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Simultaneous Estimation of Euclidean Distances to a Stationary Object’s
Features and the Euclidean Trajectory of a Monocular Camera
Zachary I. Bell , Member, IEEE, Patryk Deptula , Member, IEEE, Emily A. Doucette ,

J. Willard Curtis , Member, IEEE, and Warren E. Dixon , Fellow, IEEE

Abstract—Data-based, exponentially converging observers are
developed for a monocular camera to estimate the Euclidean dis-
tance (and hence accurately scaled coordinates) to features on a
stationary object and to estimate the Euclidean trajectory taken by
the camera while tracking the object, without requiring the typi-
cal positive depth constraint. A Lyapunov-based stability analysis
shows that the developed observers are exponentially converging
without requiring persistence of excitation through the use of a
data-based learning method. An experimental study is presented,
which compares the developed Euclidean distance observer to
previous observers demonstrating the effectiveness of this result.

Index Terms—Computer vision, nonlinear observers, simultane-
ous localization and mapping (SLAM), structure from motion (SfM),
vision-based localization.

I. INTRODUCTION

In many applications, the state (e.g., position and orientation) of an
autonomous agent and its local environment (e.g., relative positions
of objects in the surrounding environment) must be determined from
sensor data. This problem is well known as simultaneous localization
and mapping (SLAM) (cf., [1]–[5]). Often, a global positioning system
(GPS) is used to estimate the position; however, in many environments,
GPS is unavailable (e.g., when agents operate in GPS denied or con-
tested environments) motivating the use of only local sensing data (e.g.,
camera images, inertial measurement units, and wheel encoders) to
estimate the position and model the surrounding environment.

Using cameras to reconstruct the surrounding environment (i.e.,
determine the Euclidean scale of objects in the environment) requires
the assumption that object features are in the camera field of view
(FOV) and may be extracted and tracked through a sequence of images.
However, a significant challenge arises in determining the scale of
objects in an image using a camera given the loss of depth information.
Specifically, images of objects are 2-D projections of the 3-D environ-
ment. Approaches to reconstruct (i.e., estimate the structure) objects
use multiple images of an object along with scale information (cf., [6],
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[7]) or motion (cf., [8]–[23]), such as linear and angular velocities of
the camera. The latter of these methods is referred to as structure from
motion (SfM). Generally, the Euclidean scales of objects are not known;
however, multiple calibrated cameras may be used to recover the scale
(cf., [6], [7]). However, this approach does not work in all scenarios
because some objects may have limited or no parallax between the
camera images. In SfM approaches, the potential for limited parallax
still exists; however, a camera may travel to generate enough parallax,
which is generally not possible in stereo vision.

The SfM problem may be approached using online iterative methods
(cf., [8]–[24]) and offline batch methods (cf., [6], [7], [25], and the
references contained within). These offline approaches perform an
optimization over an image sequence, but only show convergence for
limited cases (cf., [26], [27]). Most online SfM approaches assume
continuous measurements of objects by the camera or only update
when a new image is received (cf., [8]–[23]); however, recent results
have discussed approaches to handle objects temporarily leaving the
camera FOV (cf., [28]–[30]). Many results apply the extended Kalman
filter (EKF) to estimate depth (cf., [8], [10]–[12]); however, the EKF
generally does not guarantee convergence and may fail in some ap-
plications [31], [32]. Compared to the EKF approach, techniques, such
as [13], [15], [16], [18], [20], and [22], show asymptotic convergence of
the structure estimation errors. Furthermore, results, such as [9], [14],
[17], [19], and [21], show exponential convergence of the scale estimate
assuming some form of a persistence of excitation (PE) condition or
the more strict extended output Jacobian (EOJ) is satisfied. Specifi-
cally, the authors in [17] show exponential convergence assuming the
PE condition is met and either the initial estimation error is small
or the velocities are limited. Furthermore, the development in [19]
yields exponential convergence assuming the observer satisfies the EOJ
condition. In [21], an exponentially stable observer is developed that
requires the motion along at least one axis to be nonzero, and the
observer remains ultimately bounded if the PE assumption does not
hold, whereas in [19], the observer becomes singular. Typically, SfM
approaches require the motion (e.g., linear and angular velocities) to be
known; however, the design in [22], extending an approach similar to
Dani et al. [21], demonstrates a partial solution to the more challenging
problem (i.e., compared to SfM) of structure and motion where not
only are the feature Euclidean coordinates estimated, but also two of
the linear velocities and the three angular velocities of the camera
are estimated assuming PE and the linear velocity, and acceleration
is measurable along one axis.

