), #(t) € R™ are the system states, u(t) € R" is the con-
trol input, f(z,%) € R™ and G(x) € R™*" are unknown nonlinear
C? functions. Throughout the technical note, | - | denotes the absolute
value of the scalar argument, || - || denotes the standard Euclidean norm
for a vector or the induced infinity norm for a matrix, and || - || de-
notes the Frobenius norm of a matrix. The following properties and as-
sumptions will be exploited in the subsequent development. A. 1: G(-)
is symmetric positive definite, and satisfies the following inequality
VE(t) € R™:

glléll? < &' G < gla)gl)? )

where ¢ € R is a known positive constant, and g(x) € R is a known
bounded positive function such that j(x) < g for some § > 0. A. 2:
the functions G~'(-) and f(-) are locally Lipschitz and second order
differentiable such that G~*(-), Gil(-), C.;'fl(~), 70, f(), f() €
Loo if ,r(i)(f) € Lo, i = 0,1, 2,3, where (-)(‘i)(t) denotes the i'"
derivative with respect to time. A. 3: the desired trajectory xq(t) €
R" is designed such that 2’ (£) € Lo, i = 0,1,...,4 with known
bounds.

III. CONTROL OBIJECTIVE

The objective is to design a continuous composite adaptive [16]
NN controller which ensures that the system state x(¢) tracks a
desired time-varying trajectory x4(#) despite uncertainties in the
dynamic model. To quantify this objective, a tracking error, denoted
by e1(t) € R", is defined as

1 2 Ty — T. 3)
To facilitate the subsequent analysis, filtered tracking errors, denoted

by e2(t), 7(t) € R", are also defined as

a

AL .
ex = €1 +aep, =€+ ases 4)

where a1, ay € R denote positive constants. The subsequent develop-
ment is based on the assumption that the system states (), Z(t) are
measurable. Hence, the filtered tracking error »(¢) is not measurable
since the expression in (4) depends on #(t).

IV. CONTROL DEVELOPMENT

The open-loop tracking error system is developed by premultiplying
(4) by G~ () and utilizing the expressions in (1), (3), (4) as

G_l(w)'r =Y+ 5 —u. 5)
In (5) ¥(wa, T4, 24) € R™ is defined as
O 2 Gy i~ Gy fa ©)

where Gf(;rd) £ Gil(a;d) and fa(xa, &q) 2 f(xa,Zq). Also in
(5), the auxiliary function Sy (x,#,¢) € R" is defined as

$12G  aneat G 0~ G Fa—G T G fa+ G . (1)

The unknown dynamics in (6) can be represented by a three-layer NN
as [3], [4]

v=W'a(V' z4) + (74). ®

In 8), V € RNHDXN2 qng W ¢ RW2+DX" are bounded con-
stant ideal weight matrices for the first-to-second and second-to-third
layers respectively, where Ny is the number of neurons in the input
layer, N> is the number of neurons in the hidden layer, and n is the
number of neurons in the third layer. The activation function in (8)
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is denoted by o(-) € R™>T! =(&4) € R" is the functional recon-
struction error, and #4(t) € R*"™! is the input vector defined as
za(t) 2 [1aX(t) &5 (t) l'g(t)]T so that Ny = 3n. Note that, aug-
menting the input vector Z4(t) and activation function o (-) by “1” al-
lows us to have thresholds as the first columns of the weight matrices
[31, [4]. Thus, any adaptation of W and V' then includes adaptation of
thresholds as well. The function reconstruction error and its first two
time derivatives (i.e., £(%4), (% q, Ta), and £(F4, T4, Tq)) are assumed
to be bounded by known constants. For a NN control development with
unknown bounds of the residual error, please see the approach in [31].
Based on (8), the typical three-layer NN approximation for ¢(%4) is
given as [3], [4]

b EWTe(VT 2, ©

where V(t) € RVTHDXN2 and W () € RV2H1DX" gre subsequently
designed estimates of the ideal weight matrices. The estimate mismatch
for the ideal weight matrices are defined as 7 SV -VandW2W-
W . The mismatch for the hidden-layer output error &(z4) € RV27! is
defined as & 2o 6= O'(VT Ta)— (J'(VTEC[). A. 4: the ideal weights
are assumed to exist and be bounded by known positive values [3], [4],
[32].

