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Abstract—This paper generalizes the LaSalle–Yoshizawa
Theorem to switched nonsmooth systems. The Filippov and
Krasovskii regularizations of a switched system are shown
to be contained within the convex hull of the Filippov and
Krasovskii regularizations of the subsystems, respectively.
A common candidate Lyapunov function that has a nega-
tive semidefinite generalized time derivative along the tra-
jectories of the subsystems is shown to be sufficient to
establish LaSalle–Yoshizawa-like results for the switched
system. Of independent interest, are the results on approx-
imate continuity and Filippov regularization of set-valued
maps, reduction of differential inclusions using Lipschitz
continuous regular functions, and comparative remarks on
different generalizations of the time derivative along the tra-
jectories of a nonsmooth system.

Index Terms—Adaptive systems, differential inclusions,
nonlinear systems, switched systems.

I. INTRODUCTION

THE focus of this paper is Lyapunov-based stability anal-
ysis of switched nonautonomous systems that admit non-

strict candidate Lyapunov functions (cLfs) (i.e., cLfs with time
derivatives bounded by a negative semidefinite function of the
state). Analysis of adaptive controllers of systems with disconti-
nuities introduced through discontinuous control design and/or
dynamics motivates the theoretical development. For example,
the neuromuscular electrical stimulation applications such as
[1]–[4] involve switching between different muscle groups dur-
ing different phases of operation to reduce fatigue [1], [4], to
compensate for changing muscle geometry [3], or to perform
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functional tasks that require multilimb coordination [2]. Such
applications stand to benefit from adaptive methods where the
controller adapts to the uncertain dynamics without strictly re-
lying on robust control methods prone to overstimulation, such
as high gain or high frequency feedback.

Switched dynamics are inherent in a variety of modern adap-
tation strategies. For example, in sparse neural networks [5],
the use of different approximation architectures for different
regions of the state-space introduces switching via the feedfor-
ward part of the controller. In adaptive gain scheduling methods
[6], switching is introduced due to changing feedback gains.
Switching is also utilized as a tool to improve the transient re-
sponse of adaptive controllers by selecting between the multiple
estimated models of stable plants (see, e.g., [7]–[16]).

The Lyapunov-based stability analysis of switched adaptive
systems is challenging because the subsystems under adaptive
control typically do not admit strict Lyapunov functions. For
each subsystem, convergence of the error signal to the ori-
gin is typically established using Barbălat’s lemma (e.g., [17,
Lemma 8.2]). In traditional methods that utilize multiple cLfs to
establish stability of switched systems (e.g., [18, Th. 3.2]), the
class of admissible switching signals is restricted based on the
rate of decay of the cLfs (cf. [18, eq. (3.10)]). Since Barbălat’s
lemma provides no information about the rate of decay of a cLf,
it alone is insufficient to establish stability of a switched system
using multiple Lyapunov functions. While the switched systems
can be analyzed using a common strict Lyapunov function, ex-
tension to common nonstrict Lyapunov functions is not trivial
(cf. [19]–[21] and [18, Example 2.1]).

An adaptive controller for switched nonlinear systems is de-
veloped in [22] using a generalization of Barbălat’s lemma
from [23]. The controller is shown to asymptotically stabilize
a switched system with parametric uncertainties in the subsys-
tems. The multiple Lyapunov functions are utilized to analyze
the stability of the switched system. However, the generalized
Barbălat’s Lemma in [23] requires a minimum dwell time, and
in general, minimum dwell time cannot be guaranteed when the
switching is state-dependent.

Results such as [24]–[27] extend the Barbashin–Krasovskii–
LaSalle invariance principle to discontinuous systems. However,
these results are for autonomous systems, whereas the develop-
ment in this paper is focused on nonautonomous systems. An
extension of the LaSalle–Yoshizawa Theorem to nonsmooth
nonautonomous systems is provided in [28, Th. 2.5]; however,
the result requires the cLf to be continuously differentiable,
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whereas the approach developed in this paper uses a more
general framework that utilizes locally Lipschitz-continuous
cLfs.

This paper generalizes the LaSalle–Yoshizawa Theorem (see,
e.g.,[29] and [17, Th. 8.4]) and its nonsmooth extensions (see,
e.g.,[28, Th. 2.5] and [30]) to switched nonsmooth systems and
nonregular Lyapunov functions. A nonstrict common Lyapunov
function is used to establish boundedness of the system state and
convergence of a positive semidefinite function of the system
state to zero under a mild restriction on the switching signal.

The paper is organized as follows. The notation is defined in
Section II. Section III defines the class of systems considered
along with the objectives. Sections IV–VII are dedicated to
the development of the main results of the paper. Section VIII
provides a discussion on the merits of the generalized time
derivatives defined in Section V. Section IX presents illustrative
examples, and Section X provides concluding remarks. The
appendix includes supplementary proofs.

II. NOTATION

The n− dimensional Euclidean space is denoted by Rn and
μ denotes the Lebesgue measure on Rn . Elements of Rn are
interpreted as column vectors and (·)T denotes the vector trans-
pose operator. The set of positive integers excluding 0 is de-
noted by N, and D denotes an open and connected subset of
Rn . For a ∈ R, the notation R≥a denotes the interval [a,∞)
and the notation R>a denotes the interval (a,∞). For a re-

lation (·), the notation
a.e.

(·) implies that the relation holds for
almost all t ∈ I, for some interval I. Unless otherwise spec-
ified, an interval I is assumed to be right open, of nonzero
length, and t0 := min I, where t0 ∈ R≥0 denotes the initial
time. The notation F : A ⇒ B is used to denote a set-valued
map from A to the subsets of B. The notations co A and coA
are used to denote the convex hull and the closed convex hull
of the set A, respectively and A�B := (A \ B) ∪ (B \ A).
If a ∈ Rm and b ∈ Rn then the notation [a; b] denotes the
concatenated vector [ a

b ] ∈ Rm+n . For A ⊆ Rm , B ⊆ Rn the
notations [A

B ] and A × B are interchangeably used to de-
note the set {[a; b] | a ∈ A, b ∈ B}. The notations B(x, r) and
B(x, r), for x ∈ Rn and r > 0, are used to denote the sets
{y ∈ Rn | ‖x − y‖ ≤ r} and {y ∈ Rn | ‖x − y‖ < r}, respec-
tively. The notation |(·)| denotes the absolute value if (·) ∈ R
and the cardinality if (·) is a set. The notationL∞(A,B) denotes
the set of essentially bounded functions from A to B.

III. PROBLEM FORMULATION

Consider a switched system of the form1

ẋ = fρ(x,t) (x, t) (1)

where ρ : Rn × R≥t0 → N o denotes a state-dependent switch-
ing signal, N o ⊆ N is the set of all possible switching indices,
and x ∈ Rn denotes the system state. Let f : Rn × R≥t0 → Rn

1For the case where the subsystems are modeled as differential inclusions,
see Section VII.

denote the function (x, t) �→ fρ(x,t)(x, t). The main objective of
this paper is to establish asymptotic properties of the generalized
solutions of the system

ẋ = f (x, t) (2)

using asymptotic properties of the generalized solutions of the
subsystems

ẋ = fσ (x, t) , σ ∈ N o . (3)

The advantage of the aforementioned strategy, as opposed to
directly analyzing (2), is that the analysis can be made invariant
with respect to the switching function over a wide range of
admissible (see Assumption 1) switching functions. On the other
hand, a direct analysis of (2) is valid only for the specific ρ used
to construct (2).

For some classes of switching signals, the switched systems
can be modeled and analyzed as hybrid systems (see, e.g., [31,
Sec. 1.4.4]). However, when arbitrary state-dependent switching
is allowed, the switched systems can have solutions that flow
∀t ∈ R≥t0 with an uncountable set of switching instances (e.g.,
sliding motion). Since hybrid time domains are not rich enough
to describe such solutions while keeping track of the discrete
variable, hybrid models are not suitable for the class of systems
considered in this paper.

In the following, generalized solutions of the systems in (2)
and (3), defined using the Filippov and Krasovskii regularization
are analyzed. For a Lebesgue measurable function g : Rn ×
R≥t0 → R, the Filippov regularization is defined as [32, p. 85]

F [g] (x, t) :=
⋂

δ>0

⋂

μ(N )=0

co {g (y, t) | y ∈ B (x, δ) \ N}

(4)

and the Krasovskii regularization is defined as[33, p. 17]

K [g] (x, t) :=
⋂

δ>0

co {g (y, t) | y ∈ B (x, δ)} . (5)

The following definition introduces the class of switched sys-
tems considered in this paper.

Definition 1: A collection {fσ : Rn × R≥t0 → Rn}σ∈N o is
said to satisfy the weak basic conditions if it is locally bounded,
uniformly in σ and t,2 and the functions t �→ fσ (x, t) and t �→
ρ(x, t) are Lebesgue measurable ∀x ∈ Rn and ∀σ ∈ N o . When
a Filippov regularization is considered, the local boundedness
requirement on the map x �→ fσ (x, t) is relaxed to essential
local boundedness and a stronger measurability requirement
is imposed so that (x, t) �→ fσ (x, t) and (x, t) �→ ρ(x, t) are
Lebesgue measurable ∀σ ∈ N o . �

To achieve the aforementioned main objective, the differen-
tial inclusion that results from the regularization of the switched
system in (2) is proven to be contained within the convex com-
bination of the differential inclusions that result from the regu-
larization of the subsystems in (3), under mild assumptions on
the switching signal (Proposition 1, Sec. IV). To facilitate the

2A collection of functions {fσ : Rn × R≥t0 → Rn | σ ∈ N o } is locally
bounded, uniformly in t and σ, if for every compact K ⊂ Rn , there exists
M > 0 such that ‖fσ (x, t)‖2 ≤ M, ∀(x, t) ∈ K × R≥t0 and ∀σ ∈ N o .
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discussion that follows, the existence of a nonstrict Lyapunov
function is shown to be sufficient to infer certain asymptotic
properties of solutions of differential inclusions (Th. 1, Sec.
V). It is then established that a common nonstrict Lyapunov
function for the differential inclusions that result from the reg-
ularization of (3) is also a nonstrict Lyapunov function for the
differential inclusion that results from the regularization of (2)
(Proposition 2, Sec. VI). The main result of the paper then
follows, i.e., the conclusions about asymptotic properties of
generalized solutions of (2) can be drawn from the asymptotic
properties of generalized solutions of (3) (Th. 2, Sec. VI).

The following section develops a relationship between the
differential inclusions resulting from the regularization of (2)
and (3).

