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Similarly, from (A17), (A20) and � � ��, we can get

������� � ������� � ������ � ������ � �� (A23)

By (A18), (A19), (A22) and (A23), it can be ensured that
�� � � � �. Then, it follows from (A20) that there exists
�� � � �� � � � �� � 	� � 	


������
� satisfying ��� � � and

��� � �. This contradicts with (A12). So, we can conclude that if
Proposition 1 is true when � � 
 then Proposition 1 is true also when
� � 
 � �.

From (i)–(iii), it is easy to see that Proposition 1 always holds. This
completes the proof of Proposition 1.
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Modular Adaptive Control of Uncertain Euler–Lagrange
Systems With Additive Disturbances

Parag M. Patre, William MacKunis, Keith Dupree, and
Warren E. Dixon

Abstract—A novel adaptive nonlinear control design is developed which
achieves modularity between the controller and the adaptive update law.
Modularity between the controller/update law design provides flexibility
in the selection of different update laws that could potentially be easier to
implement or used to obtain faster parameter convergence and/or better
tracking performance. For a general class of linear-in-the-parameters (LP)
uncertain Euler-Lagrange systems subject to additive bounded non-LP dis-
turbances, the developed controller uses a model-based feedforward adap-
tive term in conjunction with the recently developed robust integral of the
sign of the error (RISE) feedback term. Modularity in the adaptive feedfor-
ward term is made possible by considering a generic form of the adaptive
update law and its corresponding parameter estimate. This generic form
of the update law is used to develop a new closed-loop error system and
stability analysis that does not depend on nonlinear damping to yield the
modular adaptive control result.

Index Terms—Linear-in-the-parameters (LP), robust integral of the sign
of the error (RISE).

I. INTRODUCTION

A variety of adaptive control results have been developed to com-
pensate for linear-in-the-parameters (LP) uncertainty in nonlinear sys-
tems. Most of this research has exploited Lyapunov-based techniques
(i.e., the controller and the adaptive update law are designed in con-
cert based on a Lyapunov analysis); however, Lyapunov-based methods
restrict the design of the adaptive update law. For example, many of
the previous adaptive controllers are restricted to utilizing gradient up-
date laws to cancel cross terms in a Lyapunov-based stability analysis.
Gradient update laws can potentially exhibit slower parameter conver-
gence which could lead to a degraded transient performance of the
tracking error in comparison to other possible adaptive update laws
(e.g., least-squares update law). Several results have been developed
in literature that aim to augment the typical position/velocity tracking
error-based gradient update law including: composite adaptive update
laws [1], [2]; prediction error-based update laws [3]–[7], and various
least-squares update laws [8]–[10]. The adaptive update law in these re-
sults are all still designed to cancel cross terms in the Lyapunov-based
stability analysis. In contrast to these results, researchers have also de-
veloped a class of modular adaptive controllers (cf. [3], [5]–[7]) where
a feedback mechanism is used to stabilize the error dynamics provided
certain conditions are satisfied on the adaptive update law. For example,
nonlinear damping [4] is typically used to yield an input-to-state sta-
bility (ISS) result with respect to the parameter estimation error where
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it is assumed a priori that the update law yields bounded parameter
estimates. Often the modular adaptive control development exploits a
prediction error in the update law (e.g., see [1], [3]–[6]), where the pre-
diction error is often required to be square integrable (e.g., [3], [5], [6]).
A brief survey of modular adaptive control results is provided in [3]