Based on the open-loop error system in (5), the control input is com-
posed of a NN estimate term plus the RISE feedback term as [28]

A -
u=1Y+

(10)

where '1:'(2‘,) € R" denotes a subsequently designed, prediction-error
based NN feedfoward term. In (10), p1(¢) € R™ denotes the RISE
feedback term defined generated as [26]-[28]

fi=(ki + 1)r + Bisgn(e2),

p1(0)=—(k1 +1)e2(0)  (11)

where k1, 51 € R are positive constant control gains, az € R was
introduced in (4). The closed-loop tracking error system can be devel-
oped by substituting (10) into (5) as

G lr=v—¢+8 — . 12)
To facilitate the subsequent composite adaptive control develop-
ment and stability analysis, (8) and (9) are used to obtain the
time derivative of (12), and adding and subtracting the terms

WT6'VT 2y +W7T6'VT 2, to the resulting expression yields
G li= =G+ WV z WSV 7y
+ W'V g WV 2y WV 7y

+ 8- WTe—WTe' VT 442 — ju. 13)

A. Swapping

In this section, the swapping procedure is used to generate a mea-
surable form of a prediction error that relates to the function mismatch
error (i.e., ¥ (t) — o (t)). A measurable form of the prediction error
n(t) € R" is defined as the difference between a filtered control input
us(t) € R™ and an estimated filtered control input @ ¢(¢) € R" ¢ as

n 2 up — iy (14)
where the filtered control input is generated from the stable first order
differential equation

Uy + wuy = wu, us(0)=0 or (15)

U =V *U

[T}

where w € R is a known positive constant, “x” is used to denote the
standard convolution operation, and the scalar function v(¢) € R is
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EY

defined as v
rewritten as

w exp(—wt). Using (1), the expression in (15) can be

up=0* (G 'E—-Gf). (16)
In (16), the system dynamics in (1) are used to substitute for the con-
trol input instead of the its design in (10) in order to force the mismatch
(¢(t) =) (t)) to appear in the prediction error definition (14). The con-
struction of a NN-based controller to approximate the unknown system
dynamics in (16) will inherently result in a residual function reconstruc-
tion error £(Z4). To compensate for the effects of the reconstruction
error, the typical prediction error formulation is modified to include a
RISE-like structure in the design of the estimated filtered control input.
Adding and subtracting the term v % (G} ' &4 + G ' f4) to the expres-
sion in (16), and using (6) yields

ur=v*(¢+85—5q) (17)
where S(x, 7, %), Sq(vq, T4, %4) € R™ are defined as
SE2EG -GV, Si2G -Gl . (18)
The expression in (17) is further simplified as
up=vx+uvxS—uvxSy. (19)

The term v * S(x,&,%) € R™ in (19) depends on #(t). Using the
following property of convolution [32]:

g1 %92 = g1 % g2 + 91(0)g2 — 9192(0) (20)
an expression independent of #(#) can be obtained as
vxS=5¢;+D 21

where the state-dependent terms are included in the auxiliary function
S¢(x,z) € R™, defined as

Sr2ox(G ') +u(0)G e —vxG i —vx G (22)

and the terms that depend on the initial states are included in D(¢) €
R"™, defined as

a

D= —0G " (2(0)) &(0). (23)

Similarly, the expression v x Sy(zq, 24, Z4) in (19) is evaluated as

vx Sy = Sdf + Dy (24)

where Sa (x4, 24) € R” is defined as
Sar 2 6% (G ia) +v(0)G taa — v s Gglia — v Gyt fa (25)
and D4(t) € R™ is defined as