IV. SWITCHING AND REGULARIZATION

Let ẋ ∈ F [f ](x, t) and ẋ ∈ F [fσ ](x, t) be the Filippov reg-
ularizations and ẋ ∈ K[f ](x, t) and ẋ ∈ K[fσ ](x, t) be the
Krasovskii regularizations of (2) and (3), respectively. The fol-
lowing assumption imposes a mild restriction on the switching
function ρ to establish a relationship between F [f ], {F [fσ ]},
K[f ], and {K[fσ ]}.

Assumption 1: For each (x, t) ∈ Rn × R≥t0 , there exists
δ∗ > 0 such that |ρ(B(x, δ∗), t)| < ∞. �

Assumption 1 is equivalent to the assumption that ρ is lo-
cally bounded in x for each t. Roughly speaking, Assumption 1
restricts infinitely many subsystems from being active in a small
neighborhood of the state space. It does not restrict Zeno be-
havior and arbitrary time-dependent switching, and as such, is
not restrictive. For further insight into why Assumption 1 is
invoked, see Example 1. The following proposition states that
under general conditions, the set-valued maps F [f ] and K[f ]
are contained, pointwise, within the convex combination of the
collections {F [fσ ]} and {K[fσ ]}, respectively.

Proposition 1: If ρ : Rn × R≥t0 → N o satisfies
Assumption 1, then the set-valued maps K[f ], K[fσ ],
F [f ], and F [fσ ] satisfy

K [f ] (x, t) ⊆ co
⋃

σ∈N o

K [fσ ] (x, t) (6)

F [f ] (x, t) ⊆ co
⋃

σ∈N o

F [fσ ] (x, t) (7)

∀(x, t) ∈ Rn × R≥t0 .
Proof for Krasovskii Regularization: Fix (x, t) ∈ Rn ×

R≥t0 , select δ∗ > 0 such that |ρ(B(x, δ∗), t)| < ∞,3 and let
N := ρ(B(x, δ∗), t). Observe that the containment in (6) is
straightforward if the union over σ is placed inside the convex
closure operation. That is

⋂

δ>0

co
{
fρ(y ,t) (y, t) | y ∈ B (x, δ)

}
⊆

⋂

δ>0

co
⋃

σ∈N

{
fσ (y, t) | y ∈ B (x, δ)

}
. (8)

3Existence of such a δ∗ is guaranteed by Assumption 1.

The rest of the proof shows that the right-hand side (RHS) of
(8) is contained within the RHS of (6) in two steps. The first
step is to show that

⋂

δ>0

co
⋃

σ∈N

{
fσ (y, t) | y ∈ B (x, δ)

}
⊆

⋂

δ>0

co
⋃

σ∈N
co
{
fσ (y, t) | y ∈ B (x, δ)

}
. (9)

The second step is to show that
⋂

δ>0

co
⋃

σ∈N
co
{
fσ (y, t) | y ∈ B (x, δ)

}
⊆

co
⋃

σ∈N

⋂

δ>0

co {fσ (y, t) | y ∈ B (x, δ)} . (10)

The result in (6) then follows from (8), (9), and (10).
To prove (9), fix δ ∈ (0, δ∗], let z ∈ co

⋃
σ∈N{fσ (y, t) | y ∈

B(x, δ)}, and let {zi}i∈N ∈ Rn be a sequence such that zi ∈
co
⋃

σ∈N{fσ (y, t) | y ∈ B(x, δ)}, ∀i ∈ N, and limi→∞ zi =
z. For each i ∈ N, there exists a collection of points
{z1

i , . . . , z
|N |
i } ⊂ Rn and positive real numbers {a1

i , . . . , a
|N |
i },

for which
∑|N |

j=1 aj
i = 1, such that zi =

∑|N |
j=1 aj

i z
j
i and

zj
i ∈ {fσj

(y, t) | y ∈ B(x, δ)}, ∀j ∈ {1, . . . , |N |}. Hence, z =
limi→∞

∑|N |
j=1 aj

i z
j
i , i.e., z = limi→∞ ZiAi , where Ai =

[a1
i ; . . . ; a

|N |
i ] and Zi = [z1

i ; . . . ; z
|N |
i ]T .

Since the coefficients aj
i ≥ 0 are bounded, the sequence

{Ai}i∈N is a bounded sequence. Hence, there exists a sub-
sequence {Aik

}k∈N such that limk→∞ Aik
= A, for some

A = [a1 ; · · · ; a|N | ]. Furthermore, the continuity of the func-

tion Ai �→
∑|N |

j=1 aj
i implies

∑|N |
j=1 aj = 1. The boundedness

of the set
⋃

σ∈N{fσ (y, t) | y ∈ B(x, δ)} implies that the se-
quence {Zik

}k∈N is bounded, and as a result, there ex-
ists a subsequence {Zik l

}l∈N such that liml→∞ Zik l
= Z,

elementwise, for some Z = [ z1 ; · · · ; z|N | ]T . Hence, z =
liml→∞ Zik l

Aik l
= ZA, where the columns zj of the ma-

trix Z are the limits liml→∞ zj
ik l

, and zj ∈ co{fσj
(y, t) | y ∈

B(x, δ)}, ∀j ∈ {1, . . . , |N |}. Therefore, the point z is a convex
combination of points from co{fσj

(y, t) | y ∈ B(x, δ)}. That
is, z ∈ co

⋃
σ∈N co{fσ (y, t) | y ∈ B(x, δ)} ∀δ ∈ (0, δ∗], which

proves (9).
To establish (10), let z ∈

⋂
δ>0 co

⋃
σ∈N co{fσ (y, t) | y ∈

B(x, δ)}. Note that if 0 < δ1 ≤ δ2 , then

co
⋃

σ∈N
co
{
fσ (y, t) | y ∈ B (x, δ1)

}
⊆

co
⋃

σ∈N
co
{
fσ (y, t) | y ∈ B (x, δ2)

}
.

That is, if z ∈ co
⋃

σ∈N co{fσ (y, t) | y ∈ B(x, δ1)} for
some 0 < δ1 , then z ∈

⋂
δ>δ1

co
⋃

σ∈N co{fσ (y, t) | y ∈
B(x, δ)}. Hence, ∀k ∈ N, such that k ≥ 1

δ ∗ , there ex-
ist {zk1 , . . . , zk |N |} ⊂ Rn , nonnegative real numbers

{ak1 , . . . , ak |N |} for which
∑|N |

j=1 akj = 1, such that zkj ∈
⋂

δ≥ 1
k

co{fσj
(y, t) | y ∈ B(x, δ)} and z =

∑|N |
j=1 akj zkj .
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That is, z = ZkAk , where Ak = [ak1 ; . . . ; ak |N | ] and
Zk = [ zk1 ; · · · ; zk |N | ]T . The boundedness of the sequences
{Zk}k∈N and {Ak}k∈N implies the existence of subsequences
{Zkl

}l∈N and {Akl
}l∈N and vectors Z := [ z1 ; · · · ; z|N | ]T

and A := [a1 ; · · · ; a|N | ] such that A = liml→∞ Akl
,

∑|N |
j=1 aj = 1, and Z = liml→∞ Zkl

. Since z = Zkl
Akl

,
∀kl ∈ N, it can be concluded that z = ZA.

It is now claimed that ∀j ∈ {1, . . . , |N |}, zj ∈⋂
δ>0 co{fσj

(y, t) | y ∈ B(x, δ)}. To prove the claim
by contradiction, assume that ∃δ∗ > 0 such that
zj /∈ co{fσj

(y, t) | y ∈ B(x, δ∗)}. Since

co
{
fσj

(y, t) |y∈B (x, δ1)
}
⊆co

{
fσj

(y, t) |y∈B (x, δ2)
}
,
(11)

∀σj ∈ N and∀δ1 ≤ δ2 , zj /∈ co{fσj
(y, t) | y ∈ B(x, δ)},∀δ ≥

δ∗. That is, ∃k∗
l ∈ N such that zj /∈

⋂
δ≥ 1

k l

co{fσj
(y, t) | y ∈

B(x, δ)}, ∀kl ≥ k∗
l . From (11) and the fact that the sets⋂

δ≥ 1
k l

co{fσj
(y, t) | y ∈ B(x, δ)} are closed, it can be con-

cluded that there exists ε > 0 such that ∀kl ≥ k∗
l

B (zj , ε) /∈
⋂

δ≥ 1
k l

co
{
fσj

(y, t) | y ∈ B (x, δ)
}
. (12)

Since zkl j ∈
⋂

δ≥ 1
k l

co{fσj
(y, t) | y ∈ B(x, δ)}, ∀kl ∈ N, (12)

contradicts zj = liml→∞ zkl j , and hence, the proof of
the claim that ∀j ∈ {1, . . . , |N |}, zj ∈

⋂
δ>0 co{fσj

(y, t) |
y ∈ B(x, δ)} is complete. The claim implies that z ∈
co
⋃

σ∈N
⋂

δ>0 co{fσ (y, t) | y ∈ B(x, δ)}, which proves (10),
and hence, (6).

The proof for the Filippov regularization involves the tech-
nical details related to exclusion of measure-zero sets that are
provided in the appendix. �

The following example demonstrates that Assumption 1 is
not vacuous.4

Example 1: Let N o = N and for σ ∈ N o , let fσ be
defined as

fσ (x) :=

{
0 |x| < 1/2

σ

1 |x| ≥ 1/2
σ

so that K[fσ ](0) = F [fσ ](0) = {0}, ∀σ ∈ N o . Let

ρ (x) =

⎧
⎪⎨

⎪⎩

σ x ∈
(
− 1

2σ−1 ,− 1
2σ

]
∪
[

1
2σ

,
1

2σ−1

)

1 otherwise
.

Clearly, ρ violates Assumption 1 at x = 0. In this case, f(x) =
{ 1 x �=0

0 x=0 , K[f ](0) = [0, 1], and F [f ](0) = {1}, that is, the con-
clusion of Proposition 1 does not hold without the switching
restriction in Assumption 1. �

To facilitate the analysis of F [f ] and K[f ] based on the analy-
sis of F [fσ ] and K[fσ ], respectively, a stability result for differ-
ential inclusions that relies on the nonstrict Lyapunov functions
is developed in the following section. While the results devel-
oped in this section are specific to differential inclusions that

4The authors thank the anonymous reviewer who suggested this example.

arise from the Filippov and Krasovskii regularization of differ-
ential equations with discontinuous RHSs, the results developed
in the following sections are more general in the sense that they
apply to generic set-valued maps, not necessarily resulting from
the Filippov or Krasovskii regularization.