Recently, a new high gain feedback control strategy coined the ro-
bust integral of the sign of the error (RISE) in [11] was developed to
accommodate for sufficiently smooth bounded disturbances. A signif-
icant outcome of this control structure is that asymptotic stability is
obtained despite general uncertain disturbances. In fact, the early work
in [12]–[15] illustrate how different RISE-based controllers/estimation
methods yield an asymptotic result for nonlinear systems with uncer-
tainty and additive bounded disturbances without an adaptive feed-
forward component. Since the RISE method exploits high gain feed-
back, results such as [11], [16] were developed with various modi-
fications to the stability analysis to amalgamate the RISE feedback
with model-based adaptive or neural network feedforward components.
The results in [11] experimentally demonstrate the well accepted par-
adigm that the inclusion of an adaptive feedforward term can reduce
the control effort, improve the transient performance, and reduce the
steady-state error over feedback only methods. However, the results in
[11], [16] were developed using the typical Lyapunov-based gradient
adaptive update law. Since the RISE feedback mechanism alone can
yield an asymptotic result without a feedforward component to cancel
cross terms in the stability analysis, the research in this technical note
is motivated by the following question: Can the RISE control method
be used to yield a new class of modular adaptive controllers?

The results in this work provide the first investigation of the ability to
yield controller/update law modularity using the RISE feedback. The
class of nonlinear dynamic systems considered in this technical note
are modeled by the Euler–Lagrange formulation which describes the
behavior of a large class of engineering systems. The development in
this technical note focuses on dynamic systems with structured (i.e.,
LP) and unstructured uncertainties, and a controller is developed with
modularity between the controller/update law, where a model-based
adaptive feedforward term is used in conjunction with the RISE feed-
back term [11] to yield asymptotic tracking. The RISE-based approach
is different than previous modular adaptive work (cf. [3], [4], [6]) in
the sense that it does not rely on nonlinear damping. The use of the
RISE method in lieu of nonlinear damping has several advantages that
motivate this investigation including: an asymptotic modular adaptive
tracking result can be obtained for nonlinear systems with non-LP ad-
ditive bounded disturbances; the dual objectives of asymptotic tracking
and controller/update law modularity are achieved in a single step un-
like the two stage analysis required in some results (cf., [3], [6]); the
development does not require that the adaptive estimates are a priori
bounded; and the development does not require a positive definite es-
timate of the inertia matrix or a square integrable prediction error as in
[3], [6]. Modularity in the adaptive feedforward term is made possible
by considering a generic form of the adaptive update law and its corre-
sponding parameter estimate. The general form of the adaptive update
law includes examples such as gradient, least-squares, and etc. This
generic form of the update law is used to develop a new closed-loop
error system, and the typical RISE stability analysis is modified to ac-
commodate the generic update law. New sufficient gain conditions are
derived to prove an asymptotic tracking result.

The class of RISE-based modular adaptive controllers can be ex-
tended to include uncertain dynamic systems that do not satisfy the

LP assumption. Neural networks (NNs) have gained popularity as a
feedforward adaptive control method that can compensate for non-LP
uncertainty in nonlinear systems. Since multilayer NNs are nonlinear
in the weights, a challenge is to derive weight tuning laws in closed-
loop feedback control systems that yield stability as well as bounded
weights. The preliminary development in [17] illustrates how to extend
the class of modular adaptive controllers for NNs.

While the current result encompasses a large variety of adaptive up-
date laws, an update law design based on the prediction error is not pos-
sible because the formulation of a prediction error requires the system
dynamics to be completely LP. Future efforts can focus on developing
a RISE-based adaptive controller for a completely LP system that could
also use a prediction error/torque filtering approach. Also, one of the
shortcomings of current work is that only a semi-global asymptotic sta-
bility is achieved, however, the region of attraction can be made arbi-
trarily large to include any initial conditions by increasing the control
gain. Further investigation is needed to achieve a global stability result.
Inroads to solve the global tracking problem are provided in [18] under
a set of assumptions.

