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Robust identification-based state derivative
estimation for nonlinear systems

S. Bhasin, R. Kamalapurkar, H. T. Dinh, W. E. Dixon

Abstract—A robust identification-based state derivative estima-
tion method for uncertain nonlinear systems is developed. The
identifier architecture consists of a recurrent multi-layer dynamic
neural network which approximates the system dynamics online,
and a continuous robust feedback RISE (Robust Integral of
the Sign of the Error) term which accounts for modeling er-
rors and exogenous disturbances. Numerical simulations provide
comparisons with existing robust derivative estimation methods
including: a high gain observer, a 2-sliding mode robust exact
differentiator, and numerical differentiation methods, such as
backward difference and central difference.

I. I NTRODUCTION1

Estimation of the state derivative is useful for many appli-
cations including: disturbance and parameter estimation [1],
fault detection in dynamical systems [2], digital differentiation
in signal processing, acceleration feedback in robot contact
transition control [3], DC motor control [4] and active vibra-
tion control [5]. The problem of computing the state derivative
becomes trivial if the state is fully measurable and the system
dynamics are exactly known. The presence of uncertainties
(parametric and non-parametric) and exogenous disturbances,
however, make the problem challenging and motivate the state
derivative estimation method for uncertain nonlinear systems
developed in the paper.

The most common approach to estimate derivatives is by
using numerical differentiation methods. The Euler backward
difference approach is one of the simplest and the most
common numerical methods to differentiate a signal; however,
this ad hoc approach yields erroneous results in the presence of
sensor noise. The central difference algorithm performs better
than backward difference; however, the central difference
algorithm is non-causal since it requires future state values to
estimate the current derivative. Noise attenuation in numerical
differentiators may be achieved by using a low-pass filter,
at the cost of introducing a phase delay in the system. A
more analytically rigorous approach is to cast the problem of
state derivative estimation as an observer design problem by
augmenting the state with its derivative, where the state isfully
measurable and the state derivative is not, thereby, reducing
the problem to designing an observer for the unmeasurable
state derivative. Previous approaches to solve the problemuse
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pure robust feedback methods requiring infinite gain or infinite
frequency [6]–[8]. A high gain observer is presented in [7] to
estimate the output derivatives, and asymptotic convergence to
the derivative is achieved as the gain tends to infinity, which
is problematic in general and especially in the presence of
noise. In [8], a robust exact differentiator using a 2-sliding
mode algorithm is developed which assumes a known upper
bound for a Lipschitz constant of the derivative.

All the above mentioned methods are robust non model-
based approaches. In contrast to purely robust feedback
methods, an identification-based robust adaptive approachis
considered in this paper. The proposed identifier consists of a
dynamic neural network (DNN) [9]–[12] and a RISE (Robust
Integral of the Sign of the Error) term [13], [14], where
the DNN adaptively identifies the unknown system dynamics
online, while RISE, a continuous robust feedback term, is used
to guarantee asymptotic convergence to the state derivative in
the presence of uncertainties and exogenous disturbances.The
DNN with its recurrent feedback connections has been shown
to learn dynamics of high dimensional uncertain nonlinear
systems with arbitrary accuracy [12], [15], motivating their
use in the proposed identifier. Unlike most previous resultson
DNN-based system identification [10], [11], [16]–[18], which
only guarantee bounded stability of the identification error
system in the presence of DNN approximation errors and
exogenous disturbances, the addition of RISE to the DNN
identifier guarantees asymptotic identification.

The RISE structure combines the features of the high gain
observer and higher order sliding mode methods, in the sense
that it consists of high gain proportional and integral state
feedback terms (similar to a high gain observer), and the
integral of a signum term, allowing it to implicitly learn and
cancel the effects of DNN approximation errors and exogenous
disturbances in the Lyapunov stability analysis, guaranteeing
asymptotic convergence. Simulation results in presence of
noise show the effectiveness of the proposed method as com-
pared to a high gain observer and a 2-sliding mode approach.
Numerical differentiation results with backward and central
difference are also provided for comparison.