V. NONSTRICT LYAPUNOV FUNCTIONS

FOR DIFFERENTIAL INCLUSIONS

Let F : Rn × R≥t0 ⇒ Rn be a set-valued map. Consider a
differential inclusion of the form

ẋ ∈ F (x, t) . (13)

A locally absolutely continuous function x : I → Rn is called
a solution of (13) over the closed interval I provided

ẋ (t) ∈ F (x (t) , t) (14)

for almost all t ∈ I [32, p. 50]. The following analysis focuses
on the Lyapunov-based analysis of maximal solutions (see [24,
Definition 2.1]) of set-valued maps that admit local solutions.5

Definition 2: The set-valued map F : Rn × R≥t0 ⇒ Rn is
said to admit local solutions overD × J , whereJ is an interval,
if ∀(y, t) ∈ D × J , ∃T > t such that a solution x : I → Rn of
(13), starting from x(t) = y exists over I := [t, T ). �

To facilitate the analysis, generalized time derivatives and the
nonstrict Lyapunov functions are defined as follows.

Definition 3: Let F : Rn × R≥t0 ⇒ Rn have nonempty and
compact values. The generalized time derivative of a lo-
cally Lipschitz-continuous function V : Rn × R≥t0 → R with

respect to F is the function ˙̄VF : Rn × R≥t0 → R defined
as (cf. [34])

˙̄VF (x, t) := max
p∈∂V (x,t)

max
q∈F (x,t)

pT [q; 1] (15)

where ∂V denotes the Clarke gradient of V [35, p. 39]. �
For a detailed comparison of Definition 3 with more popular

set-valued notions of generalized time derivatives (i.e., [36, eq.
13] and [37, p. 364]), see Section VIII.

Definition 4: Let Ω := D × I for some interval I. Let F :
Rn × R≥t0 ⇒ Rn have nonempty and compact values over Ω.
Let V : Ω → R be a locally Lipschitz-continuous positive defi-
nite function. Let W ,W : D → R be continuous positive def-
inite functions and let W : D → R be a continuous positive
semidefinite function. If

W (x) ≤ V (x, t) ≤ W (x) , ∀ (x, t) ∈ Ω (16)

and

˙̄VF (x, t) ≤ −W (x) (17)

∀x ∈ D and for almost all t ∈ R≥t0 , then V is called a non-
strict Lyapunov function for F over Ω with the bounds W , W ,
and W . �

The following theorem establishes the fact that the existence
of a nonstrict Lyapunov function implies that t �→ W (x(t))
asymptotically decays to zero.

5Sufficient conditions for existence of local solutions can be found in, e.g.,
[32, p. 83, Th. 5].
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Theorem 1: Let 0 ∈ D, r > 0 be selected such that B(0, r) ⊂
D, and Ω := D × R≥t0 . Let F : Rn × R≥t0 ⇒ Rn be a map
that admits local solutions over Ω and is locally bounded,
uniformly in t, over Ω.6 If V : Ω → R is a nonstrict Lya-
punov function for F over Ω with the bounds W : D →
R, W : D → R, and W : D → R, then all maximal solu-
tions of (13) with x(t0) ∈ {x ∈ B(0, r) | W (x) ≤ c}, for some
c ∈ (0,min‖x‖2 =r W (x)), are complete, bounded, and satisfy
limt→∞ W (x(t)) = 0. In addition, if D = Rn and the sets
{x ∈ Rn | W (x) ≤ c} are compact for all c ∈ R>0 , then all
maximal solutions of (13), regardless of the initial condition,
are complete, bounded, and satisfy limt→∞ W (x(t)) = 0. Fur-
thermore, if the nonstrict Lyapunov function is regular [35,
Definition 2.3.4], then (17) can be relaxed to V̇ F (x, t) ≤
−W (x), where

V̇ F (x, t) := min
p∈∂V (x,t)

max
q∈F (x,t)

pT [q; 1] . (18)

�
Proof: See the appendix.
The following section utilizes the results of Sections IV and

V to develop the main results of this paper.

VI. INVARIANCE-LIKE RESULTS FOR SWITCHED SYSTEMS

The following proposition states that a common nonstrict
Lyapunov function for a family of differential inclusions is also
a nonstrict Lyapunov function for the closure of their convex
combination.7

Proposition 2: Let Ω := D × I for some interval I. Let
{Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N o} be a family of set-valued
maps with compact and nonempty values that is locally bounded,
uniformly in σ, over Ω ×N o .8 If V : Ω → R is a common non-
strict Lyapunov function for the family {Fσ} over Ω with the
bounds W : D → R, W : D → R, and W : D → R (i.e., V is
a nonstrict Lyapunov function for Fσ for each σ ∈ N o and the
bounds W , W , and W in (16) are independent of σ), then V is
also a nonstrict Lyapunov function for co

⋃
σ∈N o Fσ (x, t) over

Ω with the bounds W , W , and W .
Proof: Since the maps {Fσ} are locally bounded, uniformly

in σ, over Ω ×N o , co
⋃

σ∈N o Fσ (x, t) is nonempty and com-
pact ∀(x, t) ∈ Ω. Since V is a common nonstrict Lyapunov
function, maxp∈∂V (x,t) maxq∈Fσ (x,t) pT [q; 1] ≤ −W (x), ∀σ ∈
N o . Let q∗ ∈ F (x, t) := co

⋃
σ∈N o Fσ (x, t). There exists

a sequence {qj}j∈N such that limj→∞ qj = q∗ and qj ∈
co
⋃

σ∈N o Fσ (x, t). By Carathéodory’s theorem [38, p. 103],

6A set valued map F : Rn × R≥0 ⇒ Rn is locally bounded, uniformly in
t, over Ω, if for every compact K ⊂ D, there exists M > 0 such that ∀(x, t, y)
such that (x, t) ∈ K × R≥t0 , and y ∈ F (x, t), ‖y‖2 ≤ M .

7The observation that a common (strong) continuously differentiable Lya-
punov function for a family of finitely many differential inclusions is also a
Lyapunov function for the closure of their convex combination is stated in [19,
Proposition 1]. In this paper, it is proved and extended to families of countably
infinite differential inclusions and semidefinite locally Lipschitz-continuous
Lyapunov functions.

8A collection of set valued maps {Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N o } is
locally bounded, uniformly in σ, over Ω ×N o , if for every compact K ⊂ Ω,
there exists M > 0 such that ∀(x, t, σ, y) such that (x, t, σ) ∈ K ×N o and
y ∈ Fσ (x, t), ‖y‖2 ≤ M .

qj =
∑m

i=1 aj
i z

j
i , where m ≤ n + 1,

∑m
i=1 aj

i = 1, aj
i ≥ 0, and

zj
i ∈ Fσj

i
(x, t), ∀i ∈ {1, . . . , m}.

For any fixed p ∈ ∂V (x, t),

pT [zj
i ; 1] ≤ max

q∈F
σ

j
i

(x,t)
pT [q; 1],

∀i ∈ {1, . . . , m} and ∀j ∈ N. Hence,

max
p∈∂V (x,t)

pT
[
zj
i ; 1
]
≤ max

p∈∂V (x,t)
max

q∈F
σ

j
i

(x,t)
pT [q; 1]≤−W (x) .

∀i ∈ {1, . . . , m} and ∀j ∈ N. Since
m∑

i=1

aj
i = 1, max

p∈∂V (x,t)
pT [qj ; 1] ≤ −W (x),

∀j ∈ N. Now, since (p, q) �→ pT [q; 1] is continuous, and
∂V (x, t) and co

⋃
σ∈N o Fσ (x, t) are compact, the func-

tion q �→ max{pT [q; 1] | p ∈ ∂V (x, t)} is continuous on
co
⋃

σ∈N o Fσ (x, t). Hence, maxp∈∂V (x,t) pT [q; 1] ≤ −W (x),
∀q ∈ co

⋃
σ∈N o Fσ (x, t). �

The following corollary demonstrates that if V is regular and
the set-valued maps {Fσ} are continuous, then the bound (17)

in Proposition 2 can be relaxed to utilize V̇ F instead of ˙̄VF .
Corollary 1: Let the family of set-valued maps {Fσ : Rn ×

R≥t0 ⇒ Rn | σ ∈ N o} satisfy the conditions of Proposition 2.
If a regular [35, Definition 2.3.4] function V : Ω → R is a
common nonstrict Lyapunov function for the family {Fσ},
over Ω, with the bounds W : D → R, W : D → R, and W :
D → R, and with (17) in Definition 4 relaxed to V̇ Fσ

(x, t) ≤
−W (x), ∀(x, σ) ∈ Rn ×N o and for almost all t ∈ R≥t0 , then
V̇ co

⋃
σ ∈N o Fσ

(x, t) ≤ −W (x), ∀(x, σ) ∈ Rn ×N o and for al-
most all t ∈ R≥t0 , provided the set-valued maps {Fσ} are con-
tinuous (in the sense of [39, Definition 1.4.3]) and convex
valued.9

Proof: See the appendix. �
The main result of the paper can now be summarized in the

following theorem.
Theorem 2: Let 0 ∈ D, Ω := D × R≥t0 , and let r > 0

be selected such that B(0, r) ⊂ D. Let {fσ : Rn × R≥t0 →
Rn}σ∈N o be a collection that satisfies the weak basic condi-
tions in Definition 1. If Assumption 1 holds and the (Filippov)
Krasovskii regularizations of the subsystems in (3) admit a com-
mon nonstrict Lyapunov function V : Ω → R, over Ω, with the
bounds W : D → R, W : D → R, and W : D → R, then ev-
ery maximal solution of the (Filippov) Krasovskii regularization
of the switched system in (2) such that x(t0) ∈ {x ∈ B(0, r) |
W (x) ≤ c}, for some c ∈ (0,min‖x‖2 =r W (x)), is complete,
bounded, and satisfies limt→∞ W (x(t)) = 0. In addition, if
D = Rn and the sets {x ∈ Rn | W (x) ≤ c} are compact for
all c ∈ R>0 , then every maximal solution of the (Filippov)
Krasovskii regularization of the switched system in (2), regard-
less of the initial condition, is complete, bounded, and satisfies
limt→∞ W (x(t)) = 0.

9Example 2 demonstrates that there are collections of upper semicontinuous
set-valued maps for which Corollary 1 fails to hold, i.e., the continuity condition
in Corollary 1 is not vacuous.
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Proof: The first step is to show that under the weak ba-
sic conditions in Definition 1, the maps K[f ], K[fσ ], F [f ],
and F [fσ ] admit local solutions ∀σ ∈ N o . Since the collec-
tion {fσ}σ∈N o is locally bounded, uniformly in σ and t,
the function f is locally bounded, uniformly in t. To estab-
lish Lebesgue measurability of f , consider the representation
f(x, t) =

∑
σ∈N o Iσ (ρ(x, t))fσ (x, t), where

Iσ (i) :=
{

1, i = σ,
0, i �= σ.

