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Abstract—This work explores the distributed state estimation
problem for an uncertain, nonlinear, and continuous-time system.
Given a sensor network, each agent is assigned a deep neural
network (DNN) that is used to approximate the system’s dynamics.
Each agent updates the weights of their DNN through a multiple
timescale approach, i.e., the outer layer weights are updated online
with a Lyapunov-based gradient descent update law, and the inner
layer weights are updated concurrently using a supervised learn-
ing strategy. To promote the efficient use of network resources,
the distributed observer uses event-triggered communication.
A nonsmooth Lyapunov analysis demonstrates that the distributed
event-triggered observer achieves uniformly ultimately bounded
state reconstruction. A simulation example of a five-agent sen-
sor network estimating the state of a two-link robotic manipulator
tracking a desired trajectory is provided to validate the result and
showcase the performance improvements afforded by DNNs.

Index Terms—Multi-agent systems, Lyapunov methods, non-
linear control systems, wireless sensor networks, deep learning,
state estimation.

I. INTRODUCTION

A wireless sensor network (WSN) is a multi-agent system of wire-
lessly linked autonomous sensors that are scattered over an area to
monitor desired phenomena [1]. By sharing partially observable state
measurements of a system with their neighbors and leveraging a con-
sensus algorithm, WSNs are capable of estimating the state of a system
in a distributed fashion [2]. Such distributed state estimation does not
require a centralized data-fusion module. Additionally, it is preferable to
centralized state estimation methods because it can better accommodate
each agent’s limited computing capacity, eliminate single points of
failure, and promote scalability.

In [3], the authors developed a distributed filter for a known linear
time-varying stochastic system that attains stable state estimation us-
ing adaptive weights under periodic communication. Event-triggered
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control is a popular technique employed to coordinate multi-agent
systems while more efficiently utilizing network resources via inter-
mittent communication [4], [5]. Given that agents of a WSN may be
powered by limited energy sources, [6] and [7] presented distributed
state estimation strategies for linear systems that use event-triggered
communication to economize resources. Similarly, [8] developed a
distributed observer with stochastic event-triggered communication for
a known linear time-varying system.

While the works in [2], [3], [6], [7], and [8] provide valuable
contributions to the literature on distributed state estimation, these
results primarily focus on systems with known linear models. Moreover,
although results on distributed state estimation for nonlinear systems
exist, e.g., [9], [10], [11], the distributed state estimation problem
for uncertain nonlinear systems remains relatively open. In [9], the
authors solved the state estimation problem for a known nonlinear
discrete-time system by exploiting the Taylor series. In particular, the
known nonlinear state estimation error dynamics are expressed as the
sum of a linear function and remainder comprised of higher order terms,
where the remainder is assumed to be bounded by a function of the norm
of the state estimation error squared. The distributed extended Kalman
filter is then used to yield a locally uniformly ultimately bounded (UUB)
state estimation error. In [10], a set-membership filter is utilized to solve
the distributed state estimation problem for a known nonlinear discrete-
time system. Like [9], the system’s nonlinear function is written as
the sum of a known linear function and Lagrange remainder, where
the remainder is accurately estimated by the proposed algorithm. The
result in [11] developed a distributed state observer for a nonlinear
discrete-time system, where the agents of the WSN use event-triggered
communication over a randomly time-varying topology that is modeled
with Gilbert–Elliott channels. Under a robust control approach, the
result demonstrates that the filtered error covariance is bounded and
minimized at each time instant.

The enhanced computing power of modern processors and abun-
dance of data encourage the development of a distributed observer
capable of applying machine learning techniques to improve state
reconstruction. However, the protocols that train the weights of a deep
neural network (DNN) do not usually have an accompanying stability
analysis, which hinders their implementation for online estimation and
control. Recently, the works in [12] and [13] contributed a model
reference adaptive control technique that utilizes a DNN as an adaptive
element while demonstrating that the estimation error is UUB via a
Lyapunov stability analysis. These works are among the first to employ
DNNs for real-time adaptive control while providing a formal stability
assurance. This guarantee is made possible by updating the outer layer
weights of the DNN with state feedback, while the inner layer weights
are modified using batch updates—harnessing the power of data-driven
learning. Based on this observation, the authors in [14] developed an
adaptive controller for an uncertain nonlinear dynamical system capable
of asymptotically tracking a desired trajectory while using a DNN to
approximate the uncertain dynamics. In [14], the outer layer weights
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are trained in real time with a Lyapunov-based update law, while the
inner layer weights are updated using a supervised learning algorithm,
i.e., the Levenberg–Marquardt algorithm. The results in [12], [13], and
[14] solve the desired trajectory tracking problem for a single-agent
system and demonstrate that multiple timescale learning, i.e., training
the weights of a DNN with a combination of online state feedback and
concurrent supervised learning, can produce improved performance
when compared to traditional adaptive techniques.

Motivated by [12], [13], and [14], a DNN-based event-triggered
distributed state observer for an uncertain nonlinear continuous-time
system is developed. Unlike [9] and [10], the system’s nonlinear func-
tion is uncertain and is not expressed as a linear function with remainder.
Instead, the nonlinear dynamics are approximated via DNNs—an ad-
vancement over [11]. Furthermore, the observer is shown to yield UUB
state estimation while being robust to bounded disturbances through
a nonsmooth Lyapunov stability analysis. Similar to [12], [13], and
[14], we develop a multiple timescale learning strategy to train the
DNN weights. In particular, the outer layer weights of each DNN are
adjusted online with a Lyapunov-based update law and output feedback
to ensure stability. The inner layer weights are updated concurrently
using collected data and supervised learning. However, unlike [12],
[13], and [14], which consider a single-agent system, we contemplate a
multi-agent system, where each agent is assigned their own DNN that
is managed independently. Furthermore, the update laws for the outer
layer weights in [12], [13], and [14] utilize state feedback while the
ones proposed in this article use output feedback. The development is
further complicated by the use of event-triggered control, facilitating
intermittent and asynchronous communication. The theoretical results
are validated through a simulation example. The state of a two-link
robotic manipulator tracking a desired trajectory is estimated by a
five-agent sensor network in two simulations. In the first simulation,
each observer updates their outer layer weights with output feedback
while the inner layer weights are held constant. The result confirms
Theorem 1, i.e., the state estimation error of each agent is UUB.
The second simulation is identical to the first, except the inner layer
weights are updated using the Levenberg–Marquardt algorithm and
collected data, where the state estimation error of each agent is UUB
and approximately 77% more accurate relative to the first simulation.

II. PRELIMINARIES

A. Notation

Let R and Z denote the set of real numbers and integers, respec-
tively. Forx ∈ R, let R≥x � [x,∞), R>x � (x,∞), Z≥x � R≥x ∩ Z,
and Z>x � R>x ∩ Z. The p× q zero matrix and the p× 1 zero
column vector are denoted by 0p×q and 0p, respectively. The p× p
identity matrix and the p× 1 column vector of ones are denoted by
Ip and 1p, respectively. The Euclidean norm of a vector r ∈ Rp is
denoted by ‖r‖ �

√
r�r. Given M ∈ Z>1, let [M ] � {1, 2, . . ., M}.

The Kronecker product of A ∈ Rp×q and B ∈ Ru×v is denoted by
A⊗B ∈ Rpu×qv . The block diagonal matrix whose diagonal blocks
consist of G1, G2, . . ., Gn is denoted by diag(G1, G2, . . ., Gn). Let
tr(A) denote the trace of a square matrix A ∈ Rp×p. Let vec(·)
denote the vectorization transformation that converts a matrix into
a column vector. Given functions f : Rq → Rr and g : Rp → Rq ,
the symbol ◦ denotes function composition, i.e., f ◦ g : Rp → Rr

and (f ◦ g)(x) = f(g(x)). Given s ∈ Z>1 and {wi}i∈[s] ⊂ Rd, let
(wi)i∈[s] � [w�1 , w

�
2 , . . ., w

�
s ]
� ∈ Rsd.

B. Graphs

Let G � (V, E) be a static and undirected graph with node set
V � [N ], N ∈ Z>0, and edge set E ⊆ V × V . The edge (i, j) ∈ E

if and only if node i can send information to node j. Since G is
undirected, (i, j) ∈ E if and only if (j, i) ∈ E . LetA � [aij ] ∈ RN×N

denote the adjacency matrix of G, where aij > 0 if and only if
(j, i) ∈ E . Otherwise, aij = 0. An undirected graph is connected if
and only if there exists a sequence of edges in E between any two
distinct nodes. The neighbor set of node i isNi � {j ∈ V : (j, i) ∈ E},
where 1 ≤ |Ni| < N − 1. Moreover, no self-loops are considered, and,
therefore, aii � 0 for all i ∈ V . The degree matrix of G is denoted
by the diagonal matrix Δ � [Δij ] ∈ RN×N , where Δij � 0 for all
i �= j, and Δii �

∑
j∈V aij . The Laplacian matrix of G is denoted by

L � Δ−A ∈ RN×N .

III. SYSTEM DYNAMICS AND NETWORK TOPOLOGY

Consider a system with model

ẋ0 = f(x0) + d, (1)

where x0 ∈ Rn represents the state variable, the nonlinear and locally
Lipschitz function f : Rn → Rn is unknown, and d : [0,∞)→ Rn is
a locally Lipschitz exogenous disturbance. Note that d is bounded, that
is, there exists a dmax ∈ R>0 such that ‖d(t)‖ ≤ dmax for all t ≥ 0.
Furthermore, consider a sensor network composed of N agents, which
are indexed by V . For each i ∈ V , agent i can continuously measure the
output of the system in (1), which is given by yi � Cix0 ∈ Rm. Note
that Ci ∈ Rm×n represents the known output matrix of agent i. The
agents in the sensor network may have different sensing capabilities,
i.e., each agent may be able to measure a different function of the sys-
tem’s state. Each agent is also capable of intermittently communicating
with its neighbors, where the flow of information between the agents in
the sensor network is modeled by the static, connected, and undirected
communication graph G.

IV. OBJECTIVE

The objective is to develop a distributed observer capable of re-
constructing the state of the unknown nonlinear system in (1) by using
output feedback. The observer employs event-triggered communication
to promote the efficient use of network resources. Since the system
model in (1) is unknown, we desire an observer that concurrently utilizes
online and offline learning techniques to estimate the function f . To
quantify the state reconstruction objective, let the state estimation error
of agent i ∈ V be

e1,i � x̂i − x0 ∈ Rn, (2)

where x̂i ∈ Rn denotes the estimate of x0 as computed by agent i. For
any time t ≥ 0, the state estimation error e1,i(t) is an unmeasurable
signal that is used only in the analysis. Let {tik}∞k=0 be a strictly
increasing sequence of event times for agent i, where tik denotes the
kth instant agent i samples its state estimate x̂i and broadcasts it to
all agents j ∈ Ni. Note that the broadcast information is received by
all neighbors simultaneously. To facilitate the use of event-triggered
control, let the variable x̃i ∈ Rn represent the sampled state estimate
of agent i. More precisely, let

x̃i(t) � x̂i(t
i
k), t ∈ [tik, t

i
k+1). (3)

For each event time of agent i, that is, tik, x̃i is the information that
agent i broadcasts to each agent j ∈ Ni. Moreover, as will be shown in
the proceeding section, {x̃j}j∈Ni∪{i} represents the local information
agent i will use to update its estimate of x0. Using this sampled state
estimate, let the sampled state estimation error of agent i be given by

e2,i � x̃i − x̂i ∈ Rn. (4)

Since x̃i(t) is constant for all t ∈ [tik, t
i
k+1), the sampled state estima-

tion error in (4) measures the quality of the broadcast state estimate of
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agent i and will be used to determine when x̃i should be updated. For
each agent i ∈ V , let ŷi � Cix̂i ∈ Rm denote the estimated output of
the system as computed by agent i, which exploits knowledge of the
output matrix Ci. The output estimation error of agent i is

e3,i � ŷi − yi = Cie1,i ∈ Rm. (5)

By construction, agent i can measure e2,i = x̃i − x̂i and e3,i = ŷi −
yi, where e3,i is used to drive the state estimate of agent i toward the
state of the system.

Definition 1: Let ν > 0. The sensor network is said to achieve ν-
approximate state reconstruction whenever ‖e1,i‖ ≤ ν for all i ∈ V .

Given a user-defined ν > 0, the sensor network successfully esti-
mates the state x0 of the system in (1) when it attains ν-approximate
state reconstruction.

V. OBSERVER DEVELOPMENT

The following assumption is a necessary condition allowing state
reconstruction.

Assumption 1: The state of the system in (1) evolves within a
compact set D ⊂ Rn, i.e., x0(t) ∈ D for all t ≥ 0.

Since f is continuous and x0 is contained within a compact set,
we can invoke the Stone–Weierstrass theorem to express the nonlinear
dynamics in (1) restricted to D as

f(x0) = W�
0 σ (Φ(x0)) + ε(x0). (6)

In (6), W0 ∈ RL×n is the ideal outer layer weight matrix, σ : Rp →
RL is a user-selected bounded and continuous activation function,1

Φ : Rn → Rp encodes the ideal inner DNN, and ε : Rn → Rn is the
bounded function reconstruction error [15, Th. 7.32]. Note that W0, Φ,
and ε are unknown. The ideal inner DNN can be expressed as

Φ(x0) =
(
W�

� φ� ◦W�
�−1φ�−1 ◦ · · · ◦W�

1 φ1

)
(x0), (7)

where � ∈ Z≥1 denotes the number of user-defined inner layers of the
DNN, Wq ∈ RLq×nq+1 , for q ∈ [�], denotes the ideal weight matrix
for the qth inner layer, andφq : Rnq → RLq is a user-selected bounded
and continuous activation function corresponding to the qth inner layer.
Note that n1 = n, n�+1 = p, and Wq is unknown for each q ∈ [�].
Using (6), the system model in (1) can be expressed as

ẋ0 = W�
0 σ(Φ(x0)) + ε(x0) + d. (8)

Guided by the structure of (8), the distributed observer of agent i ∈ V
is designed as

˙̂xi � Ŵ�
i σ(Φ̂i(x̂i)) +K1

(
zi − C�i e3,i

)
,

zi �
∑
j∈V

aij (x̃j − x̃i) . (9)

The variable Ŵi ∈ RL×n represents the estimated outer layer weight
matrix of the system as computed by agent i, Φ̂i : Rn → Rp encodes
the estimated inner DNN of agent i, and K1 ∈ Rn×n is the symmetric
solution to the bilinear matrix inequality (BMI)

M � 1

2
K1 C

�C +
1

2
C�CK1 +K1L ≥ k1InN . (10)

Observe that K1 � IN ⊗K1 ∈ RnN×nN , L � L ⊗ In ∈ RnN×nN ,
C � diag(C1, C2, . . ., CN ) ∈ RmN×nN denotes the output matrix of
the sensor network, and k1 ∈ R>0 is a user-defined parameter. The
BMI in (10) encodes an observability condition that originates from

1Examples of bounded and continuous activation functions are the sigmoid,
hyperbolic tangent, and Gaussian functions. Activation functions with vector-
valued inputs are applied elementwise.

the stability analysis (see Section VI). The estimated inner DNN of
agent i, namely, Φ̂i(x̂i), is modeled as a piecewise continuous function
that is similar in structure to (7), i.e.,

Φ̂i (x̂i) �
(
Ŵ�

�,iφ� ◦ Ŵ�
�−1,iφ�−1 ◦ · · · ◦ Ŵ�

1,iφ1

)
(x̂i) , (11)

where Ŵq,i ∈ RLq×nq+1 , for q ∈ [�], represents the estimated weight
of the qth layer of agent i’s inner DNN. While φq is continuous for
each q ∈ [�], the inner weights {Ŵq,i : q ∈ [�]} are piecewise constant
by design. Let {T i

p}∞p=1 be a strictly increasing sequence of inner DNN
update times for agent i, where T i

p denotes the pth instant agent i

updates its inner DNN weights, that is, {Ŵq,i : q ∈ [�]}. While the
sensor network attempts to estimate the state of the system, each agent
can individually train its inner DNN weights using any suitable offline
method.2 Once, for example, agent i completes the training of its inner
DNN weights, agent i can switch in the new weights for use in (9),
which takes place at time T i

p, for some p ∈ Z≥1. Observe that the

weights {Ŵq,i : q ∈ [�]} are held constant until the next time they are
updated by agent i, e.g., T i

p+1, which need not occur. Hence, for each
i ∈ V , the inner DNN weights of each agent are updated discretely and
simultaneously.

The error between the ideal outer layer weight matrix and the
estimated outer layer weight matrix of the system as computed by agent
i is

W̃i � W0 − Ŵi ∈ RL×n. (12)

Observe that, for any t ≥ 0, W̃i(t) is not measurable because the ideal
outer layer weight matrix W0 is unknown. Let ω̃i � vec(W̃i) and ωi �
vec(Ŵi). Based on the subsequent stability analysis, the outer layer
weight update law of agent i, which is embedded within the continuous
projection operator denoted by proj(·, ·) and defined in [17, Eq. 4], is
designed as3

ω̇i � proj (μi, ωi) , μi � −vec(Γiσ(Φ̂i (x̂i)) e
�
3,iCi), (13)

where Γi ∈ RL×L is a user-defined positive definite matrix used to
adjust the learning rate ofωi. See Appendix A for an algorithm summa-
rizing the implementation of the observer. The closed-loop dynamics of
the ensemble are now derived. Substituting (2) and (4) into the definition
of zi in (9) yields

zi =
∑
j∈V

aij(e1,j − e1,i) +
∑
j∈V

aij(e2,j − e2,i). (14)

Substituting (5), (8)–(12), and (14) into the time derivative of (2) while
adding and subtracting W�

0 σ(Φ̂i(x̂i)) yields

ė1,i = − W̃�
i σ(Φ̂i (x̂i))−K1C

�
i Cie1,i + χi

+K1

∑
j∈V

aij(e1,j − e1,i) +K1

∑
j∈V

aij(e2,j − e2,i), (15)

whereχi � W�
0 (σ(Φ̂i(x̂i))− σ(Φ(x0)))− ε(x0)− d ∈ Rn. Substi-

tuting (3), (5), (9), and (14) into the time derivative of (4) yields

ė2,i = − Ŵ�
i σ(Φ̂i (x̂i)) +K1C

�
i Cie1,i

−K1

∑
j∈V

aij(e1,j − e1,i)−K1

∑
j∈V

aij(e2,j − e2,i). (16)

2An example training strategy is discussed in Section VII and additional
training strategies can be found in [12] and [16].

3The projection operator is used to ensure ̂Wi(t) remains within the set Ω �
{W ∈ RL×n : ‖W‖ ≤ ω̄} for all t ≥ 0, where ω̄ ∈ R>0 is a user-defined
parameter.
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To express the closed-loop ensemble dynamics and subsequent
development in a compact form, let e1 � (e1,i)i∈V ∈ RnN , e2 �
(e2,i)i∈V ∈ RnN , and e3 � (e3,i)i∈V ∈ RmN , which represent the
state estimation error, sampled state estimation error, and output
estimation error of the ensemble, respectively. Furthermore, con-
sider x̂ � (x̂i)i∈V ∈ RnN , χ � (χi)i∈V ∈ RnN , and z � (zi)i∈V ∈
RnN . The block diagonal matrix composed from the DNN outer
layer weight errors is W̃ � diag(W̃1, W̃2, . . ., W̃N ) ∈ RLN×nN .
Similarly, the block diagonal matrix consisting of the DNN outer
layer weight estimates is Ŵ � diag(Ŵ1, Ŵ2, . . ., ŴN ) ∈ RLN×nN .
The stacked vectorizations of the DNN outer layer weight errors
{W̃i}i∈V and DNN outer layer weight estimates {Ŵi}i∈V are de-
noted by ω̃ � (ω̃i)i∈V ∈ RnLN and ω � (ωi)i∈V ∈ RnLN , respec-

tively. Let Γ � diag (Γ1,Γ2, . . ., ΓN ) ∈ RLN×LN and σ(Φ̂ (x̂)) �
(σ(Φ̂i (x̂i)))i∈V ∈ RLN . Using (15), (16), and the stacked expressions
defined above, the closed-loop dynamics of e1 and e2 are

ė1 = − W̃�σ(Φ̂ (x̂))−K1 C
�Ce1 −K1Le1

−K1Le2 + χ, (17)

ė2 = − Ŵ�σ(Φ̂(x̂)) +K1 C
�Ce1 +K1Le1

+K1Le2, (18)

respectively. Since W0 is fixed, σ is a bounded function, the function
reconstruction error ε is bounded, and the disturbance is bounded, there
exists a constant χmax ∈ R>0 such that ‖χ(t)‖ ≤ χmax for all t ≥ 0.
Using (5), (9), and (14), it also follows that

˙̂x = Ŵ�σ(Φ̂(x̂))−K1 C
�Ce1 −K1Le1 −K1Le2. (19)

Using (14), z can be expressed as z = −Le1 − Le2, where Young’s
inequality yields

−‖e1‖2 ≤ ‖e2‖2 − ‖z‖2/
(
2‖L‖2) . (20)

Note that (20) is a useful inequality employed in the development of
the event trigger mechanisms for the sensor network.

Letβ ∈ R≥0 be a timer variable that evolves according to β̇ = 1with

β(0) = 0. Let ξ �
[
e�1 , e

�
2 , x̂

�, ω̃�, ω�, β
]� ∈ X and X � R3nN ×

R2nLN ×R represent the state vector and state space, respectively, of
the sensor network. Using (5), (12), (13), and (17)–(19), the closed-loop
dynamics of the sensor network are ξ̇ = h(ξ), where

h(ξ) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−W̃�σ(Φ̂(x̂))−K1 C
�Ce1 +K1z + χ

−Ŵ�σ(Φ̂(x̂)) +K1 C
�Ce1 −K1z

Ŵ�σ(Φ̂(x̂))−K1 C
�Ce1 +K1z

−(proj(−vec(Γiσ(Φ̂i(x̂i))e
�
1,iC

�
i Ci), ωi))

�
i∈V

(proj(−vec(Γiσ(Φ̂i(x̂i))e
�
1,iC

�
i Ci), ωi))

�
i∈V

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Recall z = −Le1 − Le2, and the ith coordinate of χ can be written
as a function of ξ using the timer β and (2). Whenever there is a
communication event for agent i, the state ξ jumps, where e2,i is reset
to 0n and all other variables in ξ are mapped to themselves.

VI. STABILITY ANALYSIS

The following objects are presented to facilitate the analysis. Let
χ̃ � χ− (InN − C�C)W̃�σ(Φ̂(x̂)). Observe that C is bounded by
construction. Similarly, W̃ is bounded since W0 is fixed and the pro-
jection operator ensures that Ŵi is bounded for each i ∈ V . Moreover,
σ is bounded by design. Hence, there exists a χ̃max ∈ R>0 such that
‖χ̃(t)‖ ≤ χ̃max for all t ≥ 0. Furthermore, there exists a constant
W̃max ∈ R>0 such that tr (W̃�Γ−1W̃ ) ≤ 2W̃max, which can be made

arbitrarily small through the choice of Γ. Select κ > 0, k2 > 1/κ,
δ > 0, ρ ≥ χ̃max, and ε > 0. It then follows that k1 � k2 + ρ2/δ > 0,
α � k2 − 1/κ > 0, and δ̄ � δ + ε > 0. Consider the event trigger
function

Ti(ξ) � C2‖zi‖2 − C1‖e2,i‖2 + ε

N
,

C1 � k2
2

+
κ

2
‖K1L‖2, C2 � k2

4‖L‖2 . (22)

Since k2 and κ are positive, C1 > 0 and C2 > 0. The event times in
{tik}∞k=0 that dictate when agent i communicates its sampled state
estimate x̃i, as outlined in (3), are generated by the event trigger
mechanism4

tik+1 � inf
{
t > tik : Ti(ξ) = 0

}
. (23)

Remark 1: The solution to the BMI in (10) and the constants
C1 and C2 in the event trigger function in (22) depend on the graph
Laplacian L and the output matrices {Ci}i∈V , which may be initially
unknown to all agents. In such a scenario, distributed algorithms, such
as that in [18], can leverage the static and connected communication
network to compute L. Moreover, the output matrices {Ci}i∈V can be
disseminated throughout the sensor network using gossip protocols,
such as that in [19].

Theorem 1: For every i ∈ V , the observer in (9) with outer layer
weight update law in (13) render the sensor network state estimation
error e1 UUB in the sense that

‖e1(t)‖2 ≤
(
‖e1(0)‖2 + tr

(
W̃�(0)Γ−1W̃ (0)

))
exp (−αt)

+ 2(W̃max + δ̄/α) (24)

provided Assumption 1 is satisfied, there exists a matrix K1 satisfying
the BMI in (10), and agent i broadcasts its state estimate x̃i as dictated
by the event trigger mechanism in (23). Furthermore, ν-approximate
state reconstruction is achieved, where ν2 ≥ 2(W̃max + δ̄/α).

Proof: Let V : X → R≥0 be a Lyapunov function candidate, such
that

V (ξ) � 1

2
e�1 e1 +

1

2
tr (W̃�Γ−1W̃ ). (25)

Observe that V (ξ) can be bounded as

1

2
e�1 e1 ≤ V (ξ) ≤ 1

2
e�1 e1 + W̃max. (26)

Suppose φ is a Filippov solution to the differential inclusion ξ̇ ∈
K[h](ξ), i.e., φ = ξ along flows, where the mapping K[·] provides
a calculus for computing Filippov’s differential inclusion as defined
in [20], and h is the vector field provided in (21). The time derivative
of V (ξ) exists almost everywhere (a.e.) and

V̇ (φ)
a.e.∈ ˙̃

V (φ), (27)

where ˙̃
V (φ) is the generalized time derivative of V (ξ) along the

Filippov trajectories of φ̇ = h(φ). By [21, Eq. 13],

˙̃
V (φ) �

⋂
η∈∂V (φ)

η�
[
K[h](φ)�, 1

]�
,

where ∂V (φ) denotes the Clarke generalized gradient of V (φ). Since
V (φ) is continuously differentiable in φ during flows, ∂V (φ) =

4The piecewise continuity of e2,i, ε > 0, and (23) can be used to show that,
after each event time of agent i, there exists a well-defined time interval over
which agent i does not trigger.
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{∇V (φ)}, where ∇ denotes the gradient operator. Using the calculus
of K[·] and simplifying the substitution of (17) into the generalized
time derivative of (25), one has

˙̃
V (φ) ⊆ − e�1 W̃

�K[σ(Φ̂(x̂))] + e�1K[χ]

− {
e�1K1Le1

}− e�1K1LK[e2]

− {
e�1K1C

�Ce1
}− tr (W̃�Γ−1K[

˙̂
W ]). (28)

Using the estimated outer layer weight update law in (13) for each i ∈ V
and the expressions for W̃ , Ŵ , e3, C, Γ, and σ(Φ̂(x̂)), it follows that

tr (W̃�Γ−1 ˙̂
W ) =

∑
i∈V

vec (Γ−1i W̃i)
�proj (μi, ωi)

≥ −e�3CW̃�σ (Φ̂(x̂)). (29)

Substituting (5) for all i ∈ V into e3 yields e3 = Ce1. Adding and
subtracting C�C while using e3 = Ce1 results in

e�1 W̃
�σ(Φ̂(x̂)) = e�3CW̃�σ(Φ̂(x̂))

+ e�1 (InN − C�C)W̃�σ(Φ̂(x̂)). (30)

Substituting (29) and (30) into (28) while using (27) yields

V̇ (ξ)
a.e.≤ − e�1K1Le1 − e�1K1Le2 − e�1K1 C

�Ce1

+ e�1 χ̃. (31)

Using Young’s inequality, (31) can be upper bounded as

V̇ (ξ)
a.e.≤ − e�1Me1 +

κ

2
‖K1L‖2‖e2‖2 + 1

2κ
‖e1‖2

+ χ̃max‖e1‖. (32)

Using the BMI in (10) and k1 = k2 + ρ2/δ, (32) can be upper bounded
as

V̇ (ξ)
a.e.≤ −

(
k2 − 1

2κ

)
‖e1‖2 + κ

2
‖K1L‖2‖e2‖2

+ χ̃max‖e1‖ − ρ2

δ
‖e1‖2. (33)

Since ρ ≥ χ̃max, it follows that χ̃max‖e1‖ − ρ2‖e1‖2/δ ≤ δ. Using
this inequality, (20), and the trigger function in (22), (33) can be upper
bounded as

V̇ (ξ)
a.e.≤ −1

2

(
k2 − 1

κ

)
‖e1‖2 + δ̄ −

∑
i∈V

Ti(ξ). (34)

For each i ∈ V , the trigger functionTi(ξ) > 0 during flows since agent
i provides state feedback according to the event trigger mechanism
in (23). Hence, (34) can be upper bounded as

V̇ (ξ)
a.e.≤ −1

2
α‖e1‖2 + δ̄, (35)

where α = k2 − 1/κ. Using (26), (35) can be bounded as

V̇ (ξ)
a.e.≤ −αV (ξ) + αW̃max + δ̄. (36)

Recall thatV (ξ) is a continuous function. Moreover, V̇ (ξ) is continuous
almost everywhere, where the set of discontinuities can be shown to
have measure zero. Therefore, integrating (36) yields

V (ξ(t)) ≤
(
W̃max + δ̄/α

)
(1− exp (−αt))

+ V (ξ(0)) exp (−αt). (37)

Using (26) and (37), the result in (24) follows. The observer signals are
now shown to be bounded. By Assumption 1, x0 is bounded. Since e1
is bounded given (24), the definition of e1 implies that e1,i is bounded
for each i ∈ V . Hence, (2) implies x̂i is bounded for each i ∈ V . Since
x̂i is bounded, (3) implies x̃i is bounded. Since x̃i is bounded for each
i ∈ V , (9) implies zi is bounded. Since x̂i is bounded and Ci is fixed,
ŷi = Cix̂i implies ŷi is bounded. Furthermore, yi = Cix0 implies yi
is bounded. Since ŷi and yi are bounded, (5) implies e3,i is bounded.
Lastly, Ŵi and σ are bounded by construction. �

Theorem 2: Let the inter-event times of agent i be defined as the
difference between consecutive broadcast times generated by the event
trigger mechanism of agent i ∈ V in (23), i.e., tik+1 − tik. For each
i ∈ V , there exists a δi > 0 such that the inter-event times of agent i
are uniformly lower bounded by δi. Specifically, tik+1 − tik ≥ δi for all
k ∈ Z≥0 and i ∈ V .

Proof: Recall that Ti(ξ) = C2‖zi‖2 − C1‖e2,i‖2 + ε/N , and let
T̃i(ξ) � ε/N − C1‖e2,i‖2, where an event for agent i occurs when-
ever Ti(ξ) = 0. Since T̃i(ξ) ≤ Ti(ξ) for all ξ, the inter-event times
produced by Ti(ξ) are lower bounded by those of T̃i(ξ). Therefore,
it suffices to show the inter-event times of T̃i(ξ) are uniformly lower
bounded away from 0. Let φ be a solution to the system ξ̇ = h(ξ) using
the event triggers {T̃i(ξ)}i∈V . Furthermore, let tik denote the kth event
time of agent i corresponding to T̃i(ξ), where T̃i (φ (tik)) = 0 for
each k ∈ Z≥0. The moment after the kth event time of agent i, which
we denote by ti+k , the sampled state estimation error e2,i is reset to
0n, that is, e2,i (φ(t

i+
k )) = 0n. Moreover, T̃i (φ(t

i+
k )) = h � ε/N

for each k ∈ Z≥0, and

d

dt
T̃i(ξ) = −2C1 d

dt
‖e2,i‖.

Substituting (9) into the time derivative of (4) yields ė2,i =

−Ŵ�
i σ (Φ̂i(x̂i))−K1(zi − C�i e3,i). Recall that zi and e3,i are

bounded by the proof of Theorem 1. Moreover, Ŵi and σ (Φ̂i(x̂i))
are bounded by construction. Therefore, there exists emax

2,i ∈ R>0 such
that ‖ė2,i‖ ≤ emax

2,i . Hence,

d

dt
‖e2,i‖ =

e�2,iė2,i
‖e2,i‖ ≤ ‖ė2,i‖ ⇒

d

dt
‖e2,i‖ ≤ emax

2,i .

Letting mi � 2C1e
max
2,i , it follows that ˙̃

Ti(ξ) ≥ −mi. Notice that

tik+1 − tik > 0 since T̃i (φ(t
i+
k )) = h > 0, T̃i (φ(t

i
k+1)) = 0, tik <

ti+k , and T̃i(φ(t)) is piecewise continuous. Let δi � h/mi. Proceeding
by contradiction, suppose tik+1 − tik < δi. The continuity of T̃i(φ(s))

over s ∈ [ti+k , tik+1] and tik < ti+k yield

T̃i

(
φ
(
tik+1

))
= h+

∫ ti
k+1

t
i+
k

˙̃
Ti(φ(s))ds > h−mi

(
tik+1 − tik

)
,

where tik+1 − tik < δi implies that T̃i (φ(t
i
k+1)) > 0. This is a con-

tradiction. Therefore, tik+1 − tik ≥ δi. �
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Fig. 1. Evolution of two-link robotic manipulator tracking errors for both
simulations: ‖e‖ versus time (top) and ‖r‖ versus time (bottom). Since e
and r converge to 0, q → qd, and q̇ → q̇d asymptotically.

VII. SIMULATION EXAMPLE

To examine the performance of the observer, two numerical simula-
tions are provided for a two-link robotic manipulator with dynamics

M(q)q̈ + C(q, q̇)q̇ + F q̇ = τ, (38)

where q = [q1, q2]
� ∈ R2 denotes the angular link position in radians,

τ ∈ R2 represents the torque input, M(q) ∈ R2×2 is the inertia matrix,
C(q, q̇) ∈ R2×2 is the centripetal–Coriolis matrix, and F ∈ R2×2 is a
viscous friction matrix. Using [22, Sec. 4],

M(q) �
[
p1 + 2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
,

C(q, q̇) �
[−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)

p3 sin(q2)q̇1 0

]
,

F � diag(F1, F2),

where p1 = 3.473 kg·m2, p2 = 0.193 kg·m2, p3 = 0.242 kg·m2,
F1 = 5.3 N·m·s, and F2 = 1.1 N·m·s. Moreover, consider the desired
trajectory qd � [cos(0.5β), sin(β)]�, such that β is the timer variable
introduced in Section V.

Let e � qd − q ∈ R2 and r � ė+ αe ∈ R2 with α ∈ R>0. Lever-
aging exact model knowledge, the controller

τ = M(q)(q̈d + αė) + C(q, q̇)(q̇d + αe) + F q̇ + kpr

− e, kp ∈ R>0 (39)

renders the set {(e, r) = 04} globally exponentially stable. The robotic
manipulator in (38) with controller in (39) comprise the system whose
state will be estimated. Since the inertia matrix is positive definite [22,
Property 1], an order reduction enables the robotic manipulator dynam-
ics to be written as (1). Let x0 � [x�1 , x

�
2 , x3]

� ∈ R5, where x1 � q,
x2 � q̇, and x3 � β. Then, ẋ0 = f(x0) + d, such that

f(x0) =

⎡
⎣ x2

−M(x1)
−1(C(x1, x2)x2 + Fx2 − τ)

1

⎤
⎦ .

Observe that d = 0.15[sin(30β) · 1�2 , sin(20β) · 1�2 , 0]� ∈ R5 is used
to model process noise in both q and q̇, and the control input τ can be
written as a function of x0.

A five-agent sensor network is used to estimatex0. The output matrix
of agent i is Ci � e�i , where ei ∈ R5 denotes the ith standard basis
vector, e.g., e�2 = [0 1 0 0 0]. The adjacency matrix of the sensor

Fig. 2. Top plot illustrates the normed state estimation error ‖e1,i‖,
i ∈ V , versus time for the first simulation, where all initialized inner layer
weights are held constant. However, for each agent, the outer layer
weights are updated using (13) to ensure stability. The bottom plot
shows the normed state estimation error of each agent versus time for
the second simulation, where the inner layer weights are updated. For
i ∈ V and at time t = 10, each agent begins to store their own values of
(x̂i, ˙̂xi) in memory. When t = 25, each agent stops collecting data and
begins to train their inner layer weights using the Levenberg–Marquardt
algorithm, their collected data, and (11). Training stops at t = 27.5 and
each agent switches in their new inner layer weights. Consequently,
each agent in the second simulation (bottom plot) improves their state
estimation performance, where ