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Deep Neural Network-Based Approximate Optimal Tracking for
Unknown Nonlinear Systems
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Abstract—The infinite horizon optimal tracking problem is
solved for a deterministic, control-affine, unknown nonlinear dy-
namical system. A deep neural network (DNN) is updated in real
time to approximate the unknown nonlinear system dynamics. The
developed framework uses a multitimescale concurrent learning-
based weight update policy, with which the output layer DNN
weights are updated in real time, but the internal DNN features are
updated discretely and at a slower timescale (i.e., with batch-like
updates). The design of the output layer weight update policy is
motivated by a Lyapunov-based analysis, and the inner features are
updated according to existing DNN optimization algorithms. Simu-
lation results demonstrate the efficacy of the developed technique
and compare its performance to existing techniques.

Index Terms—Adaptive control, neural networks, nonlinear con-
trol, reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL) is a technique that facilitates adaptation
in many computational problems, such as robotics, video game playing,
supply chain management, and automatic control. Generally, RL-based
agents interact with an environment, sense the state of the system,
and perform an action that seeks to minimize or maximize a cost
function [1]. The cost depends on the environment, state, and previous
action(s) of the system. RL, unlike supervised learning, can evaluate
the performance of a particular action without a teacher. This makes
RL well-posed to determine policies in which examples, or models, of
desired behavior do not exist. These qualities have motivated the use of
RL to obtain online approximate solutions to optimal control problems
for systems with finite state-spaces as shown in [2].

The solution to the Hamilton–Jacobi–Bellman (HJB) equation is the
optimal value function, which is used to determine the optimal control
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policy [3]. However, the HJB equation is a nonlinear partial differential
equation that generally does not have an analytical solution. RL can
be used to approximate the solution to the HJB using an approximate
dynamic programming (ADP)-based approach in [2], [4], [5], [6], [7],
and [8]. If the value function is successfully approximated, then a
stabilizing optimal control policy can be determined.

An indirect measure of a given policy’s (sub)optimality, called the
Bellman error (BE), is derived from the HJB equation. In conventional
ADP approaches, the BE is evaluated at on-trajectory points. In the
model-based ADP method developed in [9] and used this work, the BE
is calculated at on- and off-trajectory points. This process is called BE
extrapolation. BE extrapolation can provide simulation of experience;
however, methods, such as simulation of experience and BE extrapola-
tion require a model of the system’s dynamics. Results, such as [10], use
a model-free approach to solve the Hamilton–Jacobi–Isaacs equation.
However, Modares et al. [10] rely on an initially stabilizing control
policy and a sufficiently large set of data pairs, which are collected
online, to successfully approximate the optimal control policy.

Using a model for methods, such as simulation of experience or
BE extrapolation enables faster learning in comparison to model-free
methods. However, the need for a model can limit robustness and
applicability. Motivated by this issue, the model-based ADP methods
in [9] and [11] use a data-driven concurrent learning (CL)-based system
identifier (see [12] and [13]) to simultaneously approximate the drift dy-
namics and, subsequently, the optimal control policy. Using a CL-based
adaptation law provides guarantees on system parameter convergence,
which are not obtained via traditional gradient or least-squares-based
update laws. The result in [11] uses a CL-based policy to update the
weights of a single hidden-layer NN in real time. However, recent
evidence indicates that deep neural networks (DNNs) utilize a more
complex structure to potentially improve the function approximation
performance [14].

The results in [15] leverage a multitimescale DNN-based model
reference adaptive controller. Similarly, the method in [16] uses a
multitimescale DNN to approximate the unknown system dynamics,
which, with a robust sliding-mode controller, facilitates a trajectory
tracking objective. In [16], a gradient-based adaptation policy is used
to update the output layer weights of the DNN in real time. Simulta-
neous to real-time execution, input–output data is stored and used to
update the inner layer features using traditional offline DNN function
approximation training methods. The inner layer features are updated
iteratively (i.e., not in real time); specifically, the inner layer features are
instantaneously implemented when the inner layer DNN update policies
complete retraining based on user-defined criteria. Iteratively updating
the inner layer features introduces discontinuities into the adaptation
algorithm; these discontinuities propagate into the closed-loop error
system. Hence, the Lyapunov-based stability result from [11] cannot be
easily extended. A more rigorous Lyapunov-like analysis that considers
piecewise-in-time discontinuities in the dynamics is required. Further-
more, the adaptive update policy in [16] cannot be easily extended to
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facilitate system identification within the ADP framework. The result
in [16] does not guarantee convergence of the output layer weights to
their respective ideal values. To prove stability of the overall system with
an ADP-based controller, the adaptive update policy of the output layer
DNN weights must include a CL modification from [13], which further
complicates the stability analysis (cf., model-based ADP analyzes in [9]
and [11]).

A novel aspect of this article is the development of a multitimescale
DNN system identifier to approximate the solution to the optimal
trajectory tracking problem using an online model-based RL frame-
work. Unlike the output layer DNN weight update policy in [16],
the developed output layer DNN weight update policy is augmented
with a CL-based term to facilitate parameter convergence, which is
necessary to prove that the trajectories of the system are uniformly
ultimately bounded (UUB). Furthermore, iteratively updating the inner
layer features of the DNN introduces piecewise-in-time discontinuities
into the dynamics, which must be considered in the stability analysis.
A Lyapunov-based stability analysis proves that, while performing
continuous-time updates to the output layer weights, along with iterative
updates to the inner layer features of the DNN, the applied control policy
converges to within a neighborhood of the optimal control policy, and
the state trajectory converges to within a neighborhood of the desired
state trajectory. The simulation results show that one iteration of DNN
retraining improves tracking performance by 10.7%.