Since Iσ : N → R is continuous ∀σ ∈ N o , t �→ Iσ (ρ(x, t))
is Lebesgue measurable ∀(σ, x) ∈ N o × Rn (and (x, t) �→
Iσ (ρ(x, t)) is Lebesgue measurable ∀σ ∈ N o in the Filippov
case). The Lebesgue measurability of t �→ f(x, t), ∀x ∈ Rn

(and of (x, t) �→ f(x, t) in the Filippov case) then follows
from that of t �→ fσ (x, t), ∀(σ, x) ∈ N o × Rn (and of (x, t) �→
fσ (x, t), ∀σ ∈ N o in the Filippov case). Since f is locally
bounded, uniformly in t,F [f ] andK[f ] are also locally bounded,
uniformly in t. In the Krasovskii case, since the functions
(x, t) �→ fσ (x, t) and (x, t) �→ f(x, t) are locally bounded and
the functions t �→ fσ (x, t) and t �→ f(x, t) are Lebesgue mea-
surable, the maps K[f ] and K[fσ ] admit local solutions [40, p.
101]. In the Filippov case, since the functions (x, t) �→ fσ (x, t)
and (x, t) �→ f(x, t) are essentially locally bounded and the
functions (x, t) �→ fσ (x, t) and (x, t) �→ f(x, t) are Lebesgue
measurable, the maps F [f ] and F [fσ ] admit local solutions [32,
p. 85].

Since the collection {fσ | σ ∈ N o} is locally bounded, uni-
formly in t and σ, over Ω ×N o , the collections {F [fσ ] | σ ∈
N o} and {K[fσ ] | σ ∈ N o} are also locally bounded, uni-
formly in t and σ, over Ω ×N o . Hence, by Proposition 2,
V is also a nonstrict Lyapunov function for the set-
valued maps (x, t) �→ co

⋃
σ∈N o F [fσ ](x, t) and (x, t) �→

co
⋃

σ∈N o K[fσ ](x, t), over Ω, with the bounds W , W , and W .
From Proposition 1, F [f ](x, t) ⊆ co

⋃
σ∈N o F [fσ ](x, t) and

K[f ](x, t) ⊆ co
⋃

σ∈N o K[fσ ](x, t). Hence, V is also a nonstrict
Lyapunov function for F [f ] and K[f ], over Ω, with the bounds
W , W , and W . The conclusion then follows by Theorem 1. �

Remark 1: The geometric condition in (17) can be relaxed
to the following trajectory-based condition. For all the general-
ized solutions xσ : I → Rn to (3), if the subsystems in (3) sat-
isfy ˙̄VFσ

(xσ (t), t) ≤ −W (xσ (t)), ∀σ ∈ N o and for almost all
t ∈ I, and for a specific maximal generalized solution x∗ : I →
Rn of (2), if the set {t ∈ I | ρ(x∗(·), ·) is discontinuous at t}
is countable for every I ⊆ R≥t0 , then weak versions of
Theorem 1 and Proposition 2 that establish the convergence
of W (x∗(t)) to the origin as t → ∞ can be proven using tech-
niques similar to [30, Corollary 1].

Remark 2: If the subsystems are autonomous, and if they
admit a common nonstrict Lyapunov function that is reg-
ular, then by applying the invariance principle (e.g., [37,
Th. 3]) to the differential inclusions ẋ ∈ co

⋃
σ∈N o F [fσ ](x)

and ẋ ∈ co
⋃

σ∈N o K[fσ ](x), it can be shown that all maximal
generalized solutions of (2) that start in the set Cl converge
to the largest weakly forward invariant set contained within
Cl ∩ E, where E := {x ∈ D | W (x) = 0} and Cl is a bounded

connected component of the level set {x ∈ D | V (x) ≤ l}.
Hence, Propositions 1 and 2 also generalize results such as
[26] to switched nonsmooth systems. A similar result can also
be obtained for the case where the subsystems are periodic.

VII. SWITCHING BETWEEN DIFFERENTIAL INCLUSIONS

The results in Section IV, and hence, those in Section VI can
be generalized to switched systems of the form

ẋ ∈ Fρ(x,t) (x, t) . (19)

Let F : Rn × R≥t0 ⇒ Rn denotes the set valued map (x, t) �→
Fρ(x,t)(x, t). The asymptotic properties of the generalized so-
lutions of the system

ẋ ∈ F (x, t) (20)

can then be inferred using the asymptotic properties of the gen-
eralized solutions of the subsystems

ẋ ∈ Fσ (x, t) (21)

where generalized solutions of a system of the form ẋ ∈ F (x, t)
are defined as the solutions of the differential inclusion ẋ ∈
K [F ] (x, t) in the Krasovskii case and ẋ ∈ F [F ] (x, t) in the
Filippov case. The operators F and K are defined as in (4)
and (5), respectively, where for a set A ∈ Rn , the notation
co{F (y, t) | y ∈ A} denotes the set co ∪y∈A F (y, t).

Definition 5: The collection {Fσ : Rn × R≥t0 ⇒ Rn}σ∈N o

is said to satisfy the weak basic conditions if:
1) it is locally bounded in the Krasovskii case and essentially

locally bounded in the Filippov case, uniformly in σ and
t and

2) the maps t �→ Fσ (x, t) and the functions t �→ ρ(x, t)
are Lebesgue measurable ∀(x, σ) ∈ Rn ×N o in the
Krasovskii case and the maps (x, t) �→ Fσ (x, t) and
(x, t) �→ ρ(x, t) are Lebesgue measurable ∀σ ∈ N o in
the Filippov case.

�
The following theorem generalizes Theorem 2 to switched

differential inclusions.
Theorem 3: Let 0 ∈ D, r > 0 be selected such that B(0, r) ⊂

D, and let Ω := D × R≥t0 . Let {Fσ : Rn × R≥t0 ⇒ Rn}σ∈N o

be a collection that satisfies the weak basic conditions in
Definition 5. If Assumption 1 holds and the (Filippov)
Krasovskii regularizations of the subsystems in (21) admit a
common nonstrict Lyapunov function V : Ω → R, over Ω, with
the bounds W : D → R, W : D → R, and W : D → R, then
every maximal solution of the (Filippov) Krasovskii regulariza-
tion of the switched system in (20) with x(t0) ∈ {x ∈ B(0, r) |
W (x) ≤ c}, for some c ∈ (0,min‖x‖2 =r W (x)), is complete,
bounded, and satisfies limt→∞ W (x(t)) = 0. In addition, if
D = Rn and the sets {x ∈ Rn | W (x) ≤ c} are compact for
all c ∈ R>0 , then every maximal solution of the (Filippov)
Krasovskii regularization of the switched system in (20), regard-
less of the initial condition, is complete, bounded, and satisfies
limt→∞ W (x(t)) = 0.

Proof: The first step is to show that under the weak basic
conditions, the maps K [Fσ ], K [F ], F [Fσ ], and F [F ] admit
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local solutions ∀σ ∈ N o . Since the collection {Fσ}σ∈N o is
(essentially) locally bounded, uniformly in σ and t, the map
F is (essentially) locally bounded, uniformly in t. To estab-
lish measurability of F , consider the representation F (x, t) =
∪σ∈N o Iσ (ρ(x, t)) ∩ Fσ (x, t), where

Iσ (i) :=

{
Rn , i = σ,

∅, i �= σ.

Since Iσ : N → R is a step mapping [41, p. 643] ∀σ ∈ N o ,
t �→ Iσ (ρ(x, t)) is Lebesgue measurable ∀(σ, x) ∈ N o × Rn .
Using [41, Proposition 14.11], it can be concluded that t �→
F (x, t) is Lebesgue measurable ∀x ∈ Rn if t �→ Fσ (x, t) is
Lebesgue measurable∀(σ, x) ∈ N o × Rn and (x, t) �→ F (x, t)
is Lebesgue measurable if (x, t) �→ Fσ (x, t) is Lebesgue mea-
surable ∀σ ∈ N o .

In the Krasovskii case, it is clear that the maps K [F ]
and K [Fσ ] are locally bounded, upper semicontinuous in x
for each t, and have compact, nonempty, and convex val-
ues. Since F (x, t) ⊆ K [F ] (x, t) and Fσ (x, t) ⊆ K [Fσ ] (x, t),
∀(x, t) ∈ Rn × R≥t0 , and since F and Fσ are Lebesgue mea-
surable in t for all x, the mapsK [F ] andK [Fσ ] admit selections
that are Lebesgue measurable in t for all x [41, Corollary 14.6],
and as a result, admit local solutions [32, Th. 5, p. 83].

In the Filippov case, using Rockafeller and Wets’ general-
ization of Lusin’s theorem [41, Th. 14.10], the proof of [40,
Proposition 1, p. 102] can be extended to show that the maps
F [F ] and F [Fσ ] are locally bounded, upper semicontinuous
in x for all t, have compact, nonempty, and convex values, and
for each fixed t ∈ R≥t0 , F (x, t) ⊆ F [F ] (x, t) and Fσ (x, t) ⊆
F [Fσ ] (x, t) for almost all x ∈ Rn . Since F and Fσ admit
Lebesgue measurable selections [41, Corollary 14.6], there
exist Lebesgue measurable functions g : Rn × R≥t0 → Rn

and gσ : Rn × R≥t0 → Rn such that g(x, t) ∈ F [F ] (x, t) and
gσ (x, t) ∈ F [Fσ ] (x, t) almost everywhere. Therefore, F [F ]
and F [Fσ ] admit Lebesgue measurable selections, and as a
result, admit local solutions.

Since the maps the maps K [F ], K [Fσ ], F [F ], and F [Fσ ]
satisfy all the conditions of Theorem 1, Proposition 2, and
Corollary 1, similar arguments as the proof of Theorem 2 can be
used to prove Theorem 3 if Proposition 1 can be generalized to
Filippov and Krasovskii regularization of set-valued maps. The
proof of Proposition 1 in the Krasovskii case does not rely on
any properties of f and {fσ} other then local boundedness, uni-
formly in σ. Therefore, it can be trivially generalized to include
Krasovskii regularization of set-valued maps.

In the Filippov case, the proof of Proposition 1 relies on
Lemma 1 from [42]. Using Rockafeller and Wets’ generalization
of Lusin’s theorem [41, Th. 14.10], Lemma 1 from [42] can
be extended to include Lebesgue measurable set-valued maps
(see Th. 4 in the appendix), and hence, Proposition 1 can be
generalized to include the Filippov regularization of set-valued
maps. �

VIII. COMMENTS ON THE GENERALIZED TIME DERIVATIVE

If V is regular then the generalized time derivative obtained
using Definition 3 is generally more conservative than (i.e.,

greater than or equal to) the maximal element of the more
popular set-valued generalized derivatives defined in [36] and
[37]. The motivation behind the use of the seemingly restrictive
definition is that the invariance-like results in Section VI do
not hold if the time derivative of the cLf is interpreted in the
set-valued sense (see Example 2). Furthermore, through a reduc-
tion of the admissible directions in F using locally Lipschitz-
continuous regular functions, a generalized time derivative that
is less conservative than the set-valued derivatives in [36] and
[37] can be obtained (see Lemma 1 and Corollary 2).

