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Abstract—A robust identification-based state derivative estima- pure robust feedback methods requiring infinite gain or it&in
tion method for uncertain nonlinear systems is developed. The frequency [6]-[8]. A high gain observer is presented in [¥] t
identifier architecture consists of a recurrent multi-layer dynamic estimate the output derivatives, and asymptotic convesen

neural network which approximates the system dynamics online, s . . . .
and a continuous robust feedback RISE (Robust Integral of the derivative is achieved as the gain tends to infinity, Whic

the Sign of the Error) term which accounts for modeling er- IS problematic in general and especially in the presence of
rors and exogenous disturbances. Numerical simulations provide noise. In [8], a robust exact differentiator using a 2-sigli

comparisons with existing robust derivative estimation methods mode algorithm is developed which assumes a known upper
including: a high gain observer, a 2-sliding mode robust exact ,qnq for a Lipschitz constant of the derivative.

ggffl:@gtr'gtgir%f;g?]CQu;?ﬁ”g:;fgﬁ%ﬁgﬁ:?gg methods, such as All the above mentioned methods are robust non model-
based approaches. In contrast to purely robust feedback

methods, an identification-based robust adaptive appr@ach

. INTRODUCTION considered in this paper. The proposed identifier consists o

o L dynamic neural network (DNN) [9]-[12] and a RISE (Robust

Estimation of the state derivative is useful for many app'\'ntegral of the Sign of the Error) term [13], [14], where

cations including: disturbance and parameter estimatdn [ihe pNN adaptively identifies the unknown system dynamics
fault detection in dynamical systems [2], digital diffeti@tion  ojine while RISE, a continuous robust feedback term, élus
in signal processing, acceleration feedback in robot @ntg, g arantee asymptotic convergence to the state degviativ
transition control [3], DC motor control [4] and active Vébr e nresence of uncertainties and exogenous disturbafices.
tion controll[&":]. The problem of computing the state dei@t [N with its recurrent feedback connections has been shown
becomgs trivial if the state is fully measurable and theem;t to learn dynamics of high dimensional uncertain nonlinear
dynamlcs.are exactly known.'The presence of urjcertalnt@)gstems with arbitrary accuracy [12], [15], motivating ithe
(parametric and non-parametric) and exogenous distuesang,se in the proposed identifier. Unlike most previous resuits

hovyev_er, mak_e th_e problem challenging a_lnd mo_tivate the st¥\N-based system identification [10], [11], [L6]-[18], hi
derivative estimation method for uncertain nonlinear &y& .\ guarantee bounded stability of the identification erro

developed in the paper. system in the presence of DNN approximation errors and

The most common approach to estimate derivatives is Byogenous disturbances, the addition of RISE to the DNN
using numerical differentiation methods. The Euler baakiva;jeniifier guarantees asymptotic identification.
difference approach is one of the simplest and the mostrhe RISE structure combines the features of the high gain
common numerical methods to differentiate a signal; howevgpserver and higher order sliding mode methods, in the sense
this ad hoc approach yields erroneous results in the presEnCiha¢ it consists of high gain proportional and integral estat
Sensor noise. The_central difference algorithm perforr_msabe feedback terms (similar to a high gain observer), and the
than backward difference; however, the central differenggiegral of a signum term, allowing it to implicitly learn dn
algorithm is non-causal since it requires future statee®ld cancel the effects of DNN approximation errors and exogenou
estimate the current derivative. Noise attenuation in miga€ gistyrbances in the Lyapunov stability analysis, guainte
differentiators may be achieved by using a low-pass filté{symptotic convergence. Simulation results in presence of
at the cost of introducing a phase delay in the system. (fyise show the effectiveness of the proposed method as com-
more analytically rigorous approach is to cast the problém Bared to a high gain observer and a 2-sliding mode approach.

state derivative estimation as an observer design probem merical differentiation results with backward and cahtr
augmenting the state with its derivative, where the staft@llis  Gitference are also provided for comparison.