Dy2 —

vG7 " (24(0)) £4(0). (26)
Substituting (21)—(26) into (19), and then substituting the resulting ex-
pression into (14) yields

7/:’U*urf-l—Sf—Sdf—i-D—Dd—’ﬁ,f. 27
Based on (27) and the subsequent analysis, the filtered control input
estimate is designed as

ﬁ‘f = ’If/'f + H2 (28)
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where the filtered NN estimate ¢ () € R” is generated from the stable
first order differential equation

Y twis = wih,

0r(0)=0 (29)
which can be expressed as a convolution as
zﬁf = v
In (28), p2(t) € R™ is a RISE-like term generated as
fi2 = konp + Basgn(n),  p2(0) =0 (30)

where k2, J2 € R denote constant positive control gains. In a typ-
ical prediction error formulation, the estimated filtered control input is
designed to include just the first term 1/3 £(t) in (28). But as discussed
earlier, due to the presence of the NN reconstruction error, the unmea-
surable form of the prediction error in (27) also includes the filtered
reconstruction error. Hence, the estimated filtered control input is aug-
mented with an additional RISE-like term 2 () to cancel the effects of
reconstruction error in the prediction error measurement as illustrated
in the subsequent design and stability analysis. Substituting (28) into
(27) yields the following closed-loop prediction error system:

77:7,)*(@4‘—@7))+Sf-—5df-+D—Dd—y,z. 31
To facilitate the subsequent composite adaptive control development
and stability analysis, the time derivative of (31) is expressed as

H=0x (Y =0) +w@=d)+ 8~ Sy + D= Da—j (32)

where the property d/dt(f x g) = (f = 9)(#) + f(0)g(t) was used.
Substituting (8) and (9) into (32), subtracting #(¢)* (W o + W7'6) +
w(VV Yo + W'5) to the resulting expression, and using the Taylor
series expansion as in [3] and [4] yields

=W so+we)+WHe' Vi (Zax i+ wia)

4Ny + Nop — kon — B2sgn(n) (33)
where (30) was utilized. In (33), the unmeasurable/unknown auxiliary
term No(eq, ez, 7, t) € R™ is defined as

No 2 55— Sy (34
and the term N2z (t) € R" is defined as
Nop 2D —Dy+0x (Ii/'Toa?’de)z + W+ )

"y (W'I'O(V’f’mf + W+ s) . (35)

In a similar manner as in [27], the Mean Value Theorem can be used to
develop the following upper bound for the expression in (34):

’1':|T
.

where the bounding function p2(-) € R is a positive, globally invert-
ible, nondecreasing function. Using A. 3, and the fact that v(¢) is a
linear, strictly proper, exponentially stable transfer function, the fol-
lowing inequality can be developed based on the expression in (35)
with a similar approach as in Lemma 2 of [15]:

Nat) < pe =l =) 2 el €f (36)

[Nom(®)] < ¢ (37

where £ € R is a known positive constant.
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B. Composite Adaptation

The composite adaptation for the NN weight estimates is given by
WZET proj (aQ&’V’f' Foeld i 7;T> (38)

Ya

e

VET.proj (012 T4 e WTe'+ f“df nTW'T&') (39)
where [y € RWat)x(Net?) 1) e RIN1H)X(N1+1) are constant,
positive definite, symmetric control gain matrices, proj(-) denotes a
smooth projection operator (see [20] and [33]) that is used to ensure
that W (¢) and V (¢) remain inside the bounded convex region. The
filtered activation function & ;(t) € R™2T" and the filtered NN input
vector Zg(t) € R*™*! are given by 67 = v * ¢ and Zqp = v * T,
respectively. The projection used in the NN weight adaptation laws in
(38) and (39) can be decomposed into two terms as

LW w Ly v
W=y, + Xe,: V=x, + Xe, (40)
such that the auxiliary functions )(};V (G5,m), ‘(2 (V, Ty T eo) €
H(N2+])X” and X:{(’Edf* W'vavaﬂ)s X(\;; (17[7 ff:‘i"daidv 62) S
RV1+DXN2 qaisfy the following bounds:

w
e

where b1, b2, b}, and b5 € R are known positive constants. To facilitate
the subsequent stability analysis, the following inequality is developed
based on (41) and the fact that the NN weight estimates are bounded
by the smooth projection algorithm

where ¢; € R is a positive constant.