II. PROBLEM FORMULATION

Consider a class of nonlinear control-affine systems1

ẋ = f(x) + g(x)u (1)

where x ∈ Rn denotes the system state, u ∈ Rm denotes the control
input, f : Rn → Rn denotes the drift dynamics, and g : Rn → Rn×m

denotes the control effectiveness matrix with n ≥ m and the pseudoin-
verse of g(x) exists. Let xd ∈ Rn denote a time-varying continuously
differentiable desired state trajectory, and e � x− xd quantifies the
error between the actual and desired state. The following assump-
tions facilitate the formulation of the approximate optimal tracking
controller [11].

Assumption 1: The function f is a locally Lipschitz function and
f(0) = 0. Furthermore, ∇xf : Rn → Rn×n is continuous.

Assumption 2: The function g is a locally Lipschitz function, has full
column rank for all x ∈ Rn, and is bounded such that g ≤ ‖g(x)‖ ≤ g,
where g ∈ R>0 is the infimum overallx of the minimum singular values
of g(x), and g ∈ R>0 is the supremum overall x of the maximum
singular values of g(x).

Assumption 3: The desired trajectory is bounded from above by a
positive constant xd ∈ R such that supt∈R≥0

‖xd‖ ≤ xd.
Assumption 4: There exists a locally Lipschitz function hd : Rn →

Rn, such that hd(xd) � ẋd and g+(xd)g(xd)(hd(xd)− f(xd)) =
hd(xd)− f(xd), ∀t ∈ R≥0, where g+ : Rn → Rm×n is defined as
g+(x) � (gT (x)g(x))−1gT (x). It follows that supt∈R≥0

‖g+(xd)‖ ≤
g+d .

Remark 1: Assumptions 2–4 are the typical assumptions necessary
to facilitate the transformation of this problem from a time-varying

1For notational brevity, the trajectoryx(t),wherex : R≥0 → Rn, is denoted
as x ∈ Rn and referred to as x instead of x(t). For example, an equation
of the form f + h(y, t) = g(x) should be interpreted as f(t) + h(y(t), t) =

g(x(t))∀t ∈ R≥0. The gradient [ ∂f(x,y)∂x1

T
, . . . ,

∂f(x,y)
∂xn

T
]T is denoted by

∇xf(x, y). ‖ · ‖ denotes both the Euclidean norm for vectors and Frobenius
norm for matrices. 1n×m and 0n×m denote matrices of ones and zeros with
n rows and m columns, respectively. In×n denotes an n× n identity matrix.
vec(·) denotes the vectorization operator.

tracking problem to an time-invariant optimal control problem, as
outlined in [17]. Assumptions 3 and 4 can be satisfied based on the
user selection of xd.

Based on Assumptions 2–4, the control policy ud : Rn → Rm,
which tracks the desired trajectory (i.e., trajectory tracking component
of the controller), is ud(xd) � g+(xd)(hd(xd)− f(xd)). However,
ud(xd) cannot be calculated if the drift dynamics f are unknown.
Hence, an implementable approximation of the trajectory tracking con-
troller component ûd is subsequently defined in Section III. Motivated
by the desire to transform the time-varying tracking problem into an
infinite horizon regulation problem, we follow the development in [17]
to rewrite (1) as

ζ̇ = F (ζ) +G (ζ)μ (2)

where ζ ∈ R2n is the concatenated state vector ζ � [eT , xT
d ]

T , μ �
u− ud(xd) is the transient component of the controller, F : R2n →
R2n is defined as

F (ζ) �
[

f (e+ xd)− hd (xd) + g (e+ xd)ud (xd)
hd (xd)

]
(3)

and G : R2n → R2n×m is defined as

G (ζ) �
[
g (e+ xd)

T ,0m×n

]T
. (4)

From Assumption 2, it follows that0 < ‖G(ζ)‖ ≤ G,whereG ∈ R>0.

A. Control Objective

The control objective is to find a control policy u that minimizes the
cost functional

J (ζ, μ) =

∫ ∞

0

r (ζ (τ) , μ (τ)) dτ (5)

subject to (2) while eliminating the tracking error, where r : R2n ×
Rm → R≥0 is the instantaneous cost, which is defined as r(ζ, μ) �
Q(ζ) + μTRμ, where Q : R2n → R≥0 is a positive semidefinite
(PSD) cost function, andR ∈ Rm×m is a constant user-defined positive
definite (PD) symmetric cost matrix. Let Q(e) = Q(ζ) ∀ζ ∈ R2n, e ∈
Rn, where Q : Rn → R≥0 is a PD function.2

Property 1: The function Q satisfies q(‖e‖) ≤ Q(ζ) ≤ q(‖e‖) for
q, q : R≥0 → R≥0.

The scalar infinite-horizon value function for the optimal solution,
i.e., the cost-to-go, denoted by V ∗ : R2n → R≥0, is given by V ∗(ζ) =
minμ(τ)∈U

∫∞
t

r(ζ(τ), μ(τ))dτ, where U ⊆ Rm denotes the action
space. If the optimal value function is continuously differentiable, then
the optimal control policy V ∗ is a solution to the corresponding HJB
equation

0 = ∇ζV
∗ (ζ) (F (ζ) +G (ζ)μ∗ (ζ)) +Q (ζ) + μ∗ (ζ)T Rμ∗ (ζ)

(6)

which has the boundary condition V ∗(0) = 0, and the optimal policy
μ∗ : R2n → Rm is μ∗(ζ) = − 1

2
R−1G(ζ)T (∇ζV

∗(ζ))T .