measurable and the state derivative is not, thereby, reguci
the problem to designing an observer for the unmeasurablé. ROBUST IDENTIFICATION-BASED STATE DERIVATIVE
state derivative. Previous approaches to solve the probkem ESTIMATION

o _ o _ Consider a control-affine uncertain nonlinear system
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R, ¢ = 1,...,m is the control input, andi(t) € R™ is an and estimate the state derivative

exogenous disturbance. The objective is to design an dstima m

for the state derivative (¢) using a robust identification-based g=WTs; + E WZs u; + (4)
. . - . . Fof gi0gilhi T M,

approach that adaptively identifies the uncertain dynamics i=1

Assumption 1 The functionsf(z) and g;(x), ¢ = 1,....m A . . -~ . Lotixn
are second-order differentiabléssumption 2: The system Wherei(t) € R™ is the identifier stateV;(¢) € R™ ’
in (1) is bounded input bounded state (BIBS) stable, i.8f(t) € R™E/, Wy;(t) € Rbaittxm, Xgi(t)ﬁ RrxLai, § =
wi(t),z(t) € Loo, @ = 1,..,m. Also, u;(t) is second 1--m are the weight estimates,; = o(V{'z) € RE*,
order differentiable, andi;(t),ii;(t) € Loo, @ = 1,...,m. 04 =0(ViE)e R i =1 . m,andu(t) e R" denotes
Assumption 3 The disturbance(t) is second order differen- the RISE feedback term defined as [13], [14]

tiable, andd(t), d(t), d(t) € Loo.

Remarkl. Assumptions 1-3 indicate that the technique devel-
oped in this paper is only applicable for sufficiently smootivhere 7(t) £ z(t) — 2(t) € R is the identification error,
systems (i.e. at least second-order differentiable) that andwv(t) € R is the Filippov generalized solution [21] to the
BIBS stable. The requirement that the disturbanc€iscan differential equation

be restrictive. For example, random noise does not satisfy

this assumption; however, simulations with added noisevsho 0 = (ka+ )T + pisgn(z); v (0) =0, (6)
robustness to these disturbances as well.

p = kx(t) — kx(0) + v, (5)

) o wherek, «, v, 81 € R are positive constant control gains, and
The universal approximation property of NNs states th%n(,) denotes a vector signum function.
any continuous functior” : S — R™, whereS is a compact

; : - Remark3. The DNN-based system identifiers in literature
simply connected set, can be approximated arbitrarily el X . '
a linear combination of sigmoidal functions [19], i.e. [9]-{11], [16],_[17],_t_yp|(_:ally do not mclu_de a feedbacknie

based on the identification error, except in results suci&js [

F(x) =WTo(VT2) 4 e(z), (2) [22], [23], where a high gain proportional feedback term is
. . . used to guarantee bounded stability. The novel use of RISE
where z € S, W and V' are the ideal weightsg(,) is feedback termy(t) in (4), ensures asymptotic regulation of

the S|gm0|(ja| actlvatlon function, gnd(~) is the functpn the identification error in the presence of disturbance aNd N
reconstruction error. Using Assumption 2 and (2), the dyna”}unction approximation errors

system in (1) can be represented by replacing the unknown ) o . )
functions with multi-layer NNs, as The identification error dynamics can be written as

m i = Wlo;—Wlés+ep(x)+d— (7)
Y ror For f 2
i o= Wio(Viz)+ Y [Who(Viz) +egi(x)] us Z . .
=1 + [(W i0gi — Wyibgi) +€ i(fﬂ)} Ui
+ep(z) +d, 3) i=1 " " !

whereW; € RLsH1xn v, e Rnxbr Wy, € REsitlxn o e Afiltered identification error is defined as
RXLei g, £ o(Viz) e REHL, 09 £ 0(VEx) € REiTT .