II. ROBUST IDENTIFICATION-BASED STATE DERIVATIVE

ESTIMATION

Consider a control-affine uncertain nonlinear system

ẋ = f(x) +

m
∑

i=1

gi(x)ui + d, (1)

wherex(t) ∈ R
n is the measurable system state,f(x) ∈ R

n

andgi(x) ∈ R
n, i = 1, ...,m are unknown functions,ui(t) ∈
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R, i = 1, ...,m is the control input, andd(t) ∈ R
n is an

exogenous disturbance. The objective is to design an estimator
for the state derivativėx(t) using a robust identification-based
approach that adaptively identifies the uncertain dynamics.
Assumption 1: The functionsf(x) and gi(x), i = 1, ...,m
are second-order differentiable.Assumption 2: The system
in (1) is bounded input bounded state (BIBS) stable, i.e.,
ui(t), x(t) ∈ L∞, i = 1, ...,m. Also, ui(t) is second
order differentiable, anḋui(t), üi(t) ∈ L∞, i = 1, ...,m.
Assumption 3: The disturbanced(t) is second order differen-
tiable, andd(t), ḋ(t), d̈(t) ∈ L∞.

Remark1. Assumptions 1-3 indicate that the technique devel-
oped in this paper is only applicable for sufficiently smooth
systems (i.e. at least second-order differentiable) that are
BIBS stable. The requirement that the disturbance isC2 can
be restrictive. For example, random noise does not satisfy
this assumption; however, simulations with added noise show
robustness to these disturbances as well.

The universal approximation property of NNs states that
any continuous functionF : S → R

n, whereS is a compact
simply connected set, can be approximated arbitrarily wellby
a linear combination of sigmoidal functions [19], i.e.

F (x) = WTσ(V Tx) + ε(x), (2)

where x ∈ S, W and V are the ideal weights,σ(·) is
the sigmoidal activation function, andε(·) is the function
reconstruction error. Using Assumption 2 and (2), the dynamic
system in (1) can be represented by replacing the unknown
functions with multi-layer NNs, as

ẋ = WT
f σ(V T

f x) +
m
∑

i=1

[

WT
giσ(V

T
gix) + εgi(x)

]

ui

+εf (x) + d, (3)

whereWf ∈ R
Lf+1×n, Vf ∈ R

n×Lf ,Wgi ∈ R
Lgi+1×n, Vgi ∈

R
n×Lgi , σf , σ(V T

f x) ∈ R
Lf+1, σgi , σ(V T

gix) ∈ R
Lgi+1 ,

εf (x) ∈ R
n , andεgi(x) ∈ R

n, i = 1, ...,m.
Assumption 4:The ideal weights are bounded by known
positive constants [20], i.e.‖Wf‖F ≤ W̄f , ‖Vf‖F ≤ V̄f ,
‖Wgi‖F ≤ W̄g and‖Vgi‖F ≤ V̄g i = 1, ...,m. Assumption 5:
The activation functionsσf (·) andσgi(·), and their derivatives
with respect to their arguments,σ′

f (·), σ′

gi(·), σ′′

f (·), σ′′

gi(·),
i = 1, ...,m, are bounded with known bounds.Assumption 6:
On a compact set, the function reconstruction errorsεf (·) and
εgi(·), and their derivatives with respect to their arguments,
ε′f (·), ε′gi(·), ε′′f (·), ε′′gi(·), i = 1, ...,m, are bounded (with
known bounds) [20].

Remark 2. Assumption 6 is a strong assumption that can
lead to conservative bounds on the approximation error and
the respective partial derivatives. However, in practice,the
conservative bound could be decreased by increasing the
number of hidden nodes and using some knowledge of how
the approximation errors change with increasing the hidden
nodes. The number of hidden nodes is only limited by the
available computational resources.

