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RISE-Based Adaptive Control of a Control Affine
Uncertain Nonlinear System With

Unknown State Delays

Nitin Sharma, Shubhendu Bhasin, Qiang Wang, and
Warren E. Dixon

Abstract—A continuous robust adaptive control method is designed for a
class of uncertain nonlinear systems with unknown constant time-delays in
the states. Specifically, a robust adaptive control method and a delay-free
gradient-based desired compensation adaptation law (DCAL) are utilized
to compensate for unknown time-delays, linearly parameterizable uncer-
tainties, and additive bounded disturbances for a general nonlinear system.
Despite these disturbances, a Lyapunov Krasovskii-based analysis is used
to conclude that the system output asymptotically tracks a desired time
varying bounded trajectory.

Index Terms—Desired compensation adaptation law (DCAL).

I. INTRODUCTION

TIME-DELAYED systems are endemic to engineering systems,
leading to degraded control performance and potential instability.
Various controllers have been developed to address time-delay in-
duced performance and stability issues as described in the survey
papers [1]–[3] (and the hundreds of references therein) and relatively
recent monographs such as [4]–[9]. Control synthesis and stability
analysis methods for nonlinear time-delayed systems are often based
on Lyapunov-Krasovskii (LK) functionals (cf. [10]–[13]). For ex-
ample, in [11], an iterative procedure utilizing LK functionals for
robust stabilization of a class of nonlinear systems with a triangular
structure is developed. However, as stated in [14], the controller
cannot be constructed from the given iterative procedure. Semi-global
uniformly ultimately bounded (SUUB) results have been developed
for time-delayed nonlinear systems [12], [13] by utilizing neural
network-based control, where appropriate LK functionals are utilized
to remove time delayed states. A discontinuous adaptive controller was
recently developed in [10] for a nonlinear system with an unknown
time delay to achieve a UUB result with the aid of LK functionals.
However, the controllers designed in [10], [12] can become singular
when the controlled state reaches zero, and an ad hoc control strategy
is proposed to overcome the problem. Moreover, as stated in [15]
and [16], the control design procedure described in [13] cannot be
generalized for nth order nonlinear systems. Robust output feedback
based controllers have also been considered for linear systems [17]
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and nonlinear systems [18] with delay, yielding UUB results in the
presence of disturbances.

Sliding mode control (SMC) has also been utilized for time delayed
systems in [19]–[23]. SMC-based control was also developed in
[24]–[26] for switched linear systems with delay. However, utilizing
SMC still poses a challenging design and computation problem when
delays are present in the states [2], [3]. Moreover, the discontinuous
sign function present in SMC often gives rise to undesirable chattering
during practical applications. Motivated to address the discontinuities
in SMC, a continuous adaptive sliding mode strategy is designed in
[27] for nonlinear plants with unknown state delays, where an LK
functional along with a discontinuous Lyapunov function is proposed
for the stability analysis.

Robust control methods are prevalent in the aforementioned litera-
ture (with noted exceptions in [12], [13]). The development of adap-
tive control methods has been stymied (in part) due to the challenge of
developing a delay-free adaptive update law. This technical note con-
siders a dynamic system that is assumed to contain general unstructured
uncertainties (where robust control methods are applied) and structured
(linear in the uncertain parameters) uncertainty. For this general class
of systems, potential time-delays in the regression matrix of an adap-
tive update law are avoided through the use of a desired compensation
adaptive law (DCAL) technique and strategic segregation of terms in
the open-loop error system, which facilitate the control design and sta-
bility analysis. A continuous Robust Integral of the Sign of the Error
(RISE) structure [28], [29] is also included to compensate for the un-
structured uncertainties. Instead of a typical UUB result, the continuous
RISE method along with the novel adaptive update law and the appro-
priate choice of an LK functional are used to yield asymptotic tracking.
Simulation results are provided to illustrate the performance of devel-
oped method for the typical regenerative chatter problem in high speed
metal cutting.