n ) no g _ =T+ az. (8)
er(z) e R™ , andey;(z) e R™, i=1,...,m. r=z
Assumption 4:The ideal weights are bounded by know

positive constants [20], .1y, < W), Vil < v, r]I'akmg the time derivative of (8) and using (7) yields

HngHF_S W, and ||_Vgi||F <V, i=1,..,m. As_sumptior_l 5 i — W;“O_}VfTi, _ ﬁ/}"&f _ Wf&}f/f G WJT&}VfTé
The activation functions;(-) andog(-), and their derivatives m

yv|th respect to their argum_ents,}(-), ogi(-), a% (), a;’i(-), +Z [(W;;agi _ W;;%i)ﬂi T Wg;U;ng%bui}

i1 =1,...,m, are bounded with known bound&ssumption 6: ]

On a compact set, the function reconstruction eregfs) and mo ) .

e4i(+), and their derivatives with respect to their arguments, -> [W;;c}giui + W;;&;ivg%ui} +é5(x)

(), €5:(), €5(), €g:(1), i = 1,...,m, are bounded (with i=1

known bounds) [20].

Remark 2. Assumption 6 is a strong assumption that can
lead to conservative bounds on the approximation error and
the respective partial derivatives. However, in practites
conservative bound could be decreased by increasing tigs weight update laws for the DNN in (4) are developed
the approximation errors change with increasing the hidden )
nod.es. The numbgr of hidden nodes is only limited by thwf = pmj(rwf&}vaMT), Vi :pmj(rvfMTWngy}),
available computational resources. W

The following multi-layer dynamic neural network 9

(MLDNN) identifier is proposed to identify the system in (3) V;; = proj(Tugizua” Wel,), i=1..m,

P30 [ Wb+ e eaii] ©)
=1

+d — kr — vz — Brsgn(&) + ai.

proj(ngi&;iV;i;uiijT), i=1..m, (10)



where proj(-) is a smooth projection operatorandI',,; €
RLf+1><Lf+1, va c IRnxn7 ngi c RLg,y—&-legi-i-l’ Fvgi c

R™>"™ are constant positive diagonal adaptation gain matri-

ces. Adding and subtractingiV' /s’ f/f i+ 1WfT&}Vf T+
S [1W97;U£’”Vgl Tu; + qu; ;ZVglxul}, and grouping

similar terms, the expression in (9) can be rewritten as

N + N1 + Npo — kr — ~& — B1sgn(z), (11)

r =

where the auxiliary signalsN (z, &, r, Wy, Vy, Wi, Vg, t),
JYBI($7Q?7Wf7‘A/fan’HVgZ7t) and
Npa(&,2, W, Vi, Wy, Vgist) € R™ in (11) are defined
as

—_

12)
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To facilitate the subsequent stability analysis, an aamjlterm

Npa(2, @ Wf,Vf,WgL,\/_m,t) € R" is defined by replacmg
Z(t) in Npa(-) by @(t), and Npo (&, &, W, Vi, Wi, Vyi, t) 2

Np2(-) = Npa(-). The termsNp, (-) and Np,(-) are grouped

APy ~112 2
|7 Woa| < G5 1217 + o 1.

where(; € R, i = 1,...,6 are computable positive constants,
andps(-) € R is a positive, globally invertible, non-decreasing
function.

Remark4. The segregation of terms in (11)-(14) and their
corresponding bounds in (15)-(17) is typical of the RISE
strategy [13], [14], and aids in the subsequent stabilitgl-an
ysis. The termsNg1(-) and Npo(-) are both bounded by
constants; however, in the subsequent stability analysis(-)

is canceled by RISE feedback, wheredg,(-) is partially
canceled by RISE feedback and partially by the NN weight
update laws.