IN

Xy || < balez|

bullall. |

villall. |

< Dalez]|

X, (41)

IN

/‘/7
X

oo+ W8 wa| < el 42)

C. Closed-Loop Error System

Substituting for W (¢) and V' (¢) from (40), the expression in (13)
can be rewritten as

I T
Gl = —§G Ly — X:;l o—W TO'IX,‘] g+ N1+ Ny

—(k1+ 1)r — Bisgn(ez) —ea.  (43)
In (43), the unmeasurable/unknown auxiliary terms Ny (er,e2,1,t)
and Ny (t) € R™ are defined as
VAo lemyg Vo WV r, @4
NM==5G r4Siter—xg0 - WioXe,Ta (44)

A

]V] Jvd + .N1 B- (45 )

In (45) Ny(Zq4, T, t) and NlB(W’, V. %4, r}"td, t) € R™ are defined as

N, 2WTo'VT 2442, Nig 2 Nig, + Nip, (46)
where Nyp, (W, V., Za,Z4.t) € R" and Ny, (W, V, T4, Za,t) €
R™ are defined as

- A T 1T — T ArvrT —
Nig, = =W's'V! 24 -W's'V" 24

Nig, 2WT6'VT 2, +W76'VT 2, (47)

Motivation for segregating the terms in (45) is derived from the fact that
the different components in (45) have different bounds. Segregating the
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terms as in (45)—(47) facilitates the development of the NN weight up-
date laws and the subsequent stability analysis. For example, the terms
in Ny(t) are grouped together because the terms and their time deriva-
tives can be upper bounded by a constant and rejected by the RISE
feedback, whereas the terms grouped in N1 5 (#) can be upper bounded
by a constant but their derivatives are state dependent. The state depen-
dency of the term N s(t) violates the assumptions given in previous
RISE-based controllers (e.g., [25], [27], [29]), and requires additional
consideration in the adaptation law design and stability analysis. The
terms in N, 5 (#) are further segregated because Ny, (W, V. Z4, Z4)
will be rejected by the RISE feedback, whereas N1p, (Ii"., V., Ty, r}"td)
will be partially rejected by the RISE feedback and partially canceled
by the adaptive update law for the NN weight estimates. In a similar
manner as in (36), the following upper bound is developed for the ex-
pression in (44):

where the bounding function p;(-) € R is a positive, globally invert-
ible, nondecreasing function. The following inequalities can be devel-
oped based on A. 3, A. 4, (46), and (47):

(43)

M) < ol

INal <G (Nl < G IVl < Gse [INall < Gin (49)

From (45), (46), and (49), the following bound can be developed

INLl < ([ NVall + (| Nas]] < G+ G + G- (50)
By using (38) and (39), the time derivative of V| B(W’, V, xq) can be
bounded as

Vi8]l < G + Gsllezll + G linll- D
In (49) and (51), ¢; € R, ( = 1,2,...
stants.

Remark 1: 1If the bounds in (49) and (51) are unknown, then a
method similar to [31] to can be used to generate an estimate for
these bounds by designing an update law. These estimates can be
used in the gain conditions for the control development and stability
analysis. With additional terms in the Lyapunov function containing
the estimates, stability similar to the current result can be achieved.