The following multi-layer dynamic neural network
(MLDNN) identifier is proposed to identify the system in (3)

and estimate the state derivative

˙̂x = ŴT
f σ̂f +

m
∑

i=1

ŴT
giσ̂giui + µ, (4)

where x̂(t) ∈ R
n is the identifier state,̂Wf (t) ∈ R

Lf+1×n,
V̂f (t) ∈ R

n×Lf , Ŵgi(t) ∈ R
Lgi+1×n, V̂gi(t) ∈ R

n×Lgi , i =
1, ...,m are the weight estimates,̂σf , σ(V̂ T

f x̂) ∈ R
Lf+1,

σ̂gi , σ(V̂ T
gi x̂) ∈ R

Lgi+1, i = 1, ...,m, andµ(t) ∈ R
n denotes

the RISE feedback term defined as [13], [14]

µ , kx̃(t)− kx̃(0) + v, (5)

where x̃(t) , x(t) − x̂(t) ∈ R
n is the identification error,

andv(t) ∈ R
n is the Filippov generalized solution [21] to the

differential equation

v̇ = (kα+ γ)x̃+ β1sgn(x̃); v (0) = 0, (6)

wherek, α, γ, β1 ∈ R are positive constant control gains, and
sgn (·) denotes a vector signum function.

Remark3. The DNN-based system identifiers in literature,
[9]–[11], [16], [17], typically do not include a feedback term
based on the identification error, except in results such as [18],
[22], [23], where a high gain proportional feedback term is
used to guarantee bounded stability. The novel use of RISE
feedback term,µ(t) in (4), ensures asymptotic regulation of
the identification error in the presence of disturbance and NN
function approximation errors.

The identification error dynamics can be written as

˙̃x = WT
f σf − ŴT

f σ̂f + εf (x) + d− µ (7)

+

m
∑

i=1

[

(WT
giσgi − ŴT

giσ̂gi) + εgi(x)
]

ui.

A filtered identification error is defined as

r , ˙̃x+ αx̃. (8)

Taking the time derivative of (8) and using (7) yields

ṙ = WT
f σ′

fV
T
f ẋ− ˙̂

WT
f σ̂f − ŴT

f σ̂′

f
˙̂
V T
f x̂− ŴT

f σ̂′

f V̂
T
f

˙̂x

+

m
∑

i=1

[

(WT
giσgi − ŴT

giσ̂gi)u̇i +WT
giσ

′

giV
T
gi ẋui

]

−
m
∑

i=1

[

˙̂
WT

giσ̂giui + ŴT
giσ̂

′

gi
˙̂
V T
gi x̂ui

]

+ ε̇f (x)

+
m
∑

i=1

[

−ŴT
giσ̂

′

giV̂
T
gi

˙̂xui + ε̇gi(x)ui + εgi(x)u̇i

]

(9)

+ḋ− kr − γx̃− β1sgn(x̃) + α ˙̃x.

The weight update laws for the DNN in (4) are developed
based on the subsequent stability analysis as

˙̂
Wf = proj(Γwf σ̂

′

f V̂
T
f

˙̂xx̃T ),
˙̂
Vf = proj(Γvf

˙̂xx̃T ŴT
f σ̂′

f ),

˙̂
Wgi = proj(Γwgiσ̂

′

giV̂
T
gi

˙̂xuix̃
T ), i = 1...m, (10)

˙̂
Vgi = proj(Γvgi

˙̂xuix̃
T ŴT

giσ̂
′

gi), i = 1...m,
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whereproj(·) is a smooth projection operator2, andΓwf ∈
R

Lf+1×Lf+1, Γvf ∈ R
n×n, Γwgi ∈ R

Lgi+1×Lgi+1, Γvgi ∈
R

n×n are constant positive diagonal adaptation gain matri-
ces. Adding and subtracting12W