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this technical
note can be described by the following Euler–Lagrange formulation:

������ � ����� ��� �� ����� � � � ��� � ����� � � ���	 (1)

In (1),���� � ��� denotes the inertia matrix,����� ��� � ��� de-
notes the centripetal-Coriolis matrix, ���� � � denotes the gravity
vector, � � ��� � � denotes friction, ����� � � denotes a general
nonlinear disturbance (e.g., unmodeled effects), � ��� � � represents
the torque input control vector, and ����� ������ ����� � � denote the
link position, velocity, and acceleration vectors, respectively. The sub-
sequent development is based on the assumption that ���� and ����� are
measurable and that ����, ����� ���, ����, � � ��� and ����� are un-
known. Throughout the technical note � � � denotes the absolute value
of the scalar argument, � � � denotes the standard Euclidean norm for
a vector or the induced infinity norm for a matrix, and � � �� denotes
the Frobenius norm of a matrix. The following properties and assump-
tions will be exploited in the subsequent development. Property 1:
The inertia matrix ���� is symmetric, positive definite, and satisfies

����

� � ������� � �
������������ � � where 
� � is
a known positive constant, �
��� � is a known positive function.
Property 2: The functions����,����� ���,� � ���, and���� are second
order differentiable such that their second time derivatives are bounded
if ������� � ��, � � �� 	� 
 
 
 � � [14]. Property 3: The nonlinear dis-
turbance term and its first two time derivatives, i.e. ������ ������� ������
are bounded by known constants. Property 4: Part of the dynamics in
(1) can be linearly parameterized as


��
�
� �������� � ������ ���� ��� ������ � � � ���� (2)

where � � � contains the constant unknown system parameters, and

����� ���� ���� � ��� is the desired regression matrix that contains
known nonlinear functions of the desired link position, velocity, and
acceleration, ������ ������� ������ � �, respectively. Property 5: The
desired trajectory is assumed to be designed such that ����� ��� � �

�� � �� 	� 
 
 
 � �� exist and are bounded.

III. CONTROL OBJECTIVE

The objective is to design a continuous modular adaptive controller
which ensures that the system tracks a desired time-varying trajectory
����� despite uncertainties and bounded disturbances in the dynamic
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model. To quantify this objective, a position tracking error, denoted by
����� �

�, is defined as

��
�
� �� � �� (3)

To facilitate the subsequent analysis, filtered tracking errors, denoted
by ������ ���� �

�, are also defined as

��
�
� ��� � ���� �

�
� ��� � ���� (4)

where��� �� � denote positive constants. The filtered tracking error
���� is not measurable since the expression in (4) depends on �����.

IV. CONTROL DEVELOPMENT

The open-loop tracking error system can be developed as

����� � 	�
 � � � �� � � (5)

where the auxiliary function 	����
 �
� was defined in (2), and the

auxiliary function ���� ��� �� � � is defined as

�
�
�������� ��� � ����� �������� ���������

� 
���� ��� �� � 
����� ���� ��� ����������� � � � ���

� � � ����� (6)

Based on the open-loop error system in (5), the control torque input
is composed of an adaptive feedforward term plus the RISE feedback
term as

�
�
� 	��
 � �� (7)

In (7), ���� � � denotes the RISE feedback term defined as [11], [13]

����
�
� ��� � �������� ��� � �����	� � ���� (8)

where ���� � � is the generalized solution to

����� � ��� � ������ � ���������� ��	� � 	

where ��, �� � are positive constant control gains, 	���� was intro-
duced in (2), and �
��� � � denotes a subsequently designed parameter
estimate vector. The subsequent development exploits the fact that the
continuous RISE feedback in (8) has the following time derivative:

����� � ��� � ���� ���������� (9)

The closed-loop tracking error system can be developed by substituting
(7) into (5) as

����� � 	��
 � �
� � � � �� � �� (10)

To facilitate the subsequent modular adaptive control development and
stability analysis, the time derivative of (10) is expressed as

���� �� � �
�



������� �������������������������� (11)

where (9) was utilized. In (11), the unmeasurable/unknown auxiliary
terms ������ ��� �� ��� ����� �

� are defined as

�����
�
� �

�



������� �� � �� � ���

�����
�
��� ��� ��� ��� (12)

where �� ��� � � is given by

��
�
� �	�
 � ��� (13)

and the sum of the auxiliary terms ������� �� ��� � � is given by

�� ��� � ��� � � �	��
 � 	�
��
� (14)