17)

To facilitate the subsequent stability analysis, ®t C
R?"*2 be a domain containing(t) = 0, wherey(t) € R?"*+2
is defined as

yé[jT T P \/@}T

where the auxiliary functionP(z,t) € R is the Filippov
generalized solution [21] to the differential equation

61 Z ‘xz

where the auxiliary functior.(z,t) € R is defined as
’I“T(NBl - ,Blsgn(ix)) + QLTTNBQ
—Bap2(llzID =[]

where 81,32 € R are selected according to the following
sufficient conditions:

(18)

P = —L, PO )| — 2" (0) Np(0)(19)

L

(20)

Gs

i > max(G+ G, G+ ) Bo > (o (21)
to ensure thatf( ) > 0 [14]. The auxiliary function
QW;, Vi, Wi, Vyi) € R in (18) is defined as

L

»Nr—k %l

@ o [tr(WF T Wp) + tr (VI T 1) (22)
+> (tr(

i=1

(tr(WET LW,

gi— wgi

D+ tr(VET LV,

gi~ vgi

)|

asNp £ Np; + Np,. Using Assumptions 2, 4-6, (8) and (10)wheretr(-) denotes the trace of a matrix.

the following bound can be obtained for (12)

(R EEE

wherez £ [zT ’I"T]T € R?", and p;(-) € R is a positive,

globally invertible, non-decreasing function. The foliogy

(15)

Theorem 5. The identifier developed in (4) along with its
weight update laws in (10) ensures asymptotic convergence,
in the sense that

lim [#(t)

t—o0

and

|=0 lim ||a:

t—o0

)| =0

bounds can be developed based on (3), Assumptions 2-7, (Hvided the control gaing: and ~ are selected sufficiently

(13) and (14)

INBLl <G INB2ll < oy [N < G+ amalliz) 1121
(16)

large based on the initial conditions of the statemd satisfy

the following sufficient conditions

Cs

Y>> = k> CG) (23)

2
The space of DNN weight estimates is projected onto a compastego where Cs and (6 are mtroduced in (17) andb; and 3, are

set, constructed using known upper bounds of the ideal weigtssumption
4). This ensures that the weight estimates are always boundeidh is
exploited in the subsequent stability analysis. Any of tlesesal smooth
projection algorithms may be used (see [24], [25]).

selected according to the sufficient conditions in (21).

3See subsequent stability analysis.
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Proof: Let V : D — R be a locally Lipschitz continuous V< —ary |E]|> — k Irl|> + pa (21D 112l 7] + G 1|7

regular positive definite function defined as (e ||7”H2 N ENER (28)
1 1 7.
= 57’T7’ + §7$TI +P+Q, (24)  where (10), (15), and (17) are usell[sgn(#)] = SGN(Z)

[30], such thatSGN (z;) = 1if &; > 0, [-1,1] if Z; =0, and
—1if #; < 0 (the subscripti denotes the!" element). The
Ur(y) < V(y) < Us(y), (25) set in (27) reduces to the scalar inequality in (28) since the
RHS is continuous a.e., i.e., the RHS is continuous except fo
where Uy(y), Uz2(y) € R are continuous positive definitethe Lebesgue measure zero set of times whgh = 0 [27].

which satisfies the following inequalities:

functions defined as/; 2 Imin(l,) |yl and Uy 2 Substituting fork £ k; + ko andy £ 4, + ., and completing

maz(1,7) |y||?, respectively. the squares, the expression in (28) can be upper bounded as
Let y = h(y,t) represent the closed-loop differential equa- e

tions in (7), (10), (11), and (19), wherk(y,t) € R?"*2 V. o< —(am—G)E)P - (k=) 7l (29)

denotes the right-hand side of the the closed-loop error p1([12])2 B2p2(||2])2

signals. Using Filippov’'s theory of differential inclusis +WHZH Jr7” ||

[21], [26], the existence of solutions can be establishad fo
g € K[h(y,t), where K[h] 2 () [\ coh(B(y,s) — Provided the sufficient conditions in (23) are satisfied, the