T
f σ̂′

f V̂
T
f

˙̂x + 1
2Ŵ

T
f σ̂′

fV
T
f

˙̂x +
∑m

i=1

[

1
2W

T
giσ̂

′

giV̂
T
gi

˙̂xui +
1
2Ŵ

T
giσ̂

′

giV
T
gi

˙̂xui

]

, and grouping
similar terms, the expression in (9) can be rewritten as

ṙ = Ñ +NB1 + N̂B2 − kr − γx̃− β1sgn(x̃), (11)

where the auxiliary signals,̃N(x, x̃, r, Ŵf , V̂f , Ŵgi, V̂gi, t),
NB1(x, x̂, Ŵf , V̂f , Ŵgi, V̂gi, t), and
N̂B2(x̂, ˙̂x, Ŵf , V̂f , Ŵgi, V̂gi, t) ∈ R

n in (11) are defined
as

Ñ , α ˙̃x− ˙̂
WT

f σ̂f − ŴT
f σ̂′

f
˙̂
V T
f x̂+

1

2
WT

f σ̂′

f V̂
T
f

˙̃x (12)

+
1

2
ŴT

f σ̂′

fV
T
f

˙̃x−
m
∑

i=1

[

˙̂
WT

giσ̂giui + ŴT
giσ̂

′

gi
˙̂
V T
gi x̂ui

]

+
1

2

m
∑

i=1

[

ŴT
giσ̂

′

giV
T
gi

˙̃xui +WT
giσ̂

′

giV̂
T
gi

˙̃xui

]

,

NB1 ,

m
∑

i=1

[

WT
giσgiu̇i +WT

giσ
′

giV
T
gi ẋui − ŴT

giσ̂giu̇i

]

+

m
∑

i=1

[ε̇gi(x)ui + εgi(x)u̇i] + ε̇f (x) + ḋ (13)

−
m
∑

i=1

[

1

2
ŴT

giσ̂
′

giV
T
gi ẋui +

1

2
WT

giσ̂
′

giV̂
T
gi ẋui

]

+WT
f σ′

fV
T
f ẋ− 1

2
WT

f σ̂′

f V̂
T
f ẋ− 1

2
ŴT

f σ̂′

fV
T
f ẋ,

N̂B2 ,

m
∑

i=1

[

1

2
W̃T

giσ̂
′

giV̂
T
gi

˙̂xui +
1

2
ŴT

giσ̂
′

giṼ
T
gi

˙̂xui

]

(14)

+
1

2
W̃T

f σ̂′

f V̂
T
f

˙̂x+
1

2
ŴT

f σ̂′

f Ṽ
T
f

˙̂x.

To facilitate the subsequent stability analysis, an auxiliary term
NB2(x̂, ẋ, Ŵf , V̂f , Ŵgi, V̂gi, t) ∈ R

n is defined by replacing
˙̂x(t) in N̂B2(·) by ẋ(t), andÑB2(x̂, ˙̃x, Ŵf , V̂f , Ŵgi, V̂gi, t) ,
N̂B2(·)−NB2(·). The termsNB1(·) andNB2(·) are grouped
asNB , NB1+NB2. Using Assumptions 2, 4-6, (8) and (10),
the following bound can be obtained for (12)

∥

∥

∥
Ñ
∥

∥

∥
≤ ρ1(‖z‖) ‖z‖ , (15)

where z ,
[

x̃T rT
]T ∈ R

2n, and ρ1(·) ∈ R is a positive,
globally invertible, non-decreasing function. The following
bounds can be developed based on (3), Assumptions 2-7, (10),
(13) and (14)

‖NB1‖ ≤ ζ1, ‖NB2‖ ≤ ζ2,
∥

∥

∥
ṄB

∥

∥

∥
≤ ζ3 + ζ4ρ2(‖z‖) ‖z‖ ,

(16)

2The space of DNN weight estimates is projected onto a compact convex
set, constructed using known upper bounds of the ideal weights (Assumption
4). This ensures that the weight estimates are always bounded, which is
exploited in the subsequent stability analysis. Any of the several smooth
projection algorithms may be used (see [24], [25]).