Specific definitions for ������� �� ��� are provided subsequently
based on the definition of the adaptive update law for �
���. The struc-
ture of (11) and the introduction of the auxiliary terms in (12)–(14) is
motivated by the desire to segregate terms that can be upper bounded
by state-dependent terms and terms that can be upper bounded by
constants. Specifically, depending on how the adaptive update law
is designed, analysis is provided in the next section to upper bound
����� by state-dependent terms and ����� by a constant. The need

to further segregate �����, is that some terms in ����� have time
derivatives that are upper bounded by a constant, while other terms
have time-derivatives that are upper-bounded by state dependent
terms. The segregation of these terms based on the structure of the
adaptive update law (see (14)), is key for the development of a stability
analysis for the modular RISE-based adaptive update law/controller.

V. MODULAR ADAPTIVE UPDATE LAW DEVELOPMENT

A key difference between the traditional modular adaptive con-
trollers that use nonlinear damping and the current RISE-based
approach is that the RISE-based method does not exploit the ISS
property with respect to the parameter estimation error. The current
approach does not rely on nonlinear damping, but instead uses the
implicit learning characteristic of the RISE technique to compen-
sate for smooth bounded disturbances. In general, previous nonlinear
damping-based modular adaptive controllers first prove an ISS stability
result provided the adaptive update law yields bounded parameter
estimates (e.g., �
��� � �� via a projection algorithm), and then
use additional analysis along with assumptions (PD estimate of the
inertia matrix, and square integrable prediction error, etc.) to conclude
asymptotic convergence. In contrast, since the RISE-based modular
adaptive control approach in this technical note does not exploit an ISS
analysis, the assumptions regarding the parameter estimate are modi-
fied. The following development requires some general bounds (i.e.,
design criteria) on the structure of the adaptive update law �
��� and the
corresponding parameter estimate �
��� to segregate the components
of the auxiliary terms introduced in (12)–(14). Specifically, instead of
assuming that �
��� � ��, the subsequent development is based on
the less restrictive assumption that the parameter estimate �
��� and the

update law ��
��� can be described by the following design criteria:

�
��� � ����� � ���� ��� ��� ��� �� (15)
��
��� � ����� � 
��� ��� ��� ��� �� ��� (16)

In (15), ����� � � is a known function such that

������� � �� ������ � �� � ������� ������� ����� (17)

where �� � , �� � �� 
� � � � � �� are known non-negative constants
(i.e., the constants can be set to zero for different update laws), and
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���� ��� ��� ��� �� �
� is a known function that satisfies the following

bound:

������ � �� ���������� (18)

where the bounding function ����� � is a positive, globally invert-
ible, nondecreasing function, and ����� � �� is defined as

�����
�
� ��� ���

�

� (19)

In (16), ����� � � is a known function such that

������� � �� � ������� � �� � ������� ������� ���	� (20)

where �� � , �
 � �� 	� 
 
 
 � �� are known non-negative constants,
and ���� ��� ��� ��� 	� �� �

� satisfies the following bound:

������ � �� �������� (21)

where the bounding function ����� � is a positive, globally invert-
ible, nondecreasing function, and ���� � �� is defined as

����
�
� ��� ��� 	�

�

� (22)