Lemma 1: Let Ω := D × R≥t0 , V : Ω → R be a locally Lip-
schitz continuous function, and V := {Vi : Ω → R}i∈M⊆N be
a countable collection of locally Lipschitz-continuous regular
[35, Definition 2.3.4] functions. Let F : Rn × R≥t0 ⇒ Rn be
a map that admits local solutions over Ω and let G,Gi, F̃ :
Rn × R≥t0 ⇒ Rn be defined as

Gi (x, t) :=
{
q ∈ F (x, t) |∃af |pT [q; 1]=af ∀p ∈ ∂Vi (x, t)

}
,

F̃ (x, t) :=F (x, t) ∩ (∩∞
i=1Gi (x, t)) ∀ (x, t) ∈ Ω.

If

V̇ F̃ (x, t) ≤ −W (x) ∀ (x, t) ∈ Ω (22)

where V̇ (·) is introduced in (18) and V̇ F̃ (x, t) is understood to

be −∞ when F̃ (x, t) is empty, then each solution of (13), such
that x(t0) ∈ D, satisfies V̇ (x(t), t) ≤ −W (x(t)), for almost all
t ∈ [t0 , T ), where T := min(sup I, inf{t ∈ I | x(t) /∈ D}).

Proof: See the appendix. �
Instead of maximizing over F̃ , the upper bound of the gener-

alized time derivative ˙̄V (F ) , introduced in [37, p. 364], is com-
puted using maximization over the set G(x, t) :={q ∈ F (x, t) |
∃af |pT [q; 1] = af ,∀p ∈ ∂V (x, t)}, i.e.,10

max ˙̄V (F ) (x, t) = min
p∈∂V (x,t)

max
q∈G(x,t)

pT [q; 1] .

Note that if V ∈ V then V̇ F̃ = ˙̄VF̃ , F̃ ⊆ G, and hence,

V̇ F̃ (x, t) = ˙̄VF̃ (x, t) ≤ max ˙̄V (F )(x, t), ∀(x, t) ∈ Ω. Thus, de-
pending on the functions V selected to reduce the inclu-
sions, the notions of the generalized time derivative introduced
here can be less conservative than the set-valued derivative in
[37] (and hence, the set-valued derivative in [36]). Naturally,
if V = {V } then the notions introduced here are equivalent
to [37].

A function V that satisfies the conditions of Lemma 1
is hereafter called a V−nonstrict Lyapunov function for F :
Rn × R≥t0 ⇒ Rn over Ω with the bounds W , W , and W .
The following corollary is a straightforward consequence of
Theorem 1 and Lemma 1.

Corollary 2: Let 0 ∈ D and Ω := D × R≥t0 . Assume that
the differential inclusion in (13) admits aV− nonstrict Lyapunov
function over Ω with the bounds W : D → R, W : D → R, and
W : D → R. If F : Rn × R≥t0 ⇒ Rn admits local solutions
over Ω and is locally bounded, uniformly in t, over Ω, then every
maximal solution of (13) with x(t0) ∈ {x ∈ B(0, r) | W (x) ≤

10The minimization here serves to maintain consistency of notation, but is in
fact, redundant.
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c}, for some c ∈ (0,min‖x‖2 =r W (x)), is complete, bounded,
and satisfies limt→∞ W (x(t)) = 0. �

At this juncture, it would be natural to ask whether the result in
Theorem 2 can be established using the set-valued derivatives in
[36] and [37] or a commonV− nonstrict Lyapunov function. The
following example demonstrates that a common V− nonstrict
Lyapunov function is not sufficient to establish the results in
Section VI and neither are the set-valued derivatives in [36]
or [37]. Furthermore, the example also demonstrates that the
continuity assumption in Corollary 1 is not vacuous.

Example 2: Let g1 , g2 , g3 : R2 → R2 be defined as g1(x) :=
[x1 ; 0] , g2(x) := [0;x2 ] , and g3(x) := [−x1 ;−x2 ]. Let the sub-
systems be defined by f1 , f2 : R2 → R2 as

f1(x)=

{
g1 (x) |x1 |< |x2 |
g3 (x) |x1 | ≥|x2 |

, f2 (x)=

{
g2 (x) |x1 |< |x2 |
g3 (x) |x1 | ≥|x2 | .

The subsystems have identical Krasovskii and Filippov regular-
izations, given by

F1 (x) =

{
co {g1 (x) , g3 (x)} |x1 | = |x2 |
f1 (x) otherwise,

F2 (x) =

{
co {g2 (x) , g3 (x)} |x1 | = |x2 |
f2 (x) otherwise.

The function V : R2 → R, defined as V (x) :=
max(|x1 | , |x2 |), is a locally Lipschitz-continuous regular
function11 that satisfies (16) and

∂V (x) =

⎧
⎪⎪⎨

⎪⎪⎩

v1 (x) |x1 | < |x2 |
v2 (x) |x1 | > |x2 |
co {v1 (x) , v2 (x)} |x1 | = |x2 |

where v1(x) = [sgn(x1); 0] and v2(x) = [0; sgn(x2)]. Hence,
with V = {V },

F̃i(x) =

{
{0} |x1 | = |x2 |
Fi(x) otherwise

,

for i = 1, 2.
In this case, (v1(x))T f2(x) = (v2(x))T f1(x) = 0, (v1(x))T

f3(x) = − |x1 |, and (v2(x))T f3(x) = − |x2 |. It follows that

V̇ Fi
(x) ≤ 0 and V̇ F̃i

(x) = ˙̄VF̃ (x) ≤ 0, ∀x ∈ R2 and i =

1, 2. It is also easy to see that max ˙̄V (Fi )(x) ≤ 0 and

max ˙̃V (Fi )(x) ≤ 0, ∀x ∈ R2 and i = 1, 2, where ˙̃V (Fi ) is de-
fined in [36, eq. (13)]. Thus, V is a common nonstrict Lyapunov
function for the subsystems according to all the notions of the
generalized time derivatives discussed above.

Let F := x �→ co(F1(x) ∪ F2(x)). For any x ∈ R2 such that
|x1 | = |x2 |, q := 1

2 [x1 ;x2 ] ∈ co{g1(x), g2(x), g3(x)}=F (x).
Thus, whenever |x1 | = |x2 | = V (x) > 0, minp∈∂V (x) pT q =
0.5V (x) > 0, i.e., Proposition 2 does not hold. Furthermore, a
solution of ẋ ∈ F (x), starting at x = [1; 1], is x(t) = e0.5t [1; 1],
i.e., Theorem 2 does not hold.

11Pointwise maxima of locally Lipschitz-continuous regular functions is lo-
cally Lipschitz-continuous and regular.

Thus, Proposition 2 and Theorem 2 may not hold if the gen-
eralized time derivative is understood in the sense of Lemma 1,
˙̄V (·) in [37], or ˙̃V (·) in [36]. Furthermore, if V̇ F is used as the

generalized time derivative instead of ˙̄VF then Corollary 1 may
not hold if the set-valued maps {Fσ} are not continuous. �

IX. DESIGN EXAMPLES

Many of the applications discussed in the opening paragraphs
of Section I can be represented by the following example prob-
lems. The first example demonstrates the utility of the developed
technique on an adaptive control problem where only the re-
gression matrices are discontinuous. In the second example, an
adaptive controller for a switched system that exhibits arbitrary
switching between the subsystems with different parameters and
disturbances is analyzed.

Example 3: Consider the nonlinear dynamical system

ẋ = Yρ(x,t) (x) θ + u + d (t) (23)

where x ∈ Rn denotes the state, u ∈ Rn denotes the con-
trol input, d : R≥t0 → Rn denotes an unknown disturbance,
ρ : Rn × R≥t0 → N denotes a switching signal that satisfies
Assumption 1, Yσ : Rn → Rn×L , for each σ ∈ N, is a known
continuous function, and θ ∈ RL is the vector of constant un-
known parameters. The control objective is to regulate the
system state to the origin. The disturbance is assumed to be
bounded, with a known bound d such that ‖d(t)‖∞ ≤ d, for
almost all t ∈ R≥t0 . Furthermore, t �→ d(t) is assumed to be
Lebesgue measurable.

One example of an adaptive controller designed to satisfy the
control objective is u = −kx − Yρ(x,t)(x)θ̂ − β sgn(x), where

θ̂ : R≥t0 → RL denotes an estimate of the vector of unknown
parameters, θ, k, β ∈ R>0 are positive constant control gains,
and sgn(·) is the signum function. The estimate, θ̂, is obtained

from the update law ˙̂
θ = (Yρ(x,t)(x))T x. For each σ ∈ N, the

closed-loop error system can be expressed as

ẋ = −kx + Yσ (x) θ̃ + d (t) − β sgn (x) (24)

˙̃
θ = − (Yσ (x))T x (25)

where θ̃ := θ − θ̂ denotes the parameter estimation error. The
closed-loop system in (24) and (25) is discontinuous, and hence,
does not admit classical solutions. Thus, the analysis will focus
on generalized solutions of (24) and (25). Since the Filippov and
Krasovskii regularizations of the closed-loop system in (24) and
(25) are identical, they are denoted by K [·] and the solutions of
the corresponding differential inclusions are hereafter referred
to as generalized solutions.

To analyze the developed controller, consider the cLf V :
Rn+L → R≥t0 , defined as

V (z) :=
1
2
xT x +

1
2
θ̃T θ̃ (26)

where z := [x; θ̃]. Since the cLf is continuously differen-
tiable, the Clarke gradient reduces to the standard gradient,
i.e, ∂V (z, t) = {z}. Using the calculus of K [·] from [43], a
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bound on the regularization of the system in (24) and (25) can
be computed as Fσ (z, t) ⊆ F ′

σ (z, t), where

F ′
σ (z, t) =

[{
−kx + Yσ (x) θ̃ + d (t)

}
− β K [sgn] (x)

{
−Y T

σ (x)x
}

]
.

Using Definition 3 and the fact that xT K [sgn] (x) = {‖x‖1},
a bound on the generalized time derivative of the cLf can be
computed as

˙̄Vσ (z, t) = max
q∈Fσ (z ,t)

zT q,

≤ max
q∈F ′

σ (z ,t)
zT q,

= −k ‖x‖2
2 + xT d (t) − β ‖x‖1 .