∥

∥

∥

˙̃xT ÑB2

∥

∥

∥
≤ ζ5 ‖x̃‖2 + ζ6 ‖r‖2 , (17)

whereζi ∈ R, i = 1, ..., 6 are computable positive constants,
andρ2(·) ∈ R is a positive, globally invertible, non-decreasing
function.

Remark4. The segregation of terms in (11)-(14) and their
corresponding bounds in (15)-(17) is typical of the RISE
strategy [13], [14], and aids in the subsequent stability anal-
ysis. The termsNB1(·) and NB2(·) are both bounded by
constants; however, in the subsequent stability analysisNB1(·)
is canceled by RISE feedback, whereasNB2(·) is partially
canceled by RISE feedback and partially by the NN weight
update laws.

To facilitate the subsequent stability analysis, letD ⊂
R

2n+2 be a domain containingy(t) = 0, wherey(t) ∈ R
2n+2

is defined as

y ,

[

x̃T rT
√
P

√

Q
]

T , (18)

where the auxiliary functionP (z, t) ∈ R is the Filippov
generalized solution [21] to the differential equation

Ṗ = −L, P (0) = β1

n
∑

i=1

|x̃i(0)| − x̃T (0)NB(0),(19)

where the auxiliary functionL(z, t) ∈ R is defined as

L , rT (NB1 − β1sgn(x̃)) + ˙̃xTNB2 (20)

−β2ρ2(‖z‖) ‖z‖ ‖x̃‖ ,

where β1, β2 ∈ R are selected according to the following
sufficient conditions:

β1 > max(ζ1 + ζ2, ζ1 +
ζ3
α
), β2 > ζ4, (21)

to ensure thatP (t) ≥ 0 [14]. The auxiliary function
Q(W̃f , Ṽf , W̃gi, Ṽgi) ∈ R in (18) is defined as

Q ,
1

4
α
[

tr(W̃T
f Γ−1

wfW̃f ) + tr(Ṽ T
f Γ−1

vf Ṽf ) (22)

+

m
∑

i=1

(tr(W̃T
giΓ

−1
wgiW̃gi) + tr(Ṽ T

giΓ
−1
vgiṼgi))

]

,

wheretr(·) denotes the trace of a matrix.

Theorem 5. The identifier developed in (4) along with its
weight update laws in (10) ensures asymptotic convergence,
in the sense that

lim
t→∞

‖x̃(t)‖ = 0 and lim
t→∞

∥

∥ ˙̃x(t)
∥

∥ = 0

provided the control gainsk and γ are selected sufficiently
large based on the initial conditions of the states3 and satisfy
the following sufficient conditions

γ >
ζ5
α
, k > ζ6, (23)

where ζ5 and ζ6 are introduced in (17), andβ1 and β2 are
selected according to the sufficient conditions in (21).

3See subsequent stability analysis.
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Proof: Let V : D → R be a locally Lipschitz continuous
regular positive definite function defined as

V ,
1

2
rT r +

1

2
γx̃T x̃+ P +Q, (24)

which satisfies the following inequalities:

U1(y) ≤ V (y) ≤ U2(y), (25)

where U1(y), U2(y) ∈ R are continuous positive definite
functions defined asU1 , 1

2min(1, γ) ‖y‖2 and U2 ,

max(1, γ) ‖y‖2, respectively.
Let ẏ = h(y, t) represent the closed-loop differential equa-

tions in (7), (10), (11), and (19), whereh(y, t) ∈ R
2n+2

denotes the right-hand side of the the closed-loop error
signals. Using Filippov’s theory of differential inclusions
[21], [26], the existence of solutions can be established for
ẏ ∈ K[h](y, t), where K[h] ,