, 7) are known positive con-

V. STABILITY ANALYSIS

Consider the composite vector y(t) € RT3 defined as

VP VPR QI

where 77(t) and z(t) are defined in (14) and (36), respectively. In (52),
the auxiliary function P;(t) is defined as

SIS (52)

y N z

t

Pt 2 513 Jesil0)] — ea(0)7 N, (o)—/L1 ()dr  (53)
=1

0

where €2, (0) € R denotes the ith element of the vector e3(0), and the
auxiliary function L1 (¢) € R is defined as

L2y (N1, + Na—Brsgn(es)) + éa Nig, — Bslleal® = Ballnll®
(54
where 01, 33, and 54 € R are positive constants chosen according to
the sufficient conditions

P> 111&X{<'1+§z+43, C1+Cz+§—‘;+§—52}
¢

B> G, B> % (55)
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where (1, (2, . . ., (7 were introduced in (49)—(51). If the sufficient con-
ditions introduced in (55) are satisfied, the following inequality is ob-
tained [27], [34]:

1
n

/L1 (P)dr < 313 leas(0)] = e2(0)7 N (0).
=1

0

(56)

Hence, (56) can be used to conclude that P; (¢) > 0. Also in (52), the
auxiliary function P» (%) is defined as

t
Py(t) £ - / Lo(r)dr, L> =0 (Nap = fasgn(n))  (57)

0

where 32 € R is a positive constant chosen according to the sufficient
condition

B2 > ¢ (58)

where ¢ was introduced in (37). Provided the sufficient condition intro-
duced in (58) is satisfied, then P2 () > 0. The auxiliary function Q(#)
in (52) is defined as

o) A %tr (W'Trjlﬁf) + %tr (f’Trglﬂ), Q(t) > 0. (59)

Remark 2: From (4), (33), (43), (53), (54), and (57), some of the
differential equations describing the closed-loop system have discon-
tinuous right-hand sides. The existence and uniqueness of the solutions
to the discontinuous differential equations is understood in the Filippov
sense [35], [36].

To facilitate the subsequent stability analysis, let D C R*"**? be a
domain containing y(¢) = 0 defined as

DLy eR" Iyl <o VAR ©0)

In (60), A3 € R denotes a positive constant defined as

/\3émin {al — % a9 — % — s, 1} s.t. g > %,a’z > 03 + %
(61)
Theorem: The controller given in (9)—(11) in conjunction with the
composite NN adaptation laws in (38) and (39), where the prediction
error is generated from (14), (15), (28)—(30), ensures that all system
signals are bounded under closed-loop operation and that the position
tracking error and the prediction error are regulated, provided the suf-
ficient conditions in (55), (58) and (61) are satisfied, in the sense that

lea(t)]| = 0 and |n(®)|| =0 as t— oo
for all ¥(0) in a bounded compact set S C D. The set S can be made
arbitrarily large by selecting the control gains k; and k2 introduced
in (11) and (30) based on the initial conditions of the system (i.e., a
semi-global result).

Proof: Let Vi (y,t) : D x [0,0c) — R be a continuously differ-
entiable, positive definite function defined as

alyp

. 1 1 _ 1
Vi = Feren + 56;62 + 57“TG Y4 inTn + P+ P4+ Q (62)

which satisfies the inequalities

Ur(y) < Vi(y.t) < Uz(y) (63)
provided the sufficient conditions introduced in (55) and (58) are satis-
fied. In (63), the continuous positive definite functions Uy (y), U2 (y) €
R are defined as Uy (y) = M\ ||yl|” and Us(y) 2 Xa(2)||y||%, where

A1, A2(2) € R are defined as A\q 2 (1/2)1nin{l,g} and s ES
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max{(1/2)g(x), 1}, respectively, where g, g(«) are introduced in (2).
Using (4), (33), (43), (45), (46), (53), (54), and (57), the time derivative
of (62) can be expressed as

T/’L = eireg — alefel — azegw — kznTn — 'rT/\/,v]V?r

"W\ 5 40T Ny — (k4 10T+ Ballnl

+ r/TNg +tr (agVVT&'VT id ezT) —tr <VTF;1 f’)