B. Value Function Approximation

The optimal control policy can be derived from the HJB equation
in (6); however, the optimal control policy requires knowledge of the
optimal value function. Parametric methods can be used to approxi-
mate the optimal value function over a compact domain Ω ⊂ R2n.3

Since the function V ∗ is continuous and an approximation is sought on

2Q is PSD and Q is PD so that the desired trajectory xd is not penalized and
the error e is penalized, e.g., let Q(ζ) = eTQe+ xT

d 0n×nxd.
3The subsequent stability analysis in Theorem 1 proves that if ζ is initialized

within an appropriately-sized subset of Ω, then it will remain in Ω.
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the compact set Ω, the Stone–Weierstrass Theorem is used to express
the optimal value function in (2) in Ω as

V ∗ (ζ) = WTσ (ζ) + ε (ζ) ∀ζ ∈ Ω (7)

where W ∈ RL is an unknown constant weight vector, σ : R2n → RL

is a user-defined vector of activation functions, and ε : R2n → R is the
bounded function approximation error.

Assumption 5: There exist constants W,σ,∇ζσ, ε,∇ζε ∈ R>0

such that the unknown weights W , user-defined activation func-
tion σ(·), and function approximation error ε, can be bounded
such that ‖W‖ ≤ W , supζ∈Ω ‖σ(ζ)‖ ≤ σ, supζ∈Ω ‖∇ζσ(ζ)‖ ≤
∇ζσ, supζ∈Ω ‖ε(ζ)‖ ≤ ε, and supζ∈Ω ‖∇ζε(ζ)‖ ≤ ∇ζε [2, Assump-
tions 9.1.c-e].4

From (6) and (7), the optimal control policy μ∗ can be expressed
using (7) as

μ∗ (ζ) = −1

2
R−1G (ζ)T

(
∇ζσ (ζ)T W +∇ζε (ζ)

T
)
. (8)

The ideal weights W in (7) and (8) are unknown; hence, an approxima-
tion of W is sought. Using an actor–critic approach (see [2]), the critic
weight estimate, Ŵc ∈ RL is used to approximate the optimal value
function V̂ : R2n × RL → R denoted as

V̂
(
ζ, Ŵc

)
= ŴT

c σ (ζ) . (9)

Similarly, an actor weight estimate, Ŵa ∈ RL is used to approximate
the optimal control policy μ̂ : R2n × RL → R defined as

μ̂
(
ζ, Ŵa

)
� −1

2
R−1G (ζ)T

(
∇ζσ (ζ)T Ŵa

)
. (10)

III. DNN SYSTEM IDENTIFICATION

The HJB equation in (6) is equal to zero under optimal conditions;
however, substituting (9) and (10) into ∇ζV

∗(ζ) and μ∗(ζ) results
in a residual term called the BE, which is defined in the subsequent
section. To compute this residual term, F (ζ) and G(ζ), and therefore,
the system model (i.e., f(x) and g(x)) must be known. If the system
model is not known, then online system identification can be used to
estimate the model in real time. The ADP result in [11] approximates
f(x) with a single hidden-layer NN online and g(x) is known. Recent
works indicate that DNNs may potentially improve function approxi-
mation performance [14]. The result in [16] develops a multitimescale
DNN-based control method to approximate f(x) online, which may
improve the approximation of f(x) [14]. The output layer weights of
the DNN are adjusted in real time using adaptive update laws motivated
by a Lyapunov-based stability analysis. Concurrent to real-time execu-
tion, data are collected and DNN training algorithms (e.g., stochastic
gradient descent [19, Ch. 8]), iteratively update the inner layer DNN
features. Since DNN learning algorithms are performed iteratively,
the inner layer weights are not updated in real time; the weights are
discretely updated intermittently during task-execution once training is
complete. Motivated to apply the aforementioned technique to ADP, this
section outlines the necessary steps required to apply multitimescale
DNN system identification to ADP.

DNN architectures can approximate continuous functions on a com-
pact set; the ability to do so is based on universal approximation
theorems that can be invoked case-by-case for specific DNN archi-
tectures [20]. The drift dynamics f can be approximated on a compact
set C ⊂ Rn as5

f(x) = θTφ (Φ∗(x)) + ε∗θ(x) ∀x ∈ C (11)

4Assumption 5 can be satisfied by selecting polynomials as basis func-
tions [18, Th. 1.5].

5The subsequent stability analysis in Theorem 1 proves that if x is initialized
within an appropriately-sized subset of C, then it will remain in C.

where θ ∈ Rh×n is an unknown bounded ideal output layer weight
matrix, φ : Rp → Rh is an vector of activation functions, Φ∗ : Rn →
Rp represents the unknown inner layer features of the DNN, and
ε∗θ : Rn → Rn is a bounded function approximation error. For exam-
ple, the unknown inner layer DNN features Φ∗ can be expressed as
Φ∗(x) = Vk	k(Vk−1, 	k−1(Vk−2, 	k−2(. . .x))),wherek ∈ N denotes
the number of inner layers of the DNN, Vk and 	k(·) denote the
corresponding inner layer weights and activation functions of the DNN,
respectively.