⋂

δ>0

⋂

µM=0

coh(B(y, δ) −

M, t), where
⋂

µM=0

denotes the intersection over all setsM

of Lebesgue measure zero,co denotes convex closure, and
B(y, δ) = {x ∈ R

2n+2| ‖y − x‖ < δ}. The right hand side of
the differential equation,h(y, t), is continuous except for the
Lebesgue measure zero set of timest ∈ [t0, tf ] whenx̃(t) = 0.
Hence, the set of time instances for whichẏ(t) is not defined
is Lebesgue negligible. The absolutely continuous solution
y(t) = y(t0) +

∫ t

t0
ẏ(t)dt does not depend on the value of

ẏ(t) on a Lebesgue negligible set of time-instances [27]. Under
Filippov’s framework, a generalized Lyapunov stability theory
can be used to establish strong stability of the closed-loop
systemẏ = h(y, t). The generalized time derivative of (24)
exists almost everywhere (a.e.), i.e. for almost allt ∈ [t0, tf ],

and V̇ (y) ∈a.e. ˙̃V (y) where

˙̃V =
⋂

ξ∈∂V (y)

ξTK

[

ṙT ˙̃xT 1

2
P−

1

2 Ṗ
1

2
Q−

1

2 Q̇

]T

, (26)

where ∂V is the generalized gradient ofV (y) [28]. Since
V (y) is locally Lipschitz continuous regular and smooth in
y, (26) can be simplified as [29]

˙̃V = ∇V TK

[

ṙT ˙̃xT 1

2
P−

1

2 Ṗ
1

2
Q−

1

2 Q̇

]T

=
[

rT γx̃T 2P
1

2 2Q
1

2

]

K [Ψ]
T
,

where

Ψ ,

[

ṙT ˙̃xT 1

2
P−

1

2 Ṗ
1

2
Q−

1

2 Q̇

]

.

Using the calculus forK[·] from [30] (Theorem 1, Properties
2,5,7), and substituting the dynamics from (11) and (19), yields

˙̃V ⊂ rT (Ñ +NB1 + N̂B2 − kr − β1K[sgn(x̃)]− γx̃)

+γx̃T (r − αx̃)− rT (NB1 − β1K[sgn(x̃)])

− ˙̃xTNB2 + β2ρ2(‖z‖) ‖z‖ ‖x̃‖
−1

2
α
[

tr(W̃T
f Γ−1

wf

˙̂
Wf ) + tr(Ṽ T

f Γ−1
vf

˙̂
Vf )

]

(27)

−1

2
α

m
∑

i=1

[

tr(W̃T
giΓ

−1
wgi

˙̂
Wgi) + tr(Ṽ T

giΓ
−1
vgi

˙̂
Vgi)

]

.

V̇
a.e.

≤ −αγ ‖x̃‖2 − k ‖r‖2 + ρ1(‖z‖) ‖z‖ ‖r‖+ ζ5 ‖x̃‖2

+ζ6 ‖r‖2 + β2ρ2(‖z‖) ‖z‖ ‖x̃‖ , (28)

where (10), (15), and (17) are used,K[sgn(x̃)] = SGN(x̃)
[30], such thatSGN(x̃i) = 1 if x̃i > 0, [−1, 1] if x̃i = 0, and
−1 if x̃i < 0 (the subscripti denotes theith element). The
set in (27) reduces to the scalar inequality in (28) since the
RHS is continuous a.e., i.e., the RHS is continuous except for
the Lebesgue measure zero set of times whenx̃(t) = 0 [27].
Substituting fork , k1+k2 andγ , γ1+γ2, and completing
the squares, the expression in (28) can be upper bounded as

V̇
a.e.

≤ −(αγ1 − ζ5) ‖x̃‖2 − (k1 − ζ6) ‖r‖2 (29)

+
ρ1(‖z‖)2

4k2
‖z‖2 + β2

2ρ2(‖z‖)2
4αγ2

‖z‖2 .

Provided the sufficient conditions in (23) are satisfied, the
expression in (29) can be rewritten as

V̇
a.e.

≤ −λ ‖z‖2 + ρ(‖z‖)2
4η

‖z‖2

a.e.

≤ −U(y) ∀y ∈ D (30)

where λ , min{αγ1 − ζ5, k1 − ζ6}, η , min{k2, αγ2

β2

2

},

ρ(‖z‖)2 , ρ1(‖z‖)2 + ρ2(‖z‖)2 is a positive, globally
invertible, non-decreasing function, andU(y) = c ‖z‖2 ,
for some positive constantc, is a continuous, posi-
tive semi-definite function defined on the domainD ,
{

y(t) ∈ R
2n+2 | ‖y‖ ≤ ρ−1

(

2
√
λη

)}

. The size of the do-
main D can be increased by increasing the gainsk and γ.
The inequalities in (25) and (30) can be used to show that
V (y) ∈ L∞ in D; hence,x̃(t), r(t) ∈ L∞ in D. Using (8),
standard linear analysis can be used to show that˙̃x(t) ∈ L∞ in
D. Sinceẋ(t) ∈ L∞ from (1) and Assumption 2-3,̂̇x(t) ∈ L∞

in D. From the use of projection in (10),̂Wf (t), Ŵgi(t) ∈
L∞, i = 1...m. Using the above bounding arguments, it
can be shown from (11) thaṫr(t) ∈ L∞ in D. Since
x̃(t),r(t) ∈ L∞, the definition ofU(y) can be used to show
that it is uniformly continuous inD. Let S ⊂ D denote a set
defined asS ,

{

y(t)⊂ D | U2(y(t)) <
1
2

(

ρ−1
(

2
√
λη

))2
}

,

where the region of attraction can be made arbitrarily largeto
include any initial conditions by increasing the control gain η
(i.e. a semi-global type of stability result), and hencec ‖z‖2 →
0 ast → ∞ ∀y(0) ∈ S. Using the definition ofz(t), it can be
shown that‖x̃(t)‖ ,

∥

∥ ˙̃x(t)
∥

∥ , ‖r‖ → 0 as t → ∞ ∀y(0) ∈ S.

III. S IMULATIONS

The following dynamics of a two-link robot manipulator
are used to compare the identification-based state derivative
estimator developed in this paper with several other methods:

M(q)q̈ + Vm(q, q̇)q̇ + Fdq̇ + Fs(q̇) = u(t), (31)

whereq(t) = [q1 q2]
T and q̇(t) = [q̇1 q̇2]

T are the angular
positions (rad) and angular velocities (rad/sec) of the two
links, respectively,M(q) is the inertia matrix, andVm(q, q̇) is
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the centripetal-Coriolis matrix, defined as

M ,

[

p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

]

Vm ,

[

−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0

]

,

wherep1 = 3.473 kg ·m2, p2 = 0.196 kg ·m2, p3 = 0.242 kg ·
m2, c2 = cos(q2), s2 = sin(q2), Fd = diag {5.3, 1.1} Nm ·
sec and F s(q̇) = diag {8.45tanh(q̇1), 2.35tanh(q̇2)} Nm
are the models for dynamic and static friction, respectively.
The robot model in (31) can be expressed asẋ = f(x) +
g(x)u + d, where the statex(t) ∈ R

4 is defined asx(t) ,

[q1 q2 q̇1 q̇2]
T , d(t) , 0.1sin(10t)[1 1 1 1]T is an exoge-

nous disturbance, andf(x) ∈ R
4 and g(x) ∈ R

4×2 are

defined asf(x) ,

[

q̇T
{

M−1 (−Vm − Fd) q̇ − Fs

}T
]T

andg(x) =
[

02×2 M−1
]

, respectively. The control input is
designed as a PD controller to track the desired trajectory
qd(t) = [0.5sin(2t) 0.5cos(2t)]T , as u(t) = −2[q1(t) −
0.5sin(2t) q2(t)− 0.5cos(2t)]T − [q̇1(t)− cos(2t) q̇2(t)+
sin(2t)]T . The objective is to design a state derivative estima-
tor ˙̂x(t) to asymptotically converge tȯx(t). The performance
of the developed RISE-based DNN identifier in (4) and (10) is
compared with the 2-sliding mode robust exact differentiator
[8]

˙̂x = zs + λs

√

|x̃|sgn(x̃), żs = αssgn(x̃), (32)

and the high gain observer [7]

˙̂x = zh +
αh1

εh1
(x̃), żh =

αh2

εh2
(x̃). (33)

The gains for the identifier in (4) and (10) are selected as
k = 20, α = 5, γ = 200, β1 = 1.25, and the DNN adaptation
gains are selected asΓwf = 0.1I11×11, Γvf = I4×4, Γwg1 =
0.7I4×4, Γwg2 = 0.4I4×4, Γvg1 = Γvg2 = I4×4, where
In×n denotes an identity matrix of appropriate dimensions.
The neural networks forf(x) and g(x) are designed to
have 10 and 3 hidden layer neurons, respectively, and the
DNN weights are initialized as uniformly distributed random
numbers in the interval[−1, 1]. The gains for the 2-sliding
mode differentiator in (32) are selected asλs = 4.1, αs = 4,
while the gains for the high gain observer in (33) are selected
as αh1 = 0.2, εh1 = 0.01, αh2 = 0.3, εh2 = 0.001. To
ensure a fair comparison, the gains of all the three estimators
were tuned for best performance (least RMS error) for the
same settling time of approximately0.4 seconds for the state
derivative estimation errors. A white Gaussian noise was
added to the state measurements, maintaining a signal to noise
ratio of 60 dB. The initial conditions of the system and the
estimators are chosen asx(t) = x̂(t) = [1 1 1 1]T .

Fig. 1 shows the state derivative estimation errors for the
2-sliding mode robust exact differentiator in [8], the high
gain observer in [7], and the developed RISE-based DNN
estimator. While the maximum overshoot in estimating the
state derivative (see Fig. 1) using 2-sliding mode is smaller,
the steady state errors are comparatively larger than both the
high gain observer and the proposed method. Table I gives a
comparison of the transient and steady state RMS state deriva-
tive estimation errors for different estimation methods. Results

of standard numerical differentiation algorithms - backward
difference and central difference (with a step-size of10−4) are
also included; as seen from Table I, they perform significantly
worse than the other methods, in presence of noise. Although,
simulation results for the high gain observer and the developed
method are comparable, as seen from Fig. 1 and Table I,
differences exist in the structure of the estimators and proof
of convergence of the estimates. The developed identifier
includes the RISE structure, which combines the features of
the high gain observer with the integral of a signum term,
allowing it to implicitly learn and cancel terms in the stability
analysis; thus, guaranteeing asymptotic convergence. While
singular perturbation methods can be used to prove asymptotic
convergence of the high gain observer to the derivative of
the output signal (̇x(t) in this case) as the gains tend to
infinity [31], Lyapunov-based stability methods are used to
prove asymptotic convergence of the proposed identifier (as
t → ∞) with finite gains. Further, while both high gain
observer and 2-sliding mode robust exact differentiator are
purely robust feedback methods, the developed method, in
addition to using a robust RISE feedback term, uses a DNN
to adaptively identify the system dynamics.

IV. CONCLUSION

A robust identifier is developed for online estimation of the
state derivative of uncertain nonlinear systems in the presence
of exogenous disturbances. The result differs from existing
pure robust methods in that the proposed method combines a
DNN system identifier with a robust RISE feedback to ensure
asymptotic convergence to the state derivative, which is proven
using a Lyapunov-based stability analysis. Simulation results
in the presence of noise show an improved transient and steady
state performance of the developed identifier in comparisonto
several other derivative estimation methods. Future efforts will
focus on extending the robust identification-based method for
output feedback control of nonlinear systems.
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