The design criteria for the adaptive estimate and the adaptive update
law is flexible in the sense that any of the terms in (15) and (16) can
be removed for any specific update law and estimate. For example if
all the error-dependent terms in (15) are removed, then the condition
on 
���� is the same as in the standard nonlinear damping-based mod-
ular adaptive methods (i.e., 
���� � ��). In this sense, the ISS property
with respect to the parameter estimation error is automatically proven
by considering this special case of 
����. The results in this technical
note are not proven for estimates or update laws with additional terms
that are not included in the generic structure in (15) and (16). For ex-
ample, a standard gradient-based update law is of the form (16), but the
corresponding estimate (obtained via integration by parts) is not of the
form (15) due to the presence of some terms that are bounded by the in-
tegral of the error instead of being bounded by the error. However, the
same gradient-based update law and its corresponding estimate can be
used in (7) if a smooth projection algorithm is used that keeps the esti-
mates bounded. As shown in [11], the standard gradient-based update
law can be used in (7) without a projection algorithm, yet including this
structure in the modular adaptive analysis is problematic because the
integral of the error could be unbounded (so this update law could not
be used in traditional nonlinear damping based-modular adaptive laws
without a projection either). Since the goal in this technical note is to
develop a modular update law, a specific update law cannot be used to
inject terms in the stability analysis to cancel the terms containing the
parameter mismatch error. Instead, the terms containing the parameter
mismatch error are segregated depending on whether they are state-de-
pendent or bounded by constant (see (14)).

Based on the development given in (15)–(20), the terms �
���� and

� ��� introduced in (12)–(14) are defined as

�
����
�
� � ����� ��� 
� ���

�
� � ����� � ����� (23)

In a similar manner as in [13], the Mean Value Theorem can be used
along with the inequalities in (18) and (21) to develop the following
upper bound for the expression in (12):

�
��� � � �������� (24)

where the bounding function ���� � is a positive, globally invert-
ible, nondecreasing function, and ���� � �� is defined in (22). The
following inequalities can be developed based on the expressions in
(12), (13), their time derivatives, and the inequalities in (17) and (20):

�
����� � �� �
� ��� � ��

�
� ��� � �� � ������� ������� ���	� (25)

where �� � , �
 � �� 	� 
 
 
 � �� are known positive constants.

VI. STABILITY ANALYSIS

Theorem 1: The controller given in (7), (8), (15) and (16) ensures
that all system signals are bounded under closed-loop operation and
that the position tracking error is regulated in the sense that ������� �
� as � � � provided the control gain �� introduced in (8) is selected
sufficiently large (see the subsequent proof), �� and �� are selected
according to the following sufficient conditions:

�� �
��
�

�
�

	
�� �

��
	

� �� �
��
	

� � (26)

and �� (
 � �, 2, 3, 4) are selected according to the following sufficient
conditions:

�� ��� �
�

��
�� �

�

��
�� �� � ���

�� ���� �� � �� (27)

where �� was introduced in (8), and �� � �� are introduced in (30).
Proof: Let 	 
 ��	� be a domain containing ���� � �, where

���� � ��	� is defined as

����
�
� �� ��� � ���

�

� (28)

In (28), the auxiliary function � ��� � is the generalized solution to
the differential equation

�� ��� � ������ � ��� � ��

�

�
�

�������� � �����
�
���� (29)

where ������ denotes the 
th element of the vector �����, and the aux-
iliary function ���� � is

����
�
� 	� �
����� ����������� �� ��������������

��� �������
� � �� ��������	���� (30)

where �� � (
 � �, 2, 3, 4) are positive constants chosen according
to the sufficient conditions in (27). Provided the sufficient conditions
introduced in (27) are satisfied, then � ��� � �.

Let ����� �� � 	 
 ����� � be a Lipschitz continuous regular
positive definite function defined as

����� ��
�
� ��� �� �

�

	
��� �� �

�

	
	�����	 � � (31)

which satisfies ����� � ����� �� � ����� provided the sufficient
conditions introduced in (26), (27) are satisfied. The continuous posi-
tive definite functions �����, and ����� � are defined as �����

�
�

�����
�, and �����

�
� ��������

�, where ��� ����� � are defined as
��

�
� ���	���������� and �����

�
� ������	� �����, 1, where ��,

����� are introduced in Property 1. After taking the time derivative of
(31), ������ �� is expressed as

������ �� � 	����� �	 �
�

	
	� �����	� ��� ��� � 	��� ��� � �� �
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From (4), (11), (29) and (30), some of the differential equations de-
scribing the closed-loop system for which the stability analysis is being
performed have discontinuous right-hand sides as

��� � �� � ���� ��� � � � ���� (32)

� �� � �
�

�
������ � �� ��� � ��� � ���

� ��	
������ �� (33)
�� �
� � � �� ��� � ��	
������ � ����������

� ������
� � ���������� (34)

Let ���� 
� � ���� denote the right-hand side of (32)–(34). As de-
scribed in [19]–[21], the existence of Filippov’s generalized solution
can be established for (32)–(34). First, note that ���� 
� is continuous
except in the set ���� 
���� � 	�. From [19]–[21], an absolute con-
tinuous Filippov solution ��
� exists almost everywhere (a.e.) so that
�� � �
� ���� 
� ���� Except the points on the discontinuous surface
���� 
���� � 	�, the Filippov set-valued map includes unique solu-
tions. Under Filippov’s framework, a generalized Lyapunov stability
theory can be used (see [22]–[24] for further details) to establish strong
stability of the closed-loop system. The generalized time derivative of
(31) exists a.e., and ������ 
� �

���� ��� ���� 
� where

��� � �
	�
� ��
��

��� ���� ���� ���
�

�
�� �� �

�

��� �
� � ���� ���� ���

�

�
�� �� �

�

� ���� ��� ��� ��
�

�
�� ���

	� ���� ���� ���
�

�
�� �� �

�

�

.
After utilizing (4), (11), (9), (16), and (34)

��� � � �� �� � ��� � ������ � ������
� � �������

� � ���� ��

������������ ������
� � ���������� (35)

where the fact that ��� � �� ���������� � 	 is used (the subscript
� denotes the ��� element), where �
	
������ � ������� [24] such
that ������ � � � if �� � 	, [�1, 1] if �� � 	, and�1 if �� � 	.
Based on the fact that ���� �� 
 ����

�� ����
�, the expression in (24)

can be used to upper bound ��� ��
� using the squares of the components
of ��
� as

��� � � ������
� � �� �

��
�

���� � � ����������� (36)

where ��
�
� �
��������������� ������������������������;

hence, ��, and �� must be chosen according to the sufficient condition
in (26). After completing the squares for the terms inside the brackets
in (36), the following expression is obtained:

��� � � ������
� �

�� ���������

� �� �
�

�

� (37)

The expression in (37) can be further upper bounded as

������ 
� � ����� � � ���� �� � � (38)

for some positive constant  , where

�
�
� � � �������� 
 ��� � �� �� �

��
�

where �� is selected as �� � ������. Larger values of �� will
expand the size of the domain �. The result in (38) indicates that
������ 
� 
 ������ ������ 
� �

��� ���� 
�. The inequality in (38)
can be used to show that ����� 
� � 
� in �; hence, ���
�, ���
�,
and ��
� � 
� in �. Given that ���
�, ���
�, and ��
� � 
� in
�, standard analysis methods can be used to prove that the control
input and all closed-loop signals are bounded, and that ���� is
uniformly continuous in �. Let � � ! denote the set defined as
�

�
� ���
� � �������
�� �����

���� ����� � ���������
��. The

region of attraction can be made arbitrarily large to include any initial
conditions by increasing the control gain �� (i.e., a semi-global type
of stability result), and hence  ���
��� � 	 and ����
�� � 	 as

 � ����	� � � .

VII. CONCLUSION

A RISE-based approach was presented to achieve modularity in the
controller/update law for a general class of Euler-Lagrange systems.
Specifically, for systems with structured and unstructured uncertainties,
a controller was employed that uses a model-based feedforward adap-
tive term in conjunction with the RISE feedback term (see [11]). The
adaptive feedforward term was made modular by considering a generic
form of the adaptive update law and its corresponding parameter esti-
mate. New sufficient gain conditions were derived to show asymptotic
tracking of the desired link position.
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A Structurally Stable Globally Adaptive Internal
Model Regulator for MIMO Linear Systems

G. Obregón-Pulido, B. Castillo-Toledo, Member, IEEE, and
A. G. Loukianov

Abstract—The problem of compensating an uncertain disturbance
and/or tracking some reference signals for a general linear MIMO system
is studied in this work using the robust regulation theory frame. The
disturbances are assumed to be composed by a known number of distinct
sinusoidal signals with unknown phases, amplitude and frequencies.
Under suitable assumptions, an exponentially convergent estimator of the
unknown disturbance parameters is proposed and introduced into the
classical robust regulator design to obtain an adaptive controller. This
controller guarantees that the closed-loop robust regulation is attained in
some neighborhood of the nominal values of the parameters of system. A
simulated example shows the validity of the proposed approach.

Index Terms—Frequency estimation, nonlinear systems, regulation
theory.

I. INTRODUCTION

In many industrial and defense applications, the noise and vibra-
tion compensation is an important problem. Periodic and/or quasi-pe-
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riodic noises like engine noise in turboprop aircraft [1] and automo-
biles [2], ventilation noise in HVAC systems [3] and sea wave noise
in landing systems [4] represent interesting examples of such signals.
The problem of rejecting an unknown sinusoidal signal was first ad-
dressed in [5]–[7] and recently in [8], [9] and [10] using an adap-
tive observer scheme developed in [11]. On the other hand, in [12]
the output stabilization problem with disturbance rejection was con-
sidered for a class of SISO minimum phase nonlinear systems which
can be transformed into an output feedback form. A local solution for
a stable SISO system with a single frequency sinusoidal signal satis-
fying the matching condition, was proposed in [5], while a global so-
lution was given in [8]. This solution was extended in [9] to non-min-
imum phase systems and in [10] to the case of � frequencies giving a
���� ����� ��� ��������-th order controller, being � the dimen-
sion of the state space vector. The singularity problem presented in [9]
was then fixed in [10] including a stable signal into the transformation
determinant to avoid zero crossings. Also, in [7] a supervisory control
scheme was proposed for the case of � frequencies and a SISO linear
system, considering that the number of frequencies is known and all fre-
quency values lie in a predefined set. Using a high gain feedback tech-
nique combined with regulator theory, the problem was treated in [13],
considering that the values of the frequencies belong to some pre-speci-
fied compact set. If however the values of the frequencies leave this set,
the gains of the proposed regulator must be adjusted in order to keep
the stability property. Recently, in [14] an universal adaptive controller
was proposed for minimum phase systems using K-filters and back-
stepping technique. For MIMO linear systems, a locally exponentially
stable adaptive control law was proposed in [6], using the Youla param-
eterization. Along the same lines, in this work we propose an adaptive
control scheme for the case of MIMO linear systems when the number
of the frequencies is known but having their values not necessarily be-
longing to a pre-defined finite set, relaxing as well the minimum phase
and matching conditions. Moreover, the proposed scheme is globally
stable and robust with respect to plant parameter variations in some
neighborhood of the nominal values. The order of the proposed con-
troller is �� � � ����� � ��� where � is the number of inputs and
� is the number of frequencies.

II. PROBLEM STATEMENT

Consider a linear system described by

����� ������ ������ �	
��� (1)

���� ������ � �

���


��� � 	
�� 
� 
������� ���� � � � � 
� 
������� ���

� (2)

where � � �
� is the state, � � �

� is the input, 
 � �
����� is

a disturbance and/or reference signal consisting of a constant signal
with unknown magnitude 
� and � sinusoidal signals with unknown
magnitudes 
�, frequencies �� and phases �� for � � �� � � � � �. � � �

�

represents the tracking error between the plant output � � ����� and
a reference signal � � � �

��� and ������	� �
 are matrices of
appropriate dimensions, whose parameters may possibly vary in some
neighborhood of the nominal values ��, ��, ��, 	� and �
�. Let 
���
be generated by an exosystem [15], thus the system (1), (2) can be
rewritten as

����� ������ ������ � ����� (3a)

���� ������ �
����

����� ������ (3b)
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