>0 uM=0 expression in (29) can be rewritten as
M,t), where [\ denotes the intersection over all setf
uM=0 . a.e.
of Lebesgue measure zera; denotes convex closure, and vV < —/\||z||2+ (H H) |12|I”

B(y,0) = {z € R?"*?| ||y — z|| < §}. The right hand side of
the differential equationi(y, t), is continuous except for the
Lebesgue measure zero set of times|ty, t ;] wheni(t) = 0.
Hence, the set of time instances for whigft) is not defined Where A = min{amn — G, ki — (o}, 1 = min{ks, G2},
is Lebesgue negllglble The absolutely continuous saiutigp(||z)? = p1(|[2]))? + p2(]|2]))? is a positive, globally
y(t) = ylto) + j; t)dt does not depend on the value ofnvertible, non-decreasing function, and(y) = c|z|°,
y(t) on aLebesgue negI|g|bIe set of time-instances [27]. Undier  some positive constantc, is a continuous, posi-
Filippov's framework, a generalized Lyapunov stabilitgtiny tive semi-definite function defined on the domain =
can be used to establish strong stability of the closed-lodp(t) € R*"*2 | ||ly|| < p~' (2y/An)}. The size of the do-
systemy = h(y,t). The generalized time derivative of (24)main D can be increased by increasing the gainand ~.
exists almost everywhere (a.e.), i.e. for almosttadl [to, ], The inequalities in (25) and (30) can be used to show that
andV (y) €% V(y) where V(y) € Lo in D; hence,z(t),r(t) € Lo in D. Using (8),
| ) . standard Ii(n)ear ana;ysis c(:a)n b% used to showﬂ@;[e) Lo in

5 T T AT “ip 11 D. Sincei(t) € Lo from (1) and Assumption 2-3;(¢

V= m &K [r * 2P P 2Q Q} . (20) in D. From the use of projection in (10)¥/¢(t), W, Z(t) €
L, i = 1l..m. Using the above bounding arguments, it
where 9V is the generalized gradient df (y) [28]. Since can be shown from (11) that(t) € L. in D. Since
V' (y) is locally Lipschitz continuous regular and smooth i (¢),r(t) € L., the definition ofU(y) can be used to show

Q
]

IN:

-U(y) VYyeD (30)

£€0V (y)

y, (26) can be simplified as [29] that it is uniformly continuous irD. Let S C D denote a set
. I defined asS 2 {y(t)c D | Ua(y(t) < 3 (0~ (2vW))*},
V. = VV'K [fT z’ §P_§P QQ”Q] where the region of attraction can be made arbitrarily lacge
. X include any initial conditions by increasing the controirga
= {TT vz" 2p2 QQE} K[w", (i.e. a semi-global type of stability result), and hende

0 ast — oo Vy(0) € S Using the definition ok(t), it can be
shown that||Z(t)]] vl = 0 ast — oo Vy(0) € S.

\pé[T Tl pPip QQ] m

where

Using the calculus foi[-] from [30] (Theorem 1, Properties
2,5,7), and substituting the dynamics from (11) and (1®)ldg . SIMULATIONS
3 The following dynamics of a two-link robot manipulator
Vo TN+ Npu+ Npa = kr = B [sgn(2)] = 9%)  are used to compare the identification-based state desvati
+yi&" (r — a&) — " (Np1 — 1K [sgn(%))) estimator developed in this paper with several other method

—&" Nps + szz(H D 11=[ 1]

1 . . M(q)§ + Vin(q,4)q + Fad + Fs(q) = u(?), (31)
50 [tr(W W)+ tr(VF vf)} @7) ' o
whereq(t) = [¢1 ¢2]7 andq(t) = [¢1 ¢=)* are the angular

_,az [tr WgTszgZW )+ tr(yg{pvglv )} ) positions fad) and ang_ular veloci_tieST(Ld_/sec) of the tWO
links, respectivelyM (q) is the inertia matrix, and;,, (¢, ¢) is



the centripetal-Coriolis matrix, defined as of standard numerical differentiation algorithms - backiva