In this article, and our preliminary work in [23], exponentially
converging observers are developed that use a camera to estimate the
Euclidean distance to features on a stationary object in the camera FOV
while also estimating the Euclidean trajectory of the camera tracking
the object. Unlike previous methods, such as [9], [14], [17], [19],
and [21], that assume a PE condition, the developed estimator only
requires finite excitation. The finite excitation condition results from
the use of concurrent learning (CL) (cf., [33]–[36]). The concept of
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CL is to use recorded input and output data from system trajectories
to identify uncertain constant parameters of the system in real time
under the assumption that the system is sufficiently excited for a
finite amount of time. This approach relaxes the PE assumption and
can be monitored and verified online. The results in [24] demonstrate
exponential convergence of depth estimates using CL; however, these
results rely on the assumption that the features are on a plane. CL
could be applied to achieve the result in this article; however, motivated
by the performance improvement as discussed in [37] (especially for
noise-prone image feedback), this article employs integral CL (ICL)
(cf., [23], [37]–[39]). ICL removes the necessity to estimate the highest
order derivative of the system required in traditional CL (cf., [23],
[37]–[39]).

Although ICL removes the need for measuring the state derivative,
it still requires the state to be measurable; yet, a unique challenge in
this article is that the state depends on the unmeasurable distance to the
target. Moreover, the traditional state used in results, such as [8]–[22],
[24], includes an inherent singularity when one of the coordinates be-
comes zero (i.e., the so-called depth to the target). Specifically, previous
results assume a positive depth constraint where the distance from the
focal point of the camera to the target along the axis perpendicular to the
image plane remains positive. The positive depth constraint is satisfied
if the features remain in the camera FOV; however, the constraint can
be violated for some camera rotations that cause the feature to leave
the FOV. Since new results are being developed that allow features
to intermittently leave the FOV (cf., [29], [30], [40], [41]), a new
formulation of the error system is motivated.

In this article, we exploit alternative image geometry insights to
express the error system with a more general distance measure that
only becomes zero when the target and camera are coincident; thereby,
avoiding the positive depth constraint. While this result also requires
the features to remain in the FOV (which ensures that the positive depth
constraint is satisfied), eliminating the positive depth constraint elim-
inates a barrier for future development that would allow intermittent
viewing of the features. Although, the new image geometry based error
system avoids the potential depth singularity, the resulting error system
still contains the unmeasurable distance to the target. However, the
development in Section III illustrates how the unmeasurable state can be
related to an unknown constant to enable the use of ICL. Regardless of
the system identification method used, there is a delay before sufficient
excitation occurs to identify the parameters. Therefore, the preliminary
result in [23] and the development in Section III exhibit an arbitrarily
long delay before determining the feature Euclidean coordinates. In
Section IV, we modify the developed learning strategy to include
gradient terms that enable transient learning until sufficient data have
been collected for the ICL terms.

To illustrate the performance of the developed observers, multiple
experiments are presented, including a comparison of the observers in
Sections III and IV with the results in [21] and an EKF. These results
indicate that the EKF and result in [21] have improved transient per-
formance over the result in Section III, before the ICL-based estimates
converge. The EKF and result in [21] have similar transient response
as the observer in Section IV before the ICL-based estimates converge.
After the ICL-based estimates converge, the observers in Sections III
and IV converge to steady state with improved performance over the
EKF and observer in [21].

II. MOTION MODEL FOR STATIONARY FEATURES

The following definitions and assumptions are presented to aid in
the development of the subsequent observers.

Fig. 1. Example geometry for tracking the position of the ith feature of
s. Example shows the camera starts at the top left where the key image
is taken and is traveling downward from the upper left to the lower left
while tracking a stationary object on the right.

Definition 1: A key frame is defined as the camera frame at which
features are first extracted from an image of an object.

The key frame, denoted by Fk, has its origin at the principal point of
that image, denoted by k, and basis {xk, yk, zk}. The frame at which
the current image is taken, denoted by Fc, has its origin at the principal
point of the current image, denoted by c, and basis {xc, yc, zc}. This
implies that Fk is established to coincide with Fc at time t = 0.

Assumption 1: There exists a stationary object s with features that
can be detected and tracked provided they are within the FOV of the
camera. Specifically, for all time t ∈ R≥0, a set of at least p ∈ Z≥4

trackable planar features or p ∈ Z≥5 nonplanar features are on s are in
the camera’s FOV.

Remark 1: It is assumed that the object remains in the FOV in
this result; however, the subsequent development may be extended
to not require this constraint. Additionally, using feature extraction
techniques, such as [42], a set of features can be extracted from an image
of a stationary object. These features can then be tracked while they are
in the FOV of the camera using techniques, such as [43] and [44].

Assumption 2: The camera intrinsic matrixA ∈ R3×3 is known and
invertable [7].

Assumption 3: The camera linear and angular velocities,
vc(t), ωc(t) ∈ R3, are measurable and expressed in Fc.

As shown in Fig. 1, the position of the ith feature on s, si ∈
Z>0 ∀i = {1, . . ., p}, can be described as

p
si/c

(t) = p
k/c

(t) +Rk/c(t)psi/k
(1)

where p
k/c

(t) ∈ R3 is the position of k with respect to c expressed

in Fc, p
si/k

(t) ∈ R3 is the position of feature si with respect to k

expressed in Fk, Rk/c(t) ∈ R3×3 is the rotation matrix describing the
orientation of Fk with respect to Fc, and p

si/c
(t) ∈ R3 is the position

of feature si with respect to c expressed in Fc. Rearranging (1) gives

[
usi/c

(t)− uk/c(t)
] [dsi/c(t)

dk/c(t)

]
= Rk/c(t)usi/k

dsi/k (2)

where dsi/c(t) ∈ R>0 and usi/c
(t) ∈ R3 are the distance and unit

vector of feature si with respect to c expressed in Fc, respectively;
dk/c(t) ∈ R>0 and uk/c(t) ∈ R3 are the distance and unit vector of k
with respect to c expressed in Fc, respectively; and dsi/k ∈ R>0 and
usi/k

∈ R3 are the distance and unit vector of feature si with respect
to k expressed in Fk, respectively.

Assumption 4: The origins k and c are not coincident for all time
t > 0, implying dk/c(t) > 0. Additionally, the motion of the camera is
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not parallel to the position of a feature, ‖uk/c(t)− usi/c
(t)‖ > 0, for

all time t ≥ 0.
Under Assumptions 1–4, the rotationRk/c(t) and unit vectoruk/c(t)

can be determined from a general set of stationary features, using exist-
ing techniques, such as planar homography decomposition or essential
decomposition.1 Additionally, usi/k

and usi/c
(t) can always be deter-

mined from usi/k
=

A−1psi/k

‖A−1psi/k
‖ and usi/c

(t) =
A−1psi/c

(t)

‖A−1psi/c
(t)‖ , where

psi/k, psi/c(t) ∈ R3 are the homogeneous pixel coordinates of feature
si in Fk and Fc, respectively. Let Hsi(t) � [usi/c

(t) − uk/c(t)].
While dk/c(t) > 0, (2) is invertable such that[

dsi/c(t)

dk/c(t)

]
= ψsi(t)dsi/k (3)

where ψsi(t) � (HT
si
(t)Hsi(t))

−1HT
si
(t)Rk/c(t)usi/k

is invertable
and measurable under Assumptions 1–4. Furthermore, given Fk and
s are stationary, the time derivatives of the unknown distances are
measurable as

d

dt

(
dsi/c(t)

)
= ηsi,1(t) (4)

d

dt

(
dk/c(t)

)
= ηsi,2(t) (5)

and

d

dt
(dsi/k) = 0 (6)

whereηsi,1(t) andηsi,2(t) are the first and second elements of ηsi(t) �
−[

uT
si/c

(t)

uT
k/c

(t)
]vc(t), respectively.

III. INTEGRAL CL OBSERVER UPDATE LAWS FOR

EUCLIDEAN DISTANCES

Motivated by the developments in [23] and [38], an ICL update law
is implemented to estimate the constant unknown distances dsi/k by
integrating (4) and (5) over a time window ς ∈ R>0 yielding[

dsi/c(t)

dk/c(t)

]
−
[
dsi/c (t− ς)

dk/c (t− ς)

]
=

∫ t

t−ς

ηsi (ι) dι, t > ς

where ς may be constant in size or change over time. While∫ t

t−ς
ηsi(ι)dι is a known quantity, [ dsi/c(t)

dk/c(t)
] and [

dsi/c
(t−ς)

dk/c(t−ς)
] are un-

known; however, the relationship in (3) may be utilized at the current
time t and the previous time t− ς yielding

Ysi(t)dsi/k = Usi(t) (7)

where Ysi(t) �
{
02×1, t ≤ ς,

(ψsi(t)− ψsi(t− ς)), t > ς,
and Usi(t) �{

02×1, t ≤ ς∫ t

t−ς
ηsi(ι)dι, t > ς

. The dynamics in (7) demonstrate that CL

may be used to estimate the constant distances dsi/k to the features on
s. Specifically, multiplying both sides of (7) by YT

si
(t) yields

YT
si
(t)Ysi(t)dsi/k = YT

si
(t)Usi(t). (8)

In general,Ysi(t)will not have full column rank (e.g., when the camera
is stationary) implying YT

si
(t)Ysi(t) ≥ 0. However, the equality in (8)

1See [6], [7], and [45] for examples on calculating the rotation and normalized
translation from planar and nonplanar features; however, nonplanar methods will
require more than four features to be tracked.

may be evaluated at instances in time and summed together (i.e., history
stacks) as

ΣYsi
dsi/k = ΣUsi (9)

where ΣYsi
�

∑N
hi=1 YT

si
(thi

)Ysi(thi
), ΣUsi �

∑N
hi=1 YT

si
(thi

)
Usi(thi

), thi
∈ (ς, t), and N ∈ Z>1. A method for selecting data is

subsequently described in Remark 4.
Assumption 5: The camera has sufficiently rich motion so that there

exists finite constants τsi ∈ R>ς , λτ ∈ R>0 such that for all time
t ≥ τsi , λmin{ΣYsi

} > λτ , where λmin{·} and λmax{·} are the minimum
and maximum eigenvalues of {·}, respectively.2 This assumption is an
observability condition for the subsequent development that is similar
to other image-based observers (cf., [9], [14], [17], [19], [21]); however,
if this condition is not satisfied, the observer remains bounded, as
demonstrated in the subsequent analysis.

Assumption 5 can be verified online and is heuristically easy to
satisfy because it only requires a finite collection of sufficiently exciting
Ysi(t) and Usi(t) to yield λmin{ΣYsi

} > λτ . The time τsi is unknown;
however, it can be determined online by checking the minimum eigen-
value of ΣYsi

. After τsi , λmin{ΣYsi
} > λτ implies that a constant

unknown distance dsi/k can be determined from (9) as

dsi/k = Xsi , t ≥ τsi (10)

where Xsi �
{
0, t < τsi
Σ−1

Ysi
ΣUsi , t ≥ τsi

. When t ≥ τsi , (10) can be sub-

stituted into (3) to yield

dsi/c(t) = νsi,1(t), t ≥ τsi (11)

and

dk/c(t) = νsi,2(t), t ≥ τsi (12)

where νsi,1(t) and νsi,2(t) are the first and second elements of νsi(t) �
ψsi(t)Xsi , respectively.

The estimation errors, d̃si/c(t), d̃k/c(t), d̃si/k(t) ∈ R, are quanti-
fied as

d̃si/c(t) � dsi/c(t)− d̂si/c(t) (13)

d̃k/c(t) � dk/c(t)− d̂k/c(t) (14)

and

d̃si/k(t) � dsi/k − d̂si/k(t) (15)

where d̂si/c(t), d̂k/c(t), d̂si/k(t) ∈ R are the estimates with initial
conditions d̂0si/c, d̂

0
k/c, d̂

0
si/k

∈ R selected based on the tracking ob-
jective (e.g., user knowledge of the application or related sensors, such
as an altimeter, when viewing ground targets from an airborne camera).
Motivated by the subsequent stability analysis, the implementable
observer update laws for the estimates are designed using (10)–(12)
as

d

dt

(
d̂si/c(t)

)
�
{
ηsi,1(t), t < τsi

ηsi,1(t) + k1

(
νsi,1(t)− d̂si/c(t)

)
, t ≥ τsi

(16)

d

dt

(
d̂k/c(t)

)
�
{
ηsi,2(t), t < τsi

ηsi,2(t) + k2

(
νsi,2(t)− d̂k/c(t)

)
, t ≥ τsi

(17)

2See [46] and [47] for some examples of methods for selecting data to satisfy
the assumption.
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and

d

dt

(
d̂si/k(t)

)
�

{
0, t < τsi

k3

(
Xsi − d̂si/k(t)

)
, t ≥ τsi

(18)

where k1, k2, k3 ∈ R>0 are constants. Taking the time derivative of
(13)–(15), and substituting (10)–(15), (4)–(6), and (16)–(18) yields

d

dt

(
d̃si/c(t)

)
=

{
0, t < τsi
−k1d̃si/c(t), t ≥ τsi

(19)

d

dt

(
d̃k/c(t)

)
=

{
0, t < τsi
−k2d̃k/c(t), t ≥ τsi

(20)

and

d

dt

(
d̃si/k(t)

)
=

{
0, t < τsi
−k3d̃si/k(t), t ≥ τsi

(21)

implying for all time t ≥ τsi , the estimation error derivatives are nega-
tive definite functions of the estimation errors. The forms of the update
laws in (16)–(18) are implementable and used in practice, whereas the
forms of the time derivative of the estimation errors in (19)–(21) are
analytical and provided to facilitate the subsequent analysis.

IV. EXTENDED OBSERVER UPDATE LAW FOR EUCLIDEAN DISTANCE

TO FEATURES FROM CAMERA

The subsequent analysis demonstrates that (13) and (19) will remain
bounded while t < τsi . However, after sufficient data are gathered,
for all t ≥ τsi , (13) will be shown to decay exponentially. The delay
required to get sufficient excitation may reduce transient performance
(i.e., the error is not guaranteed to reduce until after time t ≥ τsi ), which
is a disadvantage compared to previous approaches, such as [21], which
improve estimation errors by estimating optical flow. Motivated by the
optical flow estimator form of the inverse depth estimator in [21], the
time rate of change of usi/c

(t) is approximated and used to provide
additional information to the estimator in (16), which will improve
transient performance while sufficient excitation has not occurred.

Taking the time derivative of usi/c
(t) yields

d

dt

(
usi/c

(t)
)
= − ω×

c (t)usi/c
(t)

+
1

dsi/c(t)

(
usi/c

(t)uT
si/c

(t)− I3×3

)
vc(t)

and

ξTsi(t)ξsi(t)dsi/c(t) = ξTsi(t)ρsi(t) (22)

where ξsi(t) � ( d
dt
(usi/c

(t)) + ω×
c (t)usi/c

(t)), ρsi(t) �

(usi/c
(t)uT

si/c
(t)− I3×3)vc(t), ω×

c (t) �

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦,

and I3×3 �

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦. To aid in the subsequent analysis, let

μsi(t) � ηsi,1(t) + kξ(ξ
T
si
(t)ρsi(t)− ξTsi(t)ξsi(t)d̂si/c(t)), then an

extended version of the estimator in (16) is designed as

d

dt

(
d̂si/c(t)

)
�
{
μsi(t), t < τsi

μsi(t) + k1

(
νsi,1(t)− d̂si/c(t)

)
, t ≥ τsi

(23)

where kξ ∈ R>0. Using (13) and (22) in (23), then simplifying yields

d

dt

(
d̂si/c(t)

)
=

{
ηsi,1(t) + kξΞsi(t)d̃si/c(t), t < τsi
ηsi,1(t) + (k1 + kξΞsi(t)) d̃si/c(t),t ≥ τsi

(24)

TABLE I
RMS DEPTH ERROR AND POSITION ERROR IN METERS

OVER 15 EXPERIMENTS

TABLE II
RMS DEPTH ERROR AND POSITION ERROR IN METERS OVER 15

EXPERIMENTS BEFORE LEARNING

where Ξsi(t) � ξTsi(t)ξsi(t). Substituting (24) into the time derivative
of (13) yields

d

dt

(
d̃si/c(t)

)
=

{
−kξΞsi(t)d̃si/c(t), t < τsi
− (k1 + kξΞsi(t)) d̃si/c(t), t ≥ τsi .

(25)

Remark 2: Under Assumption 5, Ξsi(t) ≥ 0 given ‖vc(t)‖ may
be zero for any period of time; however, for Assumption 5 to be
satisfied, there will be times where Ξsi(t) > 0. Specifically, there will
exist a set of times Tsi ⊂

⋃N
hi=1(thi

− ς, thi
) such that Ξsi(t) >

0 ∀t ∈ Tsi , where hi and thi
are from (9), implying the design in

(23) may improve transient performance under Assumption 5. The
reasoning is that for Assumption 5 to hold, there must be a change in
usi/c

(t) over the time intervals Tsi ⊂
⋃N

hi=1(thi
− ς, thi

) implying

‖ξsi(t)‖ > 0 since ξsi(t) � ( d
dt
(usi/c

(t)) + ω×
c (t)usi/c

(t)). Since

Ξsi(t) � ξTsi(t)ξsi(t), Ξsi(t) > 0 over those time intervals implying
d
dt
(d̃si/c(t)) = −kξΞsi(t)d̃si/c(t) < 0, and hence, d̃si/c(t) will be

decaying.
Remark 3: As shown in (10)–(12), the distance values are deter-

mined and may be used directly; however, Assumption 5 describes the
period of time τsi required to learn (10) where no information about
the distances is available except through the dynamics. Additionally,
feature tracking is noisy resulting in noisy estimates of the rotation
Rk/c(t) and unit vector uk/c(t) implying the history stack will have
noisy data. The estimators in (16)–(18) combine the dynamics with
feedback resulting in improved estimates and robustness to noise.
Specifically, during the learning period, t < τsi , the estimators ensure
the error is bounded as subsequently shown in the analysis. After the
learning period, t ≥ τsi , the estimators use error feedback to converge
to the value by effectively filtering the measurements [e.g., from (16),
d
dt
(d̂si/c(t)) � ηsi,1(t) + k1(νsi,1(t)− d̂si/c(t)) after t ≥ τsi imply-

ing a control over how much a noisy νsi,1(t) can affect the state
estimate through k1). Additionally, using the extended estimator in (23)
further improves transient performance as subsequently shown in Fig. 4
where the estimator has practically converged when t = max{τsi},
the time all the distances have been learned. Furthermore, the results
in Tables I – III show that (23) outperforms the other methods
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TABLE III
RMS DEPTH ERROR AND POSITION ERROR IN METERS OVER 15

EXPERIMENTS AFTER LEARNING

in terms of rms error. An approach that only uses (10)–(12) would
imply no information is available until enough data are collected,
which will have higher rms error and no control over the rate of
learning.

V. STABILITY ANALYSIS

Given the observer in (23) is an extension of (16), the resulting
stability analysis of (16) is identical to Theorem 1 and is excluded.
Let η(t) � [d̃si/c(t) d̃k/c(t) d̃si/k(t)]

T and V (η(t)) : R3 → R be
a candidate Lyapunov function defined as

V (η(t)) � 1

2
ηT (t)η(t). (26)

Theorem 1: The observer update laws defined in (17), (18), and
(23) ensure the estimation errors in η(t) are bounded and globally
exponentially stable in the sense that

‖η(t)‖ ≤ ‖η(0)‖exp (βτsi) exp (−βt) . (27)

Proof: Taking the time derivative of (26), then substituting the error
derivatives in (20), (21), and (25), simplifying, then upper bounding
yields

d

dt
(V (η(t))) ≤

{
0, t < τsi
−2βV (η(t)) , t ≥ τsi

(28)

where β = min{k1, k2, k3}. From (26) and (28), [48, Th. 8.4] can be
invoked to conclude that ‖η(t)‖2 ≤ ‖η(0)‖2 ∀t ≤ τsi . From [48, Th.
4.10], ‖η(t)‖2 ≤ ‖η(τsi)‖2exp(2βτsi)exp(−2βt) ∀t ≥ τsi . Evalu-
ating the first bound on ‖η(t)‖2 at t = τsi , then substituting into the
second bound on ‖η(t)‖2 and taking the square root yields (27). �

VI. EXPERIMENTAL RESULTS

Fifteen experiments are provided to demonstrate the performance of
the developed observers. The performances of the developed observers
in (16)–(18) and (23) were tested using the Eigen3, OpenCV, and ROS
c++ libraries (cf., [49], [50], and [51], respectively). A Kobuki Turtlebot
with a 1920 × 1080 monochrome iDS uEye camera, shown in Fig. 2,
provides images at 30 Hz. Features were extracted from images of a
checkerboard, shown in Fig. 2, with 8× 6 corners (48 total features)
where each square is 0.06 m × 0.06 m in dimension. The linear and
angular velocities of the camera were calculated using the Turtlebot
wheel encoders and a gyroscope at 50 Hz. In addition, an Optitrack
motion capture system operating at 120 Hz measured the pose of the
camera and checkerboard, allowing for the position of each feature
relative to the camera to be known for comparison. Image processing
and estimators were multithreaded using four threads and executed
simultaneously on a computer with an Intel i7 processor running at
3.4 GHz, ensuring the system ran at 30 Hz. The errors of the distance
estimators in (16) and (23) are compared to the estimator in [21] and
an EKF. Given the estimator in [21] and the EKF estimate the inverse

Fig. 2. Image shows the checkerboard, Kobuki Turtlebot, and iDS
uEye camera used for experiments.

Fig. 3. Camera trajectories for each of the 15 experiments.

depth (i.e., 1
zsi/c

(t)
, where zsi/c(t) is the depth to feature si from c

expressed in Fc), whereas the estimators in (16) and (23) estimate the
distance, the comparison of the four methods is shown by the depth,
zsi/c(t), which is the third element of usi/c(t)dsi/c.

For each experiment, the Turtlebot started approximately 3 m away
from the checkerboard, and various trajectories were taken, shown
in Fig. 3, while maintaining the checkerboard in the FOV. In each
experiment, the Turtlebot initially started at rest, and after traveling
2.5 m, the estimators were stopped to provide a large baseline. After
the Turtlebot started its motion in the beginning of each experiment,
the Turtlebot traveled without stopping until after the estimators were
stopped in an effort to have the ideal conditions for estimation (i.e.,
continuous motion of the features in the camera FOV and continuous
linear motion of the camera as is required for [21] and the EKF). The
initial distances for the estimators in (16), (18), (23), the estimator
in [21] and the EKF were initialized from a depth of 0.5 m. The
estimator in (17) was initialized to 0 m. The gains for (16)–(18) and
(23) were selected as k1 = k2 = k3 = 25 and kξ = 25k1, respectively.
The maximum value for ς was 5 s. The 48 feature estimates were
combined using a mean at each instance to update (17). The gain
for the method in [21] was selected to be 100. The covariance ma-
trices for the EKF were selected as R = r[ 1 0

0 1
] for the measurement

covariance, Q = r

⎡
⎣100 0 0

0 100 0
0 0 100000

⎤
⎦for the process covariance,

andP (0) = r

⎡
⎣1 0 0
0 1 0
0 0 150000

⎤
⎦ for the initial state covariance, where

r = 0.00001. The gains and covariance matrices used were experimen-
tally determined to obtain the performance shown in Figs. 3–5 and
Tables I–III.

Remark 4: For a general system, the optimal approach to select
good data and remove bad data for (9) (e.g., due to noise or parameter
changes) remains an open problem and is often left to intuition about
the system. Results in [47] demonstrated a purging method to remove
bad data using two separate history stacks. The first stack was actively
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Fig. 4. Sum of the norm of each depth error across the 48 features
(i.e.,

∑48

si=1
‖z̃si/c(t)‖) for experiment 11. Estimator 1 (red) refers to

(16), estimator 2 (magenta) refers to (23), estimator 3 (green) refers
to Dani et al. [21], and estimator 4 (blue) refers to the EKF. The black
vertical line indicates the time when enough information was collected
for learning.

Fig. 5. Position error of the camera and the distance error using the
estimator in (17) for experiment 11.

used by the estimator while the second stack collected data using a
singular value maximization method. After a set of conditions was
satisfied, the first stack was replaced by the second stack and the
second stack was purged. After purging the second stack, new data
were again collected using the singular value maximization method and
the process repeated. For the experiments in this article, the selection
of data was based on knowledge of approximate noise magnitudes in
feature tracking and velocity measurements. Specifically, data were
only selected if ‖Ysi(t)‖ ≥ εY and ‖Usi(t)‖ ≥ εU where εY , εU ∈ R>0

are values selected based on an empirical process. Because Ysi(t) is
full column rank when ‖Ysi(t)‖ ≥ εY and ‖Usi(t)‖ ≥ εU , the value
of dsi/k approximated by Ysi(t) and Usi(t) can be determined. Given
dsi/k > 0, and some knowledge about reasonable values for the dis-
tances, values of dsi/k can be determined and only Ysi(t) and Usi(t)
values that had dsi/k estimates falling in these bounds are saved to
ΣYsi

and ΣUsi . The values for εY and εU were εY = εU = 0.1 and the
bounds on the distance were selected as 0.5 and 6 m.

A comparison of the example performance over time of the estima-
tors is shown in Fig. 4 and Tables I–III, where before learning refers
to t < max{τsi} and after learning refers to t ≥ max{τsi}. Fig. 4
shows the typical learning time where max{τsi} = 3.6 s is shown as
a black vertical line. Fig. 4 shows a comparison of the sum of the norm
of each depth error across the 48 features (i.e.,

∑48
si=1 ‖z̃si/c(t)‖) on

the checkerboard for the estimators in (16), (23), [21], and the EKF,
respectively. As shown in Fig. 4, the EKF estimator starts converging
the fastest, but reaches steady state slower than the estimators in (16),
(23), and [21]. However, after converging, the EKF has a similar error
to the estimators in (16) and (23). Fig. 4 also shows that the estimator
in (16) does not converge until sufficient learning occurs (at t = 3.6 s
for experiment 11). The extension in Section IV shows an advantage
of using current input–output data in the estimator, as shown by the

mean rms errors in Tables I and II. Specifically, the estimator in (16)
is at a disadvantage to the other estimators before sufficient excitation
has occurred, whereas the estimator in (23) starts converging to the true
depths at a similar time frame as the estimator in [21]. The average
rms error of (16) is more than 10 m greater than the other estimators
over the entirety of each experiment, and more than 20 m greater before
learning. However, Table III shows that the average error of (16) after
learning is only 1 m greater than the EKF on average.

The extension in Section IV, specifically the design in (23), improves
the error convergence of (16) such that the rms error is lower than the
EKF on average. As shown in Table I, the average error over the entire
experiment runtime was 59.068 m for (23) compared to 59.141 m for
the EKF. After learning, the average rms error for the estimator in (23)
was smaller (2.547 m) compared to the EKF (10.897 m). However, as
shown in Table II, the rms error before learning was smaller for the
EKF compared to (23), where the errors were 104.287 m for the EKF
and 105.455 m for the estimator in (23). Additionally, Tables I–III show
that the design in (23) has a smaller rms error than the design in [21] on
average. Fig. 5 and Tables I–III show that the position error using (17) is
small with an average rms error of 0.026 m over the entire run; 0.005 m
before learning and 0.031 m after learning, which is approximately
1.2% error relative to trajectory length. The error increase after learning
is a result of noise, which, as shown in Fig. 4 and Table III, causes the
depth error to remain small but bounded at approximately 1.8% of the
initial error. These experimental results demonstrate the ability of the
observer in (16) to leverage both immediate information and learning
to both converge quickly with low rms error and maintain a low rms
error after converging.

VII. CONCLUSION

Novel observers using a single camera and structure from motion
theory are developed to estimate the Euclidean distance to features
on a stationary object and the Euclidean trajectory the camera takes
while observing the object. Unlike previous results that estimate the
inverse depth to features, the developed observer for estimating the
Euclidean distance to features does not require the positive depth
constraint. A Lyapunov-based stability analysis shows that the observer
error is exponentially converging without requiring PE and instead
only requires finite excitation through the use of ICL. An experimental
comparison of the developed estimator to existing estimators shows that
it achieves lower rms error when comparing feature depth estimates on
average and the rms error of the position also remains low.

Future work may examine extending this result to include a solution
for estimating the velocities of the camera and the structure of multiple
objects while allowing those objects to leave the camera FOV over
time either temporarily or permanently. The extended result would
allow a camera to travel over larger distances and allow the camera to
reconstruct a larger environment, which may be used in the development
of a SLAM algorithm.
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