Provided β > d

˙̄Vσ (z, t) ≤ −W (z) (27)

∀(z, σ) ∈ Rn+L × N and for almost all t ∈ R≥t0 , where
W (z) = k ‖x‖2

2 is a positive semidefinite function. Using (26),
(27), and Theorem 2, all maximal generalized solutions of the
switched nonsmooth system in (24) and (25) are complete,
bounded, and satisfy ‖x(t)‖2 → 0 as t → ∞. �

Example 4: Arbitrary switching between the systems with
different parameters and disturbances can be achieved in the
case where the number of subsystems is finite. For example,
consider the nonlinear dynamical system

ẋ = Zρ(x,t) (x, t) θρ(x,t) + dρ(x,t) (x, t) + u (28)

where ρ : Rn × R≥t0 → N o such that N o is a finite set,
Zσ : Rn × R≥t0 → Rn×L , are known functions, θσ ∈ RL are
vectors of constant unknown parameters corresponding to
each σ ∈ N o , and dσ : Rn × R≥t0 → Rn are unknown distur-
bances such that for each σ ∈ N o , ‖dσ (x, t)‖∞ ≤ dσ , ∀(x, t) ∈
Rn × R≥t0 and some dσ > 0. Furthermore, for each σ ∈ Rn ,
(x, t) �→ dσ (x, t) and (x, t) �→ Zσ (x, t) are continuous in x,
uniformly in t and Lebesgue measurable in t, ∀x ∈ Rn .
Let θ :=

[
θ1 ; θ2 ; · · · ; θ|N o |

]
∈ RL |N o | and let Yσ := 1σ ⊗ Zσ ,

where 1σ ∈ R1×L is a matrix defined by

(1σ )1,j =

{
1, j = σ.

0, otherwise.

The adaptive controller designed to satisfy the control objective
is

u = −kρ(x,t)x − Yρ(x,t) (x, t) θ̂ − βρ(x,t) sgn (x)

where βσ ∈ R>0 and kσ ∈ R>0 are control gains corresponding

to σ ∈ N o and θ̂ : R≥t0 → RL |N o | is updated according to ˙̂
θ =

(Yρ(x,t)(x, t))T x. A stability analysis similar to Example 3 can
then be utilized to conclude the asymptotic convergence of the
state x to the origin provided βσ > dσ , ∀σ ∈ N o . �

X. CONCLUSION

Motivated by applications in switched adaptive control, the
generalized LaSalle–Yoshizawa corollary in [30] is extended

to switched nonsmooth systems. The extension facilitates the
analysis of the asymptotic characteristics of a switched system
based on the asymptotic characteristics of its subsystems where
a nonstrict common Lyapunov function can be constructed for
the subsystems. The application of the developed extension to a
switched adaptive system is demonstrated through simple exam-
ples. Motivated by results such as [44], further research could
potentially extend the developed method to utilize indefinite
Lyapunov functions.

In Lemma 1, it is shown that arbitrary locally Lipschitz-
continuous regular functions can be used to reduce the differ-
ential inclusion to a smaller set of admissible directions. This
observation indicates that there may be a smallest set of ad-
missible directions corresponding to each differential inclusion.
Further research is needed to establish the existence of such a
set and to find a representation of it that facilitates computation.

The developed method requires a strong convergence result
for the subsystems, i.e., the existence of a common cLf that sat-
isfies (17) implies that all maximal generalized solutions of the
subsystems are bounded and asymptotically converge to the ori-
gin. Future research will focus on the development of results for
switched nonsmooth systems where only weak convergence re-
sults (that is, only a subset of the maximal generalized solutions
of the subsystems are bounded and asymptotically converge to
the origin) are available for the subsystems.

APPENDIX

Proof of Theorem 1: Similar to the proof of [30,
Corollary 1], it is established that the bound on ˙̄VF in
(15) implies that the cLf is nonincreasing along all the maximal
solutions of (13). The nonincreasing property of the cLf is
used to establish boundedness of x, which is used to prove
the existence and uniform continuity of complete solutions.
Barbălat’s lemma [17, Lemma 8.2] is then used to conclude the
proof.

To show that the cLf is nonincreasing, let x : I → Rn

be a maximal solution of (13) such that x(t0) ∈ Ωc := {x ∈
B(0, r)|W (x) ≤ c}. Define T > t0 be the first exit time of x
from D, i.e., T := min(sup I, inf{t ∈ I | x(t) /∈ D}), where
inf ∅ is assumed to be ∞. If V is locally Lipschitz-continuous
but not regular, then [45, Proposition 4] (see also, [46, Th. 2])
can be used to conclude that, for almost every t ∈ [t0 , T ), the
time derivative V̇ (x(t), t) exists, and ∃p0 ∈ ∂V (x(t), t) such
that V̇ (x(t), t) = pT

0 [ẋ(t); 1]. Thus, (15) and (17) imply that
V̇ (x(t), t) ≤ −W (x(t)) for almost every t ∈ [t0 , T ). If V is
regular, then the relaxation in Footnote 8 and [36, eq. (22)] can
be used to conclude that for almost every t ∈ [t0 , T ), the time
derivative V̇ (x(t), t) exists and V̇ (x(t), t) ≤ −W (x(t)). The
conclusion that

V (x (t0) , t0) ≥ V (x (t) , t) ∀t ∈ [t0 , T ) (29)

then follows from [30, Lemma 2].
Using (29), it can be shown that (see, e.g., [17, Th. 4.8])

every solution of (13) that starts in Ωc stays in B(0, r) on every
interval of its existence. Therefore, all the maximal solutions of
(13) such that x(t0) ∈ Ωc are precompact [24, Definition 2.3]
and T = sup I. In the following, the arguments similar to [47,
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Proposition 2] are used to show that the precompact maximal
solutions are complete.

For the sake of contradiction, assume that T < ∞.
Since F is locally bounded, uniformly in t, over Ω,
and x(t) ∈ B(0, r) on [t0 , T ), the map t �→ F (x(t), t)
is uniformly bounded on [t0 , T ). Hence, (14) implies
that ẋ ∈ L∞([t0 , T ), Rn ). Local absolute continuity of
t �→ x(t) implies that ∀t1 , t2 ∈ [t0 , T ), ‖x(t2) − x(t1)‖2 =
‖
∫ t2

t1
ẋ(τ)dτ‖2 . Since ẋ ∈ L∞([t0 , T ), Rn ), ‖

∫ t2

t1
ẋ(τ)dτ‖2 ≤

∫ t2

t1
Mdτ , for some M > 0. Thus, ‖x(t2) − x(t1)‖2 ≤ M |t2 −

t1 |, and hence, t �→ x(t) is uniformly continuous on [t0 , T ).
Therefore, x can be extended into a continuous function x′ :
[t0 , T ] → Rn . Invoking [32, p. 83, Th. 5], x′ can be extended
into a solution of (13) on the interval [t0 , T ′) for some T ′ > T ,
which contradicts the maximality of x. Hence, T = ∞, i.e., all
the precompact maximal solutions of (13) are complete.

The continuity of x �→ W (x) and compactness of B(0, r) im-
ply that x �→ W (x) is uniformly continuous on B(0, r). Since
t �→ x(t) is uniformly continuous on R≥t0 , t �→ W (x(t)) is uni-
formly continuous on R≥t0 . Furthermore, t �→

∫ t

t0
W (x(τ))dτ

is monotonically increasing and from (17) and the fact that V is
positive definite
∫ t

t0

W (x (τ)) dτ ≤V (x (t0) , t0) − V (x (t) , t)≤V (x (t0) , t0) .

Hence, limt→∞
∫ t

t0
W (x(τ))dτ exists and is finite. By

Barbălat’s Lemma [17, Lemma 8.2], limt→∞ W (x(t)) = 0. �
Proof of Proposition 1 for Filippov Regularization:

Fix (x, t) ∈ Rn × R≥t0 , select δ∗ > 0 such that
|ρ(B(x, δ∗), t)| < ∞, and let N := ρ(B(x, δ∗), t). Simi-
lar to the proof for the Krasovskii regularization, the proof
proceeds in three steps. First, it is observed that

⋂

δ>0

⋂

μ(N )=0

co
{
fρ(y ,t) (y, t) | y ∈ B (x, δ) \ N

}

⊆
⋂

δ>0

⋂

μ(N )=0

Aδ
N (x, t) (30)

where Aδ
N := co

⋃
σ∈N{fσ (y, t) | y ∈ B(x, δ) \ N}. Second,

it is established that
⋂

δ>0

⋂

μ(N )=0

Aδ
N (x, t) ⊆

⋂

δ>0

⋂

μ(N )=0

Bδ
N (x, t) (31)

where Bδ
N (x, t) := co

⋃
σ∈N BN δσ (x, t) and BN δσ (x, t) :=

co{fσ (y, t) | y ∈ B(x, δ) \ N}. Finally, it is shown that ∀x ∈
Rn and almost all t ∈ R≥t0

⋂

δ>0

⋂

μ(N )=0

Bδ
N (x, t) ⊆ co

⋃

σ∈N

⋂

δ>0

⋂

μ(N )=0

BN δσ (x, t) . (32)

The conclusion of the proposition then follows. Apart from the
technical detail required to handle the exclusion of measure-zero
sets in the Filippov inclusion, the methods utilized to prove (31)
and (32) are similar to those used in the proof for the Krasovskii
inclusions. Thus, in the following, only the techniques used to
handle the exclusion of measure-zero sets are illustrated.

The containment in (30) is self-evident. To prove (31), define
N (δ) := {N ⊂ B(x, δ) | μ(N) = 0}, and let N ∗(δ) ⊂ 2B(x,δ)

be a collection of sets of zero measure such that sup{‖θ‖ |
θ ∈ Aδ

N } < ∞, ∀N ∈ N ∗(δ). Since the functions fσ (x, t) are
locally essentially bounded, uniformly in t and σ, the collection
N ∗(δ) is nontrivial. Fix N ∈ N ∗(δ) and z ∈ Aδ

N . Using the
arguments similar to Part 1 of the proof it can be shown that
the point z is a convex combination of points from BN δσj

(x, t).
That is, z ∈ co Bδ

N (x, t), and hence
⋂

N ∈N ∗(δ)

Aδ
N (x, t) ⊆

⋂

N ∈N ∗(δ)

Bδ
N (x, t) . (33)

To establish (31) the intersection in (33) needs to include all
of N (δ), not just the subset N ∗(δ). Since N ∗(δ) ⊆ N (δ),
the inclusion

⋂
N ∈N ∗(δ) Aδ

N (x, t) ⊆
⋂

N ∈N (δ) Aδ
N (x, t) fol-

lows. Let M ∈ N (δ). There exist N 1 ∈ N (δ) \ N ∗(δ)
and N 0 ∈ N ∗(δ) such that M = N 1 ∪ N 0 . Since N 0 ⊆
M , Aδ

M (x, t) ⊆ Aδ
N 0 (x, t). Therefore,

⋂
N ∈N (δ) Aδ

N (x, t) ⊆⋂
N ∈N ∗(δ) Aδ

N (x, t), which implies
⋂

N ∈N ∗(δ) Aδ
N (x, t) =⋂

N ∈N (δ) Aδ
N (x, t). A similar reasoning for Bδ

N (x, t) yields⋂
N ∈N ∗(δ) Bδ

N (x, t) =
⋂

N ∈N (δ) Bδ
N (x, t), ∀δ ∈ (0, δ∗], which

proves (31).
As an intermediate step toward proving (32), the containment
⋂

μ(N )=0

Bδ
N (x, t) ⊆ co

⋃

σ∈N

⋂

μ(N )=0

BN δσ (x, t) ∀δ > 0 (34)

is established in the following. Let z ∈
⋂

μ(N )=0 Bδ
N (x, t). The

objective now is to show that

z ∈ co

⎛

⎝
⋂

μ(N )=0

BN δ1 (x, t) ∪
⋂

μ(N )=0

BN δ2 (x, t) ∪ · · ·

⎞

⎠ .