PO . - I s T
Ftr (W 6, 9"+ tr <azvf Fa (& lwez) )

~ . ’ N T - ~
Ttr <VT Fap (& va;) ) —tr (WTF;l W)

+ Bsllea ). (64)

Substituting the update laws from (38) and (39) in (64), canceling the
similar terms, and using the fact that ¢f es < (1/2)(||ex||* + [le2|*),
the expression in (64) is upper bounded as

Vi < =Xall=ll” = Rl )l + e[V

+elnllli=1 -+ il

z

Na|| = kz|lnll®. (65)

Letting ko = k2o +kap, where kg, k2p € R are positive constants, and
using the inequalities in (36) and (48), the expression in (65) is upper
bounded as
VL < —=(kas = Ba)llnll* = [kallr I = oo (=10 11 0101211]

=Xsl1211” = [R2allnll® = (o2 (11D + co) [InlllI=ll] - (66)

Completing the squares for the terms inside the brackets in (66) yields

2 . - 2
i < - a4 2 QeI

< =Uly)

— (k26 — B4)|Inll*
(67)

where k 2 min{k, k2. } and p(-) € R is a positive, globally invert-
ible, nondecreasing function defined as

p* (12D 2 67 (=) + (o2 (121D + 1)

In (67), U(y) = ¢||[zF ’I[T]T ||2, for some positive constant ¢, is a con-
tinuous, positive semi-definite function that is defined on the domain
D.

The inequalities in (63) and (67) can be used to show that V7 (y,t) €
Lo inD; hence, e (t),e2(t),7(t),and n(t) € Lo inD and é; (), and
é2(t) € Lo in D from (4). Therefore, A. 3 can be used along with (3),
(4) to conclude that (7 (t) € L., in D. Since 2V (t) € Lo, in D,
A. 2 can be used to conclude that G™'(+) and f(-) € Lo in D. Thus,
from (1) we can show that u(t) € L inD. Therefore, u () € Lo in
D, and hence, from (14), 4s(t) € Lo in D. Given that 7 (¢) € Lo in
D, (11) can be used to show that /11 (t) € Lo in D, and since G ()
and f(-) € L in D, (43) can be used to show that 7(¢) € L in D,
and (33) can be used to show that 7j(t) € Lo in D. Since é; (t), éx2(t),
7(t), and 17(t) € Lo in D, the definitions for U(y) and z(¢) can be
used to prove that U (y) is uniformly continuous in D.

Let S C D denote a set defined as

A

S= {y(t) € DU, (y(t)) < (p*I(QM))Q} (68)

which can be made arbitrarily large to include any initial conditions
by increasing the control gain % (i.e., a semi-global stability result).
Theorem 8.4 of [37] can now be invoked to state that

c t — oo Yy(0)eS. (69)

|2
ER 'r]l]TH —0 as
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Fig. 1. Tracking errors for the RISE+NN and the RISE+CNN controllers.
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Fig. 2. Torques for the RISE+NN and the RISE+CNN controllers.

Based on the definition of z(t), (69) can be used to show that

lex @I @I =0 as t—o0 Vy(0) €S.

VI. EXPERIMENTAL RESULTS

A testbed was used to implement the developed controller. The
testbed consists of a circular disc of unknown inertia mounted on a
direct-drive switched reluctance motor. A rectangular nylon block was
mounted on a pneumatic linear thruster to apply an external friction
load of 15 psi to the rotating disk. The dynamics for the testbed are
given as

Ji+ (@) + 7a(t) = 7(1) (70)
where J € R denotes the combined inertia of the circular disk and rotor
assembly, f(¢) € R denotes the friction torque, 74(t) € R denotes a
general nonlinear disturbance (e.g., unmodeled effects), and 7(¢) € R
denotes the control torque input. The desired link trajectory was se-
lected as (in degrees) q4(t) = 60.0sin(1.2t)(1 — exp(—0.01¢%)). The
following control gains were used:

ki =70, B =50,
To=1 ks=70,

Q| = 20,
Ba = 50,

042:10, F1:20111

w = 8.

Two different experiments were conducted, first without (RISE+NN)
and second with (RISE+CNN) the prediction error component of the
update laws in (38) and (39). The tracking errors and torques are shown
in Fig. 1 and Fig. 2, respectively. Each experiment was performed five
times and the average RMS error and torque values were calculated.
The average RMS tracking error (in deg) for the RISE+NN controller

949

is 0.135, compared to 0.071 for the RISE+CNN (proposed) controller.
The average RMS torques (in N-m) for the respective controllers is
24.01 and 23.77, which indicate that the proposed RISE+CNN con-
troller yields a lower RMS error with a similar control effort. The ex-
perimental results indicates high frequency content in the tracking error
and control input, but since the proposed controller implements an inte-
gral of the sgn(-) function, it does not exhibit instantaneous switching
like a discontinuous sliding mode controller.

VII. CONCLUSION

A novel gradient-based composite NN controller is developed for
nonlinear uncertain systems, where the NN weight estimates are gen-
erated using a composite update law driven by both the tracking and the
prediction error. The construction of a NN-based controller to approx-
imate the unknown system dynamics inherently results in a residual
function reconstruction error, which has been the technical obstacle that
has prevented the development of composite adaptation laws for NNs.
To compensate for the effects of the reconstruction error, a RISE-based
swapping procedure is presented.
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Finite-Time Consensus Problems for
Networks of Dynamic Agents

Long Wang and Feng Xiao

Abstract—In this note, we discuss finite-time state consensus problems
for multi-agent systems and present one framework for constructing effec-
tive distributed protocols, which are continuous state feedbacks. By em-
ploying the theory of finite-time stability, we investigate both the bidirec-
tional interaction case and the unidirectional interaction case, and prove
that if the sum of time intervals, in which the interaction topology is con-
nected, is sufficiently large, the proposed protocols will solve the finite-time
consensus problems.

Index Terms—Distributed control, finite-time consensus, multi-agent sys-
tems, time-varying topologies.

[. INTRODUCTION

The consensus theory of multi-agent systems has emerged as a chal-
lenging new area of research in recent years [1]. It is a basic and funda-
mental research topic in decentralized control of networks of dynamic
agents and has attracted great attention of researchers. This is partly
due to its broad applications in cooperative control of unmanned air
vehicles, formation control of mobile robots, control of communica-
tion networks, design of sensor networks, flocking of social insects,
swarm-based computing, etc.

In the analysis of consensus problems, convergence rate is an im-
portant performance indicator for the proposed consensus protocol. It
was shown that the second smallest eigenvalue of the interaction graph
Laplacian, called algebraic connectivity, quantifies the convergence
rate under the typical protocol presented in [2]. To get high conver-
gence rate, several researchers endeavored to find proper interaction
graphs with larger algebraic connectivity. In [3], Kim and Mesbahi
considered the problem of finding the best vertex positional configu-
ration so that the algebraic connectivity of the associated interaction
graph is maximized, where the weight for the edge between any two
vertices was assumed to be a function of the distance between the two
corresponding agents. In [4], Xiao and Boyd considered and solved the
problem of weight design by using semi-definite convex programming,
and the convergence rate is also increased. Simulation results showed
that the interaction graph with small-world property possesses large
algebraic connectivity [5]. However, it can be observed that all those
efforts were to choose proper interaction graphs, but not to find avail-
able protocols with high performance. On the other hand, although by
maximizing the algebraic connectivity of interaction graph, we can in-
crease convergence rate with respect to the linear protocol proposed in
[2], the state consensus can never occur in finite time. In practice, it
is often required that the consensus be reached in a finite time. And
there are a number of situations, in which finite-time convergence is
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