N p1+2p3ca P+ paca differgnce and central difference (with a step—siz&(bf“) are
M= { + pac } also included; as seen from Table I, they perform signifigant
b2 p:3 2 pz. X worse than the other methods, in presence of noise. Although
v, & { —P3s2dz —pss2 (1 +Ga) } 7 simulation results for the high gain observer and the dgezlo
p3s2q1 0 method are comparable, as seen from Fig. 1 and Table I,

wherep; = 3.473 kg-m?2, po = 0.196 kg-m?, p3 = 0.242 kg- differences exist in the structure of the estimators anafpro
m?2, co = cos(qz), s2 = sin(qz), Fy = diag {5.3, 1.1} Nm - of convergence of the estimates. The developed identifier
sec and F(¢) = diag {8.45tanh(q), 2.35tanh(¢2)} Nm includes the RISE structure, which combines the features of
are the models for dynamic and static friction, respedtivelthe high gain observer with the integral of a signum term,
The robot model in (31) can be expressedias- f(x) + allowing it to implicitly learn and cancel terms in the stabi
g(z)u + d, where the state:(t) € R* is defined asz(t) £ analysis; thus, guaranteeing asymptotic convergence.eWhil
(a1 g2 ¢1 d2)7, d(t) £ 0.1sin(10t)[1 1 1 1] is an exoge- singular perturbation methods can be used to prove asyimptot
nous disturbance, and(z) € R* and g(z) € R**2 are convergence of the high gain observer to the derivative of
- a [ . _ . T the output signal #(¢) in this case) as the gains tend to
defined asf(z) = { g {M (_,Vm —Fa)g- FS}_ ] _infinity [31], Lyapun(ozl—based stability methods are used to
andg(z) = (022 M~'], respectively. The control input is brve asymptotic convergence of the proposed identifier (as
designed as a PD controller to track the desired trajectary_, o) with finite gains. Further, while both high gain
q(i(t)‘ = [0.5sin(2t) 0'5005(2t)]T’_a5 u(t) = _2[‘1_1(t) ~ observer and 2-sliding mode robust exact differentiater ar
0.5sin(2t) ga(t) —0.5cos(2t)]" — g1 (t) — cos(2t)  ga(t) + purely robust feedback methods, the developed method, in

sz‘n(?t)]T. The objec_tive is to design gstate derivative estimaygition to using a robust RISE feedback term, uses a DNN
tor () to asymptotically converge té(t). The performance ;, adaptively identify the system dynamics.
of the developed RISE-based DNN identifier in (4) and (10) is

compared with the 2-sliding mode robust exact differeatiat IV. CONCLUSION

(8]

A robust identifier is developed for online estimation of the
T o= zs+ A/ |Z|sgn(E), Zs = agsgn(T), (32) state derivative of uncertain nonlinear systems in thegomes
of exogenous disturbances. The result differs from exdstin
pure robust methods in that the proposed method combines a
i o=zt %(33)7 2 = %(@), (33) DNN system identifier with a robust RISE feedback to ensure
€h1 €h2 asymptotic convergence to the state derivative, whichasen
The gains for the identifier in (4) and (10) are selected @ging a Lyapunov-based stability analysis. Simulationltes
k =20, a =5,y =200, 3; = 1.25, and the DNN adaptation in the presence of noise show an improved transient andystead
gains are selected d%,; = 0.1111x11, I'vy = lux4, Twg1 =  state performance of the developed identifier in comparison
0.7l4xa, Twga = 0.4l4xa, Tygr = Tyg2 = luxa, Where several other derivative estimation methods. Future tsfiwill
I.x» denotes an identity matrix of appropriate dimensionsocus on extending the robust identification-based metood f

The neural networks forf(z) and g(z) are designed to output feedback control of nonlinear systems.
have 10 and 3 hidden layer neurons, respectively, and the

and the high gain observer [7]
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