Since the functions (x, t) �→ fσ (x, t) are Lebesgue measur-
able, the functions x �→ fσ (x, t) are Lebesgue measurable
∀(σ, t) ∈ N × R≥t0 . Using [42, Lemma 1], it can be con-
cluded that ∀(x, t, δ, σ) ∈ Rn × R≥t0 × R>0 ×N , there ex-
ists a measure-zero set Nσ such that,

⋂
μ(N )=0 BN δσ (x, t) =

BNσ δσ (x, t). Define N ∗ :=
⋃

σ∈N Nσ . Since N ∗ is a count-
able union of measure-zero sets, μ(N ∗) = 0. The fact that z ∈⋂

μ(N )=0 Bδ
N (x, t) implies that z ∈ Bδ

N ∗(x, t) and hence, by the
Carathéodory’s Theorem [38, p. 103], there exist {z1 , . . . , zm}
such that each zj ∈ BN ∗δσj

(x, t) for some σj ∈ N , and the
positive real numbers {a1 , . . . , am} with

∑m
j=1 aj = 1, such

that z =
∑m

j=1 aj zj . By definition of N ∗, Nσ ⊆ N ∗, ∀σ ∈ N .
As a result, BN ∗δσ (x, t) ⊆ BNσ δσ (x, t), ∀σ ∈ N , and hence,
BN ∗δσ (x, t) ⊆

⋂
μ(N )=0 BN δσ (x, t), ∀σ ∈ N . Hence, for each

j ∈ {1, . . . , m}, zj ∈
⋂

μ(N )=0 BN δσj
(x, t) for some σj ∈ N ,

which implies (34). Using a nesting argument similar to the
proof for Krasovskii inclusions, the containment in (32) follows
∀(x, t) ∈ Rn × R≥t0 . �

Proof of Lemma 1: The proof closely follows [37,
Lemma 1]. Let x : I → Rn be a solution of (13) such
that x(t0) ∈ D. Consider the set of times T ⊆ [t0 , T ) where
ẋ(t) is defined, ẋ(t) ∈ F (x(t), t), and V̇i(x(t), t) is defined
∀i ≥ 0. Since x is a solution of (13) and the functions Vi



624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 2, FEBRUARY 2019

are locally Lipschitz-continuous, μ([t0 , T ) \ T ) = 0, where
μ denotes the Lebesgue measure on R. The idea is to show
that ẋ(t) ∈ F̃ (x(t), t), not just F (x(t), t). Indeed since Vi is
locally Lipschitz-continuous, for t ∈ T its time derivative can
be expressed as

V̇i (x (t) , t) = lim
h→0

(Vi (x (t) + hẋ (t) , t + h) − Vi (x (t) , t))
h

.

Since each Vi is regular, for i ≥ 1, V̇i(x(t), t) = V ′
i+([x(t); t],

[ẋ(t); 1]) = V o
i ([x(t); t], [ẋ(t); 1])=max(pT [ẋ(t); 1], p ∈ ∂Vi

(x(t), t)), and V̇i(x(t), t)=V ′
i−([x(t); t], [ẋ(t); 1])=V o

i ([x(t);
t], [ẋ(t); 1]) = min(pT [ẋ(t); 1], p ∈ ∂Vi(x(t), t)), where V ′

+
and V ′

− denote the right and left directional derivatives
and V o denotes the Clarke-generalized derivative [35, p.
39]. Hence, pT [ẋ(t); 1] = V̇i(x(t), t), ∀p ∈ ∂Vi(x(t), t),
which implies ẋ(t) ∈ Gi(x(t), t) for each i. Therefore,
ẋ(t) ∈ F̃ (x(t), t). Hence, (22), along with the fact that
V̇ (x(t), t) = pT [ẋ(t); 1], ∀p ∈ ∂V (x(t), t), implies that
∀t ∈ T , V̇ (x(t), t) ≤ −W (x(t)). Since μ([t0 , T ) \ T ) = 0,
V̇ (x(t), t) ≤ −W (x(t)) for almost all t ∈ [t0 , T ). �

In the following, three technical Lemmas are stated to facili-
tate the proof of Corollary 1.

Lemma 2: If {Fσ : Rn × R≥t0 ⇒ Rn | σ ∈ N} is a col-
lection of locally bounded, continuous, compact-valued, and
convex-valued maps, then the set-valued map F := (x, t) �→
co
⋃

σ∈N Fσ (x, t) is continuous.
Proof: Let H : Rn × R≥t0 ⇒ Rn be defined as H(x, t) =

co(F1(x, t) ∪ F2(x, t)). If N ⊆ Rn is an open set con-
taining H(x, t), then ∃ε > 0 such that H(x, t) + B((x, t),
ε) ⊂ N . Since F1 and F2 are upper semicontinu-
ous (USC), there exist open sets M1 ,M2 ⊆Rn × R≥t0

such that (x, t) ∈ M1 ∩ M2 , F1(M1) ⊂ H(x, t) + B((x, t), ε),
and F2(M2) ⊂ H(x, t) + B((x, t), ε). Therefore, F1(x, t) ∪
F2(x, t) ⊂ H(x, t) + B((x, t), ε). Since H(x, t) + B((x, t), ε)
is convex, co(F1(x, t) ∪ F2(x, t)) ⊂ H(x, t) + B((x, t), ε).
Thus, H is USC.

It is easy to see that (x, t) �→ F1(x, t) ∪ F2(x, t) is lower
semicontinuous (LSC). Using [41, Th. 5.9 (c)], H is also
LSC. Inductively, the map (x, t) �→ co∪K

k=1Fk (x, t) is con-
tinuous ∀K < ∞. Thus, the collection {Fk}k∈N defined as
Fk (x, t) = co∪k

σ=1Fσ (x, t) is a collection of nondecreasing
continuous set-valued maps. By [41, Exercise 4.3], the se-
quence {Fk}k∈N converges pointwise to the map (x, t) �→
∪k∈NFk (x, t). Since the sets {Fk} are nested, ∪k∈NFk (x, t) =
co∪σ∈NFσ (x, t). Hence, by [41, Th. 5.48 (a)], the map (x, t) �→
co ∪σ∈N Fσ (x, t), is continuous.12 �

Lemma 3: Let g : Rn → R be continuous and let F : Rn ×
R≥t0 ⇒ Rn be a locally bounded, continuous, and compact-
valued map. If φ := (x, t) �→ maxq∈F (x,t) g(q), then φ is con-
tinuous at (x, t), ∀(x, t) ∈ Rn × R≥t0 .

Proof: If not, then ∃ε > 0 such that ∀δ > 0, ∃(y, τ) ∈
B((x, t), δ) such that |φ(y, τ) − φ(x, t)| ≥ ε. If φ(y, τ) −

12By [41, Th. 5.7 (c)], the notion of LSC in this paper is equivalent to the
notion of the inner semicontinuity in [41]. Since all the maps under consideration
are locally bounded and compact valued, by [41, Th. 5.19], the notion of USC
in this paper is equivalent to the notion of the outer semicontinuity in [41].

φ(x, t) ≥ ε then

arg max
q∈F (y ,τ )∪F (x,t)

g(q) ⊆ F (y, τ) \ F (x, t).

If φ(x, t) − φ(y, τ) ≥ ε, then arg maxq∈F (y ,τ )∪F (x,t) g(q) ⊆
F (x, t) \ F (y, τ). That is, arg maxq∈F (y ,τ )∪F (x,t) g(q) ⊆
F (x, t)�F (y, τ). Let β > 0. If {(yk , τk )}k∈N ⊂ B((x, t),
β) is a sequence converging to (x, t) such that |φ(yk , τk ) −
φ(x, t)| ≥ ε, then, ∀k ∈ N, maxq∈F (yk ,τk )∪F (x,t) g(q) =
maxq∈F (x,t)�F (yk ,tk ) g(q). Since g and F are con-
tinuous and F is locally bounded, the sequence
{maxq∈F (yk ,τk )∪F (x,t) g(q)}k∈N is a bounded sequence.
On the other hand, since F is continuous, the sequence
{F (x, t)�F (yk , τk )}k∈N converges to the null set, and hence,
the sequence {maxq∈F (yk ,τk )∪F (x,t) g(q)}k∈N converges to
−∞, which is a contradiction. �

Lemma 4: Let g : Rn × Rn → R be a continuous function
and let F : Rn × R≥t0 ⇒ Rn be a locally bounded, USC, and
compact-valued map. Let h := (p, x, t) �→ maxq∈F (x,t) g(p, q).
If Cx ⊂ Rn × R≥t0 and Cp ⊂ Rn are compact, then h is con-
tinuous in p, uniformly in (x, t) over Cp × Cx .

Proof: Since g is continuous, and F (Cx) and Cp are
compact,13 it is uniformly continuous on Cp × F (Cx). Thus,
given ε > 0, ∃δ > 0, independent of (p, x, t), such that
∀p, p0 ∈ Cp and ∀q, q0 ∈ F (Cx), ‖p − p0‖ < δ ∧ ‖q − q0‖ <
δ ⇒ g(p0 , p0) < g(p, q) + ε. In particular, ‖p − p0‖ < δ ⇒
g(p0 , p0) < g(p, q0) + ε. For any fixed p0 ∈ Cp and (x, t) ∈
Cx , ∃q0 ∈ F (x, t) such that h(p0 , x, t) = g(p0 , p0), and hence,
h(p0 , x, t) < g(p, q0) + ε. Since g(p, q0) ≤ h(p, x, t) by def-
inition, h(p0 , x, t) < h(p, x, t) + ε. That is, ∀p, p0 ∈ Cp and
∀(x, t) ∈ Cx , ‖p − p0‖ < δ ⇒ h(p0 , x, t) < h(p, x, t) + ε. By
symmetry, |h(p0 , x, t) − h(p, x, t)| < ε. �

Proof of Corollary 1: The Rademacher’s theorem [48, Th.
3.2] and [35, Proposition 2.3.6 (d)] imply that ∂V is
single-valued for almost all (x, t) ∈ Rn × R≥t0 . As a result,

for almost all (x, t) ∈ Rn × R≥t0 , ˙̄VF (x, t) = V̇ F (x, t). By
Proposition 2, for any (x, t) ∈ Rn × R≥t0 and β > 0, there
exists a sequence {(yk , τk )}k∈N ⊂ B((x, t), β), converging
to (x, t) such that ∂V (yk , τk ) = {∇V (yk , τk )} =: {pk} and
maxq∈F (yk ,τk ) pT

k [q; 1] ≤ −W (yk ).
Let qk ∈ arg maxq∈F (yk ,τk ) pT

k [q; 1]. Since the set-valued
map F is locally bounded and USC, the sequence {qk}k∈N is
bounded, and hence, admits a convergent subsequence {qkl

}l∈N

converging to some q∗ ∈ Rn × R≥t0 . Since ∂V is locally
bounded and USC (cf.[49, p. 4]), the sequence {pkl

}l∈N is
bounded. Hence, there exists a subsequence {pkl m

}m∈N con-
verging to some p∗ ∈ Rn . Hence,

(p∗)T [q∗; 1] ≤ lim
m→∞

−W
(
ykl m

)
= −W (x) . (35)

Using the characterization of the generalized gradient from [35,
p. 11, eq. (4)], p∗ ∈ ∂V (x, t). From Lemma 2, F is continuous,
and hence, q∗ ∈ F (x, t).

Let h := (p, x, t) �→ maxq∈F (x,t) pT [q; 1]. To prove the
corollary, it needs to be established that h(p∗, x, t) =

13F (Cx ) is bounded by [32, Lemma 15, p. 66], and since F is USC and Cx

is compact, F (Cx ) is also closed by [41, Th. 5.25 (a)].
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(p∗)T [q∗; 1]. The inequality h(p∗, x, t) ≥ (p∗)T [q∗; 1] is imme-
diate from the definitions. Also,

h (p∗, x, t)

− (p∗)T [q∗; 1] = h (p∗, x, t) − h
(
p∗, ykl m

, τkl m

)

+ h
(
p∗, ykl m

, τkl m

)
− h
(
pkl m

, ykl m
, τkl m

)

+ h
(
pkl m

, ykl m
, τkl m

)
− (p∗)T [q∗; 1] . (36)

Let ε > 0. By definition of p∗ and q∗, ∃M1 ∈ N such that
∀m ≥ M1 , |h(pkl m

, ykl m
, τkl m

) − (p∗)T [q∗; 1]| < ε
3 . Since ∂V

and F are USC, ∂V (B((x, t), β)) and F (B((x, t), β)) are closed
by [41, Th. 5.25], and hence, compact. Since (p, q) �→ pT [q; 1]
is continuous, Lemma 4 implies that the function h is continuous
in p, uniformly in (x, t), over ∂V (B((x, t), β)) × B((x, t), β).
Hence, ∃M2 ∈ N such that ∀m ≥ M2 , |h(p∗, ykl m

, τkl m
) −

h(pkl m
, ykl m

, τkl m
)| < ε

3 . Lemma 3 implies that the function
(x, t) �→ h(p∗, x, t) is continuous. Hence, ∃M3 > 0 such that
∀m ≥ M3 , |h(p∗, x, t) − h(p∗, ykl m

, τkl m
)| ≤ ε

3 .
Thus, for m ≥ max{M1 ,M2 ,M3}, h(p∗, x, t) ≤ (p∗)T

[q∗; 1] + ε. Since ε was arbitrary, h(p∗, x, t) = (p∗)T [q∗; 1].
Hence, from (35) and the definition of h, ∃p∗ ∈
∂V (x, t) such that maxq∈F (x,t)(p∗)T [q; 1] ≤ W (x), and hence,
minp∈∂V (x,t) maxq∈F (x,t) pT [q; 1] ≤ −W (x). �

In the following, [42, Lemma 1] is generalized to set-valued
maps using the generalized Lucin’s Theorem [41, Th. 14.10]. To
that end, the notion of approximate continuity and its relation
to Lebesgue measurability are generalized to set-valued maps.

Definition 6: A Lebesgue measurable set-valued map F :
Rn ⇒ Rn is called approximately continuous at x ∈ Rn if
there exists a measurable set G ⊆ Rn such that x is a point
of density 1 for G [48, Definition 1.25] and the map F

G
is

continuous at x.
Lemma 5: A Lebesgue measurable closed-valued map F :

Rn ⇒ Rn is approximately continuous at x for almost all x ∈
Rn .

Proof: Let ε > 0. The generalized Lusin’s Theorem [41,
Th. 14.10] implies that there exists a set E with μ(Ec) < ε
such that F

E
is continuous. By the Lebesgue density theorem

[48, Th. 1.35], almost every point of E is a point of density 1 for
E. As a result, F is approximately continuous at almost every
point of E. Since ε was arbitrary, F is approximately continuous
almost everywhere. �

Using Lemma 5, the results of [42, Lemma 1] can be gener-
alized to closed-valued maps as follows.

Theorem 4: If F : Rn ⇒ Rn is Lebesgue measurable and
closed-valued, and if E ⊆ Rn is Lebesgue measurable, then
there exists N0 ⊂ Rn such that μ(N0) = 0 and

⋂

μ(N )=0

coF (E\N) = coF (E \ N0) .

Proof: If μ(E) = 0 then the conclusion of the theorem triv-
ially follows with N0 := E. In the case where μ(E) > 0, let
N1 ⊂ Rn denotes the set of points where F is not approxi-
mately continuous and let N2 denotes the set of points in E that
are not points of density 1 for E. By Lemma 5, μ(N1) = 0 and

by the Lebesgue Density Theorem [48, Th. 1.35], μ(N2) = 0.
Let N0 := N1 ∪ N2 .

For all N ⊂ Rn with μ(N) = 0, coF (E \ (N ∪ N0)) ⊆
coF (E \ N0). As a result,

⋂
μ(N )=0 coF (E \ (N ∪ N0)) ⊆

coF (E \ N0), and since μ(N0) = 0,
⋂

μ(N )=0

coF (E \ N) ⊆ coF (E \ N0) .

To prove the reverse inclusion, let z ∈ coF (E \ N0). Then,
by the Carathéodory’s Theorem [38, p. 103], there exist points
{zj

1 , . . . , z
j
m} such that zj

i ∈ F (E \ N0), ∀i = 1, . . . ,m, and
positive real numbers {a1 , . . . , am} with

∑m
j=1 aj = 1, such

that limj→0
∑m

i=1 aj
i z

j
i = z. Fix N ⊂ Rn such that μ(N) = 0.

Claim For each j ∈ N, we can select {zj
i }m

i=1 ⊂ F (E \
(N0 ∪ N)) such that ‖

∑m
i=1 aj

i z
j
i −
∑m

i=1 aj
i z

j
i ‖ ≤ 1

j .
Proof of Claim: Fix j ∈ N. If ∃i ∈ {1, . . . , m} such that

zj
i ∈ F (E \ N0) \ F (E \ (N0 ∪ N)), then ∃xj

i ∈ (N \ N0) ∩
(E \ N0) such that zj

i ∈ F (xj
i ). By the definition of N0 , xj

i is a
point of density 1 for E. As a result, ∀ε > 0, ∃K ∈ N such that
∀k ≥ K

1 −
μ
(
B
(
xj

i ,
1
k

)
∩ E
)

μ
(
B
(
xj

i ,
1
k

)) < ε.

Particularly, ∀k ≥ K, μ(B(xj
i ,

1
k ) ∩ E) > (1 − ε)μ(B(xj

i ,
1
k )) > 0, which implies that ∀k ∈ N, μ((B(xj

i ,
1
k ) ∩ E) \

(N1 ∪ N2 ∪ N)) > 0. For each k ∈ N, if kxj
i is se-

lected such that kxj
i ∈ (B(xj

i ,
1
k ) ∩ E) \ (N0 ∪ N), then

limk→∞ kxj
i = xj

i .
Since F is approximately continuous on E \ N0 ,

limk→∞ F (kxj
i ) = F (xj

i ), in the sense of Painlevé–Kuratovski
convergence [39, Definition 1.1.1]. Since F (xj

i ) is the set of
limits of sequences {k zj

i } such that k zj
i ∈ F (kxj

i ), ∀k ∈ N
[39, Proposition 1.1.2], there exists a sequence {k zj

i } such that
limk→∞ k zj

i = zj
i and k zj

i ∈ F (kxj
i ), ∀k ∈ N. Hence, ∀γ > 0,

∃K ∈ N such that zj
i := K zj

i satisfies ‖zj
i − zj

i ‖ < γ. Since
the collection {zj

i }m
i=1 is finite, the claim is established. �

By the triangle inequality
∥∥∥∥∥

m∑

i=1

aj
i z

j
i − z

∥∥∥∥∥ =

∥∥∥∥∥

m∑

i=1

aj
i z

j
i −

m∑

i=1

aj
i z

j
i +

m∑

i=1

aj
i z

j
i − z

∥∥∥∥∥

≤
∥∥∥∥∥

m∑

i=1

aj
i z

j
i −

m∑

i=1

aj
i z

j
i

∥∥∥∥∥+

∥∥∥∥∥

m∑

i=1

aj
i z

j
i − z

∥∥∥∥∥ .

Given ε > 0, if J ∈ N is selected large enough such that 1
j <

ε
2 and ∀j > J , ‖

∑m
i=1 aj

i z
j
i − z‖ < ε

2 , then ‖
∑m

i=1 aj
i z

j
i −

z‖ < ε, ∀j > J . That is, limj→0
∑m

i=1 aj
i z

j
i = z. Therefore,

z is the limit of a sequence comprised of elements that
are convex combinations of points from F (E \ (N0 ∪ N)).
That is, z ∈ coF (E \ (N0 ∪ N)). Since N was an arbi-
trary set of Lebesgue measure zero, coF (E \ N0) ⊆ coF (E \
(N0 ∪ N)), ∀N such that μ(N) = 0. Hence, coF (E \ N0) ⊆⋂

μ(N )=0 coF (E \ (N0 ∪ N)), and since μ(N0) = 0, coF (E \
N0) ⊆

⋂
μ(N )=0 coF (E \ N). �
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