II. PROBLEM FORMULATION

Consider a class of uncertain nonlinear systems with an unknown
state delay as [10]
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In (1), �������, �������� � � are unknown functions, ����� � � ��,
������ � � �� �

� are unknown time-delayed functions,
� �

� is an unknown constant arbitrarily large time delay,
���� �

� is a bounded disturbance, � �
� is an un-

known constant, 	��� �
� is the control input, and ����

� ��� ��� � � � ��� �� �
�� denote system states, where ����

is assumed to be measurable. Also the following assumptions and
notations will be exploited in the subsequent development.

Notation: Throughout the technical note, a time dependent delayed
function is denoted as ��� � � � or �� , and a time dependent func-
tion (without time delay) is denoted as ���� or �. Assumption 1: The
unknown functions �������, ������� � are linearly parameterizable,
i.e., ������� � ������, ������� � � ����� ��, where ����� �
��� , ����� � ��� , � � � ��, � � � �� are constant un-

known parameter vectors, and ��, �� are positive integers. The regres-
sion matrix ����� � can not be computed due to the unknown time delay
present in the state. Assumption 2: If ���� � ��, then ����, �����,
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����� are bounded. Moreover, the first and second partial derivatives
of ����, �����, ����� with respect to ���� exist and are bounded (see
[10], [12], [27]). Assumptions 1 and 2 are properties of many practical
systems, such as typical Euler-Lagrange dynamics [30], [31] Assump-
tion 3: The disturbance term ���� and its first two time derivatives are
bounded. Assumption 4: The desired trajectory is designed such that
�����, ������ � ��, where �

���
� ��� denotes the �th time derivative for

� � �� �� � � � � 	 � �.

III. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the output ���� � � tracks
a desired time-varying trajectory ����� �

� despite uncertainties in
the system and an unknown time delay in the state. To quantify the
objective, a tracking error, denoted by 
���� � � and filtered tracking
errors 
����� � � � � 
����, ���� � � are defined as
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where ��� � � � � �� � � denote constant control gains. As defined in
(5), the filtered tracking error ���� is not measurable since the expres-
sion depends on ������. However, 
����� � � � � 
���� � � are measur-
able because (4) can be expressed in terms of the tracking error 
����
as
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���
� � � � �� � � � � 	 (6)

where �� � � are constants obtained from substituting (6) in (4) and
comparing coefficients, and �� � �, � � � � � [32]. Using (2)–(6),
the open loop error system can be written as

� � �
��� � �

���
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where ��
�� �
�� � � � � 

�����
� � � � is a function of known and measur-

able terms, defined as
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The open-loop tracking error system can be developed by premulti-
plying (7) by ��� and using (1) and Assumption 1 as
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In the subsequent development, a DCAL-based update law is developed
in terms of ����� without a state delay. After some algebraic manipu-
lation, the expression in (8) can be rewritten as
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where the auxiliary functions ������ ��, ������ � �� �,

� ��� ��� � �
���
� � � are defined as
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where �� ��� ���� � � � �
������
�

�

� �� denotes a column
vector containing the desired trajectory and its derivatives. The
grouping of terms and structure of (9) is motivated by the subsequent
stability analysis and the need to develop an adaptive update law
that is invariant to the unknown time delay. The auxiliary function
������ �� is defined such that it contains terms that are not time-delay
dependent. The auxiliary function ������ � �� � is introduced to isolate
the time-delayed states, and � ���� ��� � ���� is isolated because it
only contains functions of the desired trajectory.

Based on the open-loop error system in (9), the control input ���� �
� is designed as

� � �������	�� � ������	�� � �� (13)

In (13), ���� � � is the generalized solution to

�� � ��� � ���� ���	�
��� ��
� � 
 (14)

where ��, � � � are known constant gains. In (13), 	����� � 	 ,
	����� �

	 denote parameter estimate vectors generated as

�

	�� � �� ��
�
� �����

�

	�� � �� ��
�
� ����� (15)

where �� � 	 �	 , �� � 	 �	 are known, constant, diagonal,
positive definite adaptation gain matrices. In (15), �� �

� ���� does
not depend on the time delayed desired state. This delay free law is
achieved by isolating the delayed term ������ ��� in the auxiliary

signal � ��� ��� � �
���
� in (12). The adaptation laws in (15) depend

on the unmeasurable signal ����, but by using the fact that �������,
������� are functions of the known desired trajectory, integration by

parts can be used to implement 	����� for � � �, 2 where only 
���� is
required as

	�� � 	���
� � �� ��
�
� ����
���� �



�
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The closed-loop error system can be developed by substituting (13)
into (9) as
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�� �� ��������

��������� (17)

where �� for � � �, 2 are the parameter estimation error vectors defined
as �� � �� � 	��. To facilitate the subsequent stability analysis and to
more clearly illustrate how the Robust Integral of the Sign of the Error
(RISE) structure in (14) is used to reject the disturbance terms, the time
derivative of (17) is determined as

�
�� �� � � ��� � 
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�� (18)

where the auxiliary functions ��
�� � � � 
�� �� 
�� � � � � � 
�� � �� �,
��� ���� ���� �� �

� are defined as
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Using Assumptions 2, 3, and 4, ������ ���� ���� �� and its time deriva-
tive can be upper bounded as

���� � �� � ��� � � �� (20)

where �� , � �� � � are known constants, and
������ � � � ��� �� ��� � � � � � ��� � �� � can be upper bounded

as

�� � ����	���	�� ����	����	�� (21)

where 	��� � ������ is defined as

	 � 	 ��� ��� � � � ��� �� 
� (22)

and the known bounding functions ����	��, ����	��� � are pos-
itive, globally invertible, and nondecreasing functions. Note that the
upper bound for the auxiliary function ������ ��� ��� � ��� � in (21) is
segregated into delay free and delayed upper bound functions. Moti-
vation for this segregation of terms is to eliminate the delay depen-
dent term through the use of an LK functional in the stability analysis.
Specifically, let 
��� � denote an LK functional defined as
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where �� and ����� are introduced in (14) and (21), respectively.

IV. STABILITY ANALYSIS

Theorem 1: The controller given in (13)–(15) ensures that all system
signals are bounded under closed-loop operation. The tracking error is
regulated in the sense that ������� �  as ���, provided the control
gain �� introduced in (14) is selected sufficiently large, and ����, ��,
and � are selected according to the following sufficient conditions:

� � �� �
�

�
� �� � ����� �� �

�

�
(24)

where ����, �� are introduced in (4) and (5), respectively; � is intro-
duced in (14); and �� and � �� are introduced in (20).

Proof: Let � � �������	 �	 �� be a domain containing
���� � , where ���� � is defined as

���� 	 	� � ��� 
��� ���� ���� 
� (25)

where ������, ������ are introduced in (17), 	��� and
��� are defined in
(22) and (23), respectively, and the auxiliary function � ��� � is the
generalized solution to the differential equation
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Provided the sufficient conditions stated in Theorem 1 are satisfied,
then � ��� �  [29].

Let ����� �� � � � 	���� denote a Lipschitz continuous reg-
ular positive definite functional defined as
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which satisfies the following inequalities

����� � � ��� �� � ����� (27)

provided the sufficient conditions introduced in Theorem 1 are sat-
isfied. In (27), �����, ����� � are continuous, positive definite
functions defined as ����� � �����

������ � �����
�, where ��,

�� �
� are known constants. After taking the time derivative of (28),

������ �� can be expressed as
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Some of the differential equations describing the closed-loop system
for which the stability analysis is being performed have discontinuous
right-hand sides denoted by ���� �� � �������	 �	 �� in the set
��� ��
�� � �. As described in [33], the existence of Filippov’s
generalized solution can be established for �� � ���� ��. From [33], an
absolute continuous Filippov solution ���� exists almost everywhere
(a.e.) so that �� � �	� 
��� �� a.e. where �	�
 is defined as [34]
�	� 
���

�� ����

���� ��� !� 	 ��, where �
����

denotes the

intersection of all sets� of Lebesgue measure zero, �� denotes convex
closure, and  ��� !� represents a ball of radius ! around �. Under
Filippov’s framework, a generalized Lyapunov stability theory can be
used (see [34], [35] for further details) to establish strong stability of
the closed-loop system. The generalized time derivative of (28) exists

a.e., and ������ �� �
����
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where #� is the generalized gradient of � [35]. After utilizing (3), (4),
(5), (19), (26), adaptation laws in (15) and the time derivative of 
���
in (23), the expression in (29) can be rewritten as
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where �	�������
 � � if �� � , 		�� �
 if �� � �	� if �� % .
Cancelling common terms and using (21) yields
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After applying Young’s inequality to determine that
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the expression in (31) can be written as
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After completing the squares, the expression in (33) can be written as
�

�� ���� �� � � �� � 	���
��
���

�
�� (34)

where 	���
�� � is defined as 	���
����� � 	����
����� �
	����
�����, and �� �	
���� ��� � � � � ����� ���� � ��� �� �
��� �. The bounding function 	��
�� is a positive, globally in-
vertible, and nondecreasing function that does not depend on the
time-delay. The expression in (34) can be further upper bounded by a
continuous, positive semi-definite function

�

�� ���� �� � ����� � ���
�� � � � � (35)

for some positive constant �, where �
���� � �������� �� �� � ��� � 	���

	
������ .

Larger values of �� will expand the size of the domain �. The
inequalities in (27) and (35) can be used to show that � ��� �� � 
�
in �; hence, ��� ��� � � � � ��� ���� ��� � 
� in �. The closed-loop
error systems can now be used to conclude all remaining signals are
bounded in �, and the definitions for ���� and 
��� can be used to
prove that ���� is uniformly continuous in �. Let � � � denote a
set defined as

� ���� � � � �������� � �� 	��� ������
�

� (36)

The region of attraction in (36) can be made arbitrarily large to include
any initial conditions by increasing the control gain �� (i.e., a semi-
global stability result), and hence

��
�� � � �� �� � ���� � �� (37)

Based on the definition of 
���, (37) can be used to show that
������� � � as � � � ���� � � .

V. SIMULATION

To illustrate the performance of the designed RISE-based adaptive
controller, we consider the following second order scalar nonlinear
system that describes the chattering phenomenon during a metal cut-
ting operation [5], [36]–[38]

��� � � �� � �� � � ��� ��

where �, �, � are the effective mass, damping coefficient, and stiffness
constant, respectively. The thrust force � ��� �� � , defined as

� ��� �� � ����� � � � ���� � ��

is a function of inner modulation ���� � and outer modulation ����
� � � , where ��, �, � are cutting stiffness, width of cut, and feed rate,
respectively, and � is the time delay due to the spindle rotation period.
Under certain cutting conditions and in the absence of a control input
the vibrations are unstable as depicted in Fig. 1. The following closed-

Fig. 1. Chatter instability in the absence of control.

Fig. 2. Top plot shows the amplitude of vibrations and the bottom plot shows
the control input.

loop system is simulated to depict the performance of the RISE-based
adaptive controller:

��� ����

��� ������� �� � �� � ����� � � � ���� � �� � ��

� ��� (38)

where ���� � is the control input designed in (13). For the simu-
lation, the unknown system parameters are chosen as: � � ���� ��,
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� � �������, � � ��� 	
�, � � ���, � � ����, � � ��,
� � ��	, ���� � ���, 
 � � ��, and � � ���� �� per revolution.
Note that Assumptions 1 and 2 are satisfied for this practical system.
From the results shown in Fig. 2, the controller is able to eliminate the
tool workpiece chatter.

VI. CONCLUSION

A continuous robust controller is utilized in conjunction with an
adaptive controller for stabilizing a class of uncertain nonlinear sys-
tems with unknown constant state delays and bounded disturbances. By
utilizing a DCAL-based method and segregating the necessary terms,
the developed controller and the adaptive estimate law does not depend
on the unknown time delay. Simulations are provided for the regener-
ative chatter metal cutting problem [1], to show the performance of the
controller and applicability of assumptions. An LK functional is used
to prove asymptotic tracking for the closed-loop nonlinear system. A
remaining open problem is developing a continuous controller that can
yield an asymptotic result despite time-varying state delays. Moreover,
methods such as [17], [18] may also provide insight for the develop-
ment of observer-based output feedback results that could potentially
be extended to an adaptive controller.
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