Based on the DNN representation in (11), the ith DNN-based esti-
mate of the drift dynamics f̂i : Rn × Rh×n,→ Rn is defined as

f̂i

(
x, θ̂

)
= θ̂Tφ

(
Φ̂i(x)

)
(12)

where θ̂ ∈ Rh×n is the estimate of the ideal output layer weight matrix
θ, and Φ̂i : Rp → Rn is the ith iteration selection of the inner features
with user-selected activation functions and estimated internal-layer
weights. To facilitate the convergence of the DNN-based online system
identifier, (12) can be used to develop an estimator

˙̂x = f̂i

(
x, θ̂

)
+ g(x)u+ kox̃ (13)

where x̃ � x− x̂, and ko ∈ R>0 is a user-selected estimator learning
gain.

Assumption 6: Similar to Assumption 5 there exist con-
stant weights θ and positive constants θ, φ, ε∗θ, and ∇xε∗θ ∈
R≥0, such that ‖θ‖ ≤ θ, supx∈C ‖φ(x)‖ ≤ φ, supx∈C ‖∇xφ(x)‖ ≤
∇xφ, supx∈C ‖ε∗θ(x)‖ ≤ ε∗θ, and supx∈C ‖∇xε

∗
θ(x)‖ ≤ ∇xε∗θ [21,

Ch. 4].
Assumption 7: The ith user-selected inner layer features of the

Φ∗ and Φ̂i are selected such that Φ∗(x)− Φ̂i(x) ≤ Φ̃i(x), where
Φ̃i : Rn → Rp is the inner layer DNN function reconstruction error

of the ith iteration, and supx∈C, i∈N ‖Φ̃i(x)‖ ≤ Φ̃, where Φ̃ ∈ R≥0

is a bounded constant for all i. Using the mean value theorem,

‖φ(Φ∗(x))− φ(Φ̂i(x))‖ ≤ ∇xφ Φ̃.6

In the developed method, a DNN with uncertain output layer pa-
rameters θ̂ is used to facilitate system identification in the sense that F̂
approximatesF.To enable convergence of F̂ toF,CL-based parameter
update laws are developed that use recorded data for learning. This CL
strategy is leveraged to modify the output layer weight update law
in [16]. As shown in the subsequent stability analysis, this modification
enables θ̂ to converge to a region containing θ. Specifically, the output
layer DNN weight estimates are updated using the CL-based update
law

˙̂
θ = Γθφ

(
Φ̂i(x)

)
x̃T + kθΓθ

M∑
j=1

φ
(
Φ̂i (xj)

)

·
(
˙̄xj − gj (xj)uj − θ̂Tφ

(
Φ̂i (xj)

))T

(14)

where Γθ ∈ Rh×h and kθ ∈ R>0 are constant user-selected adaptation
gains. Assumption 8 is required to achieve the aforementioned param-
eter convergence objective. Specifically, Assumption 8 specifies the
quality of exploration data that is required by the history stacks in the
second term of (14).

Assumption 8: A history stack of input–output data pairs
{xj , uj}Mj=1 and history stack of numerically computed state deriva-

tives {ẋj}Mj=1, which satisfies λmin(
∑M

j=1 φ(Φ̂i(xj))φ(Φ̂i(xj))
T ) >

6Assumption 7 is a mild assumption that is required because an inner layer
features of the DNN parameterization in (11) are not assumed to be known; this
assumption is required to introduce a θ̃ term in the subsequent stability analysis,
where θ̃ � θ − θ̂. For typical activation functions (e.g., radial basis functions,

sigmoids), Assumption 7 can be easily satisfied with Φ̃ = 2p.
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0 and ‖ẋj − ẋj‖ < d ∀j, are available a priori for each index j
of xj , where d ∈ R>0 is a known constant, ẋj � f(xj) + g(xj)uj ,
and the operator λmin(·) represents the minimum eigenvalue of the
argument [13].7

Since the dynamics are unknown, similarly, the trajectory tracking
component of the controllerud(xd) is not known. Hence, an approxima-
tion of the trajectory tracking component of the controller ûd : Rn ×
Rh×n → Rm is defined as ûd(xd, θ̂) � g+(xd)(hd(xd)− f̂i(x, θ̂)).
The control policy applied to the system in (1) is

u � μ̂
(
ζ, Ŵa

)
+ ûd

(
xd, θ̂

)
. (15)

While the contribution of this section focuses on updating the output
layer weights in real time, updating the inner layer features of the DNN
system identifier can lead to improved function approximation. Data
stored in the CL history stack can be collected a priori and/or online
and can simultaneously update the output layer weights and inner layer
features of the DNN (i.e., update θ̂ in real time and update Φ̂i(x) from i
to i+ 1) iteratively. Following (14) and using the CL history stack, the
target dataset is { ˙̄xj − g(xj)uj}Mj=1, and the respective input dataset
is {xj}Mj=1.

IV. BE EXTRAPOLATION

Recall, the HJB equation in (6) is equal to zero under optimal
conditions; hence, substituting (9), (10), and the approximated drift
dynamics f̂i(x, θ̂) into (6) results in a residual term δ̂ : R2n × Rh×n ×
RL × RL → R, which is referred to as the BE, defined as

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
� μ̂

(
ζ, Ŵa

)T

Rμ̂
(
ζ, Ŵa

)
+Q (ζ)

+∇ζ V̂
(
ζ, Ŵc

)(
F̂i

(
ζ, θ̂

)
+G (ζ) μ̂

(
ζ, Ŵa

))
(16)

where F̂i : R2n × Rh×n → R2n is defined as

F̂i

(
ζ, θ̂

)
�

[
f̂i

(
e+ xd, θ̂

)T

− hd (xd)
T

+ud (xd)
T g (e+ xd)

T , hd (xd)
T
]T

. (17)

Remark 2: Performing minimization of the BE in (16) results in
the broader problem of solving the HJB equation in (6). For general
nonlinear systems, the HJB equation lacks a general solution. Often,
numerical methods are used offline to solve the HJB equation. For
cases with known dynamics, the offline-obtained solution will result in
closed-loop stability. However, there are cases, such as the one consid-
ered in this article, in which the model is unknown. Because of this,
the multitimescale DNN identifier is used to approximate the system
dynamics in (1) online and, simultaneously, use this approximation of
the model in a model-based RL framework to approximate the solution
to the HJB equation in real time. The subsequently defined critic weight
update policy in (19) is designed to minimize the BE online.

The BE in (16) indicates how close the actor and critic weight
estimates are to their respective ideal weights. The mismatch between
the estimates and their ideal values are defined as W̃c � W − Ŵc and
W̃a � W − Ŵa. Substituting (7) and (8) into (6) and subtracting from

7Availability of the system identification history stack (i.e., the tuple
{xj , uj , ẋj}Mj=1) a priori is not necessary [11]. If the system is sufficiently
excited and the history stack is recorded within a finite time, then the developed
controller can be used. Switching between a PE-based controller and the devel-
oped controller results in a switched subsystem with one switching event. The
stability of the overall system is determined from the stability of the individual
subsystems.

(16) yields the analytical form of the BE given by

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
= − ωT W̃c −WT∇ζσ

(
F (ζ)− F̂i

(
ζ, θ̂

))
+

1

4
W̃T

a GσW̃a +O (ζ) (18)

where ω : R2n × RL × Rh×n → Rh is defined as ω(ζ, Ŵa, θ̂) �
∇ζσ(ζ)(F̂i(ζ, θ̂) +G(ζ)μ̂(ζ, Ŵa)), O(ζ) � 1

2
∇ζε(ζ)GR∇ζσ(ζ)

T

W + 1
4
Gε −WT∇ζσ(ζ)ε

∗
θ(e+ xd)−∇ζε(ζ)F (ζ), GR = GR(ζ)

� G(ζ)R−1G(ζ)T , Gσ = Gσ(ζ) � ∇ζσ(ζ)GR(ζ)∇ζσ(ζ)
T , and

Gε = Gε(ζ) � ∇ζε(ζ)G(ζ)∇ζε(ζ)
T .

At each time instant t ∈ R≥0, the estimated BE in (16) and pol-
icy in (10) are evaluated using the current system state, critic esti-
mate, actor estimate, and output layer weight estimate matrix to get
the instantaneous BE and control policy, which are denoted by δ̂ �
δ̂(ζ, θ̂, Ŵc, Ŵa) and μ̂ � μ̂(ζ, Ŵa), respectively. The system model,
which is approximated using the aforementioned DNN-based identifier,
can be used to evaluate the BE at off-trajectory states in Ω. The process
of evaluating the BE at off-trajectory states is called BE extrapolation.
BE extrapolation yields simultaneous exploitation and exploration,
which results in faster policy learning over a domain.

To facilitate BE extrapolation, the off-policy trajectories {ζe : ζe ∈
Ω}Ne=1 are selected, where N ∈ N denotes the number of extrapolated
trajectories in Ω. The state-dependent extrapolation points can be
selected a priori by the user or by using an online strategy.8 Using
the extrapolated trajectories ζe ∈ Ω, the BE in (16) is evaluated such
that δ̂e � δ̂(ζe, θ̂, Ŵc, Ŵa). Let the tuple (Σc,Σa,ΣΓ) define the
extrapolation data corresponding to Ω such that Σc � 1

N

∑N
e=1

ωe
ρe

δ̂e,

Σa � 1
N

∑N
e=1

GT
σeŴaω

T
e

4ρe
, and ΣΓ � 1

N

∑N
e=1

ωeω
T
e

ρe
, where ωe �

ω(ζe, θ̂, Ŵa),ρe � ρ(ζe, θ̂, Ŵa) = 1 + νωT
e Γωe, and Γ ∈ RL×L is a

user-initialized learning gain.
To ensure that enough off-trajectory BE extrapolation data is selected

to achieve sufficient exploration, Assumption 9 is provided, which
facilitates the subsequent stability analysis.

Assumption 9: There exist a finite set of trajectories {ζe : ζe ∈
Ω}Ne=1 such that 0 < c � inft∈R≥0

λmin{ΣΓ} for all t ∈ R≥0, where
λmin{·} is the minimum eigenvalue, and the constant c is the lower
bound of the value of each input–output data pairs’ minimum eigenval-
ues.9

V. ACTOR AND CRITIC WEIGHT UPDATE LAWS

Using the instantaneous BE δ̂ and extrapolated BEs δ̂e, the
continuous-time least-squares-based update policies for the critic and
actor weights, which are designed based on the subsequent stability
analysis, are

˙̂
Wc = −ηc1Γ

ω

ρ
δ̂ − ηc2ΓΣc (19)

Γ̇ =

(
λΓ− ηc1

ΓωωTΓ

ρ2
− ηc2ΓΣΓΓ

)
1{Γ≤‖Γ‖≤Γ} (20)

˙̂
Wa = − ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa

+ ηc1
GT

σ Ŵaω
T

4ρ
Ŵc + ηc2ΣaŴc (21)

8The design of online strategies to determine extrapolation points could
potentially improve learning and is a topic for future research.

9Assumption 9 can be verified online. Furthermore, Assumption 9 can be
heuristically satisfied by selecting more BE extrapolation points than number of
neurons in σ such that N  L [9].
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where ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are constant learning gains, Γ and
Γ ∈ R>0 are upper and lower bound saturation constants, and 1{·}
denotes the indicator function. The indicator function in (20) ensures
that ‖Γ(t)‖ is upper and lower bounded by two user-defined saturation
gains, Γ and Γ ∈ R>0, to ensure that Γ ≤ ‖Γ(t)‖ ≤ Γ for all t ∈ R≥0.
The indicator function in (20) can be removed provided ρ and ρi
are changed to ρ = 1 + νωTω and ρi = 1 + νωT

i ωi, and additional
assumptions are included for the regressors ω

ρ
and ΣΓ to ensure that Γ

is bounded [22].
Remark 3: Under Assumptions 1–4, the optimal value function

can be shown to be the unique PD solution of the HJB equation.
Approximation of the PD solution to the HJB equation is guaranteed by
appropriately selecting initial weight estimates and the Lyapunov-based
update laws in (19)–(21) [23].

VI. STABILITY ANALYSIS

Recall from Property 1 that the function Q and, therefore, the
optimal value function V ∗ in (7) is PSD. Hence, V ∗ is not a valid
Lyapunov function. The result in [17] can be used to show that a
nonautonomous form of V ∗, denoted as V ∗

na : Rn × R≥0 → R and
defined as V ∗

na(e, t) � V ∗(ζ), is PD and decrescent. Furthermore,
V ∗
na(0, t) = 0 and there exist class K∞ functions v, v : R≥0 → R≥0

that bound v(‖e‖) ≤ V ∗
na(e, t) ≤ v(‖e‖) ∀e ∈ Rn, t ∈ R≥0. Hence,

V ∗
na(e, t) is a valid Lyapunov function. Let Z ∈ R2n+2L+hn denote

a concatenated state defined as Z � [eT , W̃T
c , W̃T

a , x̃T , vec(θ̃)T ]T .
Let VL : R2n+2L+hn × R≥0

→ R be a candidate Lyapunov function
defined as

VL(Z, t) � V ∗
na(e, t) +

1

2
W̃T

c Γ(t)−1W̃c +
1

2
W̃T

a W̃a

+
1

2
x̃T x̃+

1

2
tr
(
θ̃TΓ−1

θ θ̃
)
. (22)

Using the properties of V ∗
na(e, t) and [24, Lemma 4.3], then (22)

be bounded as α1(‖Z‖) ≤ VL(Z, t) ≤ α2(‖Z‖) for class K∞ func-
tions α1, α2 : R≥0 → R≥0. Using (20), the normalized regressors
ω
ρ

and ωe
ρe

can be bounded as supt∈R≥0
‖ω

ρ
‖ ≤ 1

2
√

νΓ
for all

ζ ∈ Ω and supt∈R≥0
‖ωe

ρe
‖ ≤ 1

2
√

νΓ
for all ζe ∈ Ω. The matrices

GR and Gσ can be bounded as supζ∈Ω ‖GR‖ ≤ λmax{R−1}G2 �
GR and supζ∈Ω ‖Gσ‖ ≤ (∇ζσG)2λmax{R−1} � Gσ, respectively,
where λmax{·} denotes the maximum eigenvalue.

To facilitate the subsequent stability analysis, let r ∈ R>0 be the ra-
dius of a compact ball centered at the origin χ ⊂ R2n+2L+hn centered
at the origin, and l ∈ R>0 is a positive constant that depends on the
bounded NN constants in Assumptions 5–7. The sufficient conditions
for ultimate boundedness of Z are derived based on the subsequent
stability analysis as

ηa1 + ηa2 ≥ (ηc1 + ηc2)
W Gσ√

νΓ
(23)

c ≥ 4
ηa1
ηc2

+
(ηc1 + ηc2)

2 W
2
Gσ

2

4ηc2νΓ (ηa1 + ηa2)

+
3 (ηc1 + ηc2)

2 W
2∇ζσ

2
(
φ+ g+d φg

)2

2ηc2kθνΓλmin

{∑M
j=1 φ

(
Φ̂i (xj)

)
φ
(
Φ̂i (xj)

)T
} (24)

ν−1
l (l) < α−1

2 (α1(r)) (25)

where νl is a subsequently defined PD function.10

10See [9] for insight into satisfying the conditions in (23)–(25).

The optimal value function is parameterized with a linear combi-
nation of weights and basis functions; this has been done in results
such as [2]. However, the multitimescale DNN identifier introduces
new terms and piecewise-in-time discontinuities into the dynamics.
Hence, existing actor–critic approaches cannot be applied to show
stability of the closed-loop system. The subsequent Lyapunov-based
stability analysis is performed to analyze the convergence and stability
properties of the online implementation of (13), (14), and (19)–(21).

Theorem 1: Given the dynamics in (1), that Assumptions 1–9 are
satisfied, and that the conditions in (23)–(25) are satisfied, then the
tracking error e, weight estimation errors W̃c and W̃a, state estimation
error x̃, and output layer weight matrix error θ̃ are UUB. Hence, the
applied control policy û converges to a neighborhood of the optimal
control policy u∗.

Proof: Using (1), the fact that V̇ ∗
na(e, t) = V̇ ∗(ζ), V̇ ∗(ζ) =

∇ζV
∗(ζ)(F (ζ) +G(ζ)μ), (13), (14), (19)–(21), Young’s Inequality,

nonlinear damping, the class of dynamics in (2), Assumptions 8 and 9,
and substituting the sufficient conditions in (23) and (24) yields

V̇L ≤ −νl (‖Z‖) , ∀ν−1
l (l) ≤ ‖Z‖ ≤ α−1

2 (α1(r)) ∀t ∈ R≥0 (26)

where νl(‖Z‖) � 1
2
q(‖e‖) + 1

16
ηc2c‖W̃c‖2 + 1

16
(ηa1 + ηa2)‖W̃a‖2

+ ko
4
‖x̃‖2 + kθ

6
λmin{

∑M
j=1 φ(Φ̂i(xj))φ(Φ̂i(xj))

T }‖vec(θ̃)‖2.
Since the discontinuities in the update laws in (13), (14), and (19)–(21)
are piecewise continuous in time and (22) is a common Lyapunov func-
tion across each DNN iteration i, [24, Th. 4.18] can be invoked to con-
clude thatZ is UUB such that lim supt→∞ ‖Z(t)‖ ≤ α−1

1 (α2(ν
−1
l (l)))

and μ̂ converges to a neighborhood around the optimal policy μ∗. Since
Z ∈ L∞, it follows that e, W̃c, W̃a, x̃, θ̃ ∈ L∞; hence, x, Ŵc, Ŵa, θ̂ ∈
L∞ and μ ∈ L∞.

Using (26), the result in [24, Th. 4.18] can be invoked to show
that every trajectory Z(t) that satisfies the initial condition ‖Z(0)‖ ≤
α−1
2 (α1(r)) is bounded for all t ∈ R≥0.That is,Z ∈ χ ∀t ∈ R≥0. Since

Z ∈ χ it follows that the individual states of Z lie on compact sets.11

Furthermore, since xd ≤ dd, then ζ ∈ Ω and x ∈ C, where Ω is the
compact set that facilitates value function approximation, and C is the
compact set that facilitates DNN-based system identification.

VII. SIMULATION EXAMPLE

The following section applies the developed technique to an optimal
tracking problem for an autonomous undersea vehicle (AUV) with
the instantaneous cost function r(ζ, μ) = eTQe+ μTRμ. The system
dynamics for the AUV in this example is from [26]. To focus the scope of
this simulation section, it is assumed that the AUV is neutrally buoyant
while submerged, the center of gravity is below the center of buoyancy
on the z-axis, and the vehicle model accounts for small roll and pitch
angles. The dynamics for the AUV in an irrotational current can be
expressed as

ξ̇ = fH (ζ, νc) + f0 (ζ, ν̇c) + gτb (27)

where ξ � [ηT
AUV νT

AUV ]T ∈ R6 is the concatenated state vector, f0 :
R6 × R3 → R6 is the known rigid body drift dynamics, fH : R6 ×
R3 → R6 is the unknown hydrodynamic parameter effects (see [26]
for definitions of the states and dynamics). The rigid body dynamics
are assumed to be known because they are measurable a priori, whereas
the hydrodynamic parameters are not known. The irrotational current
vector for this example is νc = [−0.1, 0.1, 0]T .

The time-varying desired trajectory is ξd(t) =

[cos( π
20
t), cos( π

30
t), 0,−π sin( π

20 t)

20
,−π sin( π

30 t)

30
, 0]T , and the control

11See [25, Algorithm A.2] for discussion on establishing the size of compact
sets χ.
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Fig. 1. DNN is composed of four layers, each with 30, 10, 15, and 6
neurons, respectively.

objective is to minimize the infinite horizon cost function in (5). The
drift dynamics are unknown and approximated using the developed
DNN-based system identification method. The DNN used in this
simulation was composed of four layers, each with 30, 10, 15, and 6
neurons, respectively. The DNN architecture is illustrated in Fig. 1.
The first, second, and third layers use Elliot symmetric sigmoid,
logarithmic sigmoid, and tangent sigmoid activation functions,
respectively.12 The first, second, and third layers include bias terms.
The mean squared error was used as the loss function for training. The
Levenberg–Marquardt algorithm was used to train the weights of the
DNN. For each DNN training iteration, 70% of the data was used for
training, 15% was used for validation, and 15% was used for testing.

The controller cost parameters in (5) are Q =
diag([100, 100, 200, 10, 10, 50]) and R = I3×3. N = 110592
BE extrapolation trajectories were selected across the operating
domain Ω. The initial conditions used for the simulated
system are ξ(0) = [−1, 1.5, 3π

4
, 0, 0, 0]T ,ξ̂(0) = ξ(0), and

Γ(0) = 5000 · I27×27.13 Both Ŵc(0) and Ŵa(0) are initialized
by solving the algebraic Riccati equation for the linearized rigid body
AUV dynamics about the position ξ = 06×1. The polynomial basis
function σ with 27 elements is used for value function approximation.
Each θ̂(0) ∈ R25×6 is initialized according to its subsequently-defined
training method. The gains were selected as ηc1 = 0, ηc2 = 0.5,
ηa1 = 10,ηa2 = 0.1, λ = 0.025, ν = 0.025, Γ = 5000,Γ = 100,
kθ = 5 · 106, ko = 10, and Γθ = 1. To facilitate CL, a maximum
of 100 state-action pairs are recorded and replaced according to the
singular value maximization algorithm defined in [13, Algorithm 1].

This section presents simulation results for exact model knowledge
(EMK) ADP, linearly parameterizable (LP) ADP, randomly initialized
DNN ADP, transfer learning DNN ADP, and pretrained DNN ADP. All
of the ADP methods in this simulation comparison are model-based
(i.e., use BE extrapolation). EMK ADP uses EMK off(x), so the results
present the best possible performance for an ADP-based controller for
a given set of gains and extrapolation trajectories. LP ADP assumes that
f0(x) is LP (i.e., f(x) = Y (x)θ,whereY (x) exactly parameterizes the
dynamics), as typically seen in an adaptive control literature [21, Sec.
3.4.3]. LP requires some, but not EMK, and represents a special case
(subset) of the dynamics in (1). For the pretrained DNN ADP method,
the DNN is trained a priori using the actual dynamics in (27). The
transfer learning DNN ADP method is also based on training the DNN
a priori on a system that is similar, but not exactly the same, as the dy-
namics used during implementation. For the transfer learning case, the
current vector νc = [−0.1, 0.1, 0]T is changed to νc = [0.1,−0.1, 0]T

to represent the uncertainty between the training model and the actual
model. The randomly initialized DNN ADP method does not require
any prior training, i.e., does not require knowledge of the drift dynamics.
The retrained DNN ADP method is initialized as the random DNN
ADP method; however, the retrained DNN ADP method updates the

12The number of neurons per layer and activation functions were selected
empirically.

13To reduce the computational complexity of the simulation, the least-squares
gain matrix is initialized such that Γ(0) = Γ.

TABLE I
SIMULATION RESULTS AND ADP COMPARISON

Fig. 2. Error comparisons between the retrained DNN ADP and ran-
dom DNN ADP methods. The red dashed line at t = 120 s represents
the beginning of the retraining, and the black dashed line at approx-
imately t = 12.8 s represents the end of the retraining and when the
new internal DNN weights are implemented. The retrained DNN has
improved tracking performance. Since the random DNN and retrained
DNN cases are initialized identically, they have identical performance for
the first 120 s (i.e., until the inner layer DNN features are updated).

inner layer features once online. The retrained DNN ADP method
highlights the performance improvements that occur through online
iterative adjustment of the inner layer DNN features. For retraining, a
history stack of DNN training data is collected for 120 s.14 After 120 s,
the internal DNN weights begin retraining. The DNN is trained for 50
epochs, which takes approximately 12.8 s.

Table I compares the performance of each method, and Fig. 2
compares the randomly DNN ADP and retrained DNN ADP methods.
The second column compares the total integral error of each simulation
(i.e.,

∫ 240

0
e(τ) dτ ). Recall, the EMK ADP method is expected to have

the best performance. LP ADP is the best performing method with
uncertainty, followed by transfer learning DNN ADP, pretrained DNN
ADP, retrained DNN ADP, and random DNN ADP, respectively. The
third column of Table I compares the ADP methods with the integral
of the difference between their state trajectory and the EMK ADP state
trajectory. Similarly, LP ADP performs the best, followed by pretrained
DNN ADP, transfer learning DNN ADP, retrained DNN ADP, and
random DNN ADP, respectively. While the transfer learning DNN ADP
case has a lower integral of error in the second column, the pretrained
DNN ADP case performs closer to the EMK ADP case, as seen in
the third column. The fourth column of Table I compares the ADP
methods after the retrained DNN ADP has completed retraining. Once

14The time of 120 s was selected because it is the period of xd. Collecting
more data should result in improved training of the inner layer weights at the
expense of additional computation time.
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retraining is complete, the new internal weights are implemented. After
retraining, the difference between the retrained DNN and random DNN
controllers is notable. The improved retrained DNN has significantly
better performance compared to the random DNN case, and it is
comparable to that of the other ADP methods. The integral of error
from the time at which the new inner layer weights are implemented
to the end of the trial is used to compare the performance of the two
techniques. After retraining, the integral of error for the random case is
163.29. The integral of error for the retrained case is 145.76. Hence, the
online retraining method empirically improved error tracking by 10.7%.
After retraining, the EMK ADP and LP ADP perform the best, followed
by pretrained DNN ADP, transfer learning DNN ADP, retrained DNN
ADP, and random DNN ADP, respectively. The unsurprising trend in
Table I is that if a system has more model knowledge a priori, then
performance improves.

These simulation studies confirm the effectiveness of a DNN-based
ADP controller with a real-time output layer weight and iterative inner
layer feature updates. The benefit of the developed technique is that
a component of the drift dynamics f0 can be approximated without
any model knowledge a priori. This simulation example illustrates the
well-understood trend that more model knowledge leads to improved
controller performance. Since the developed method can the update
the DNN features to better approximate the nonlinear drift dynamics,
a DNN-based model of the drift dynamics can be learned without
pretraining. Unlike existing single-layer NN-based system identifiers,
the additional layers of the DNN facilitate improved function approxi-
mation. Combining existing data-based deep learning algorithms with
adaptive control policies can decrease model uncertainty, enhance the
quality of the value function approximation, and ultimately improve
the system performance.

VIII. CONCLUSION

This article develops a framework for using a DNN-based system
identifier within a model-based RL ADP framework to solve the infinite
horizon optimal tracking control problem. A CL-based continuous-time
update law is used to update the output layer weights of the DNN.
A Lyapunov-based analysis is performed to prove UUB identification
of the DNN weights, trajectory tracking, and approximation of the
applied control policy to a neighborhood of the optimal control policy.
Simulation results illustrate the performance of the developed method
in comparison to existing methods applied to an AUV. Future work
will investigate using a DNN to simultaneously approximate the value
function in conjunction with a DNN-based system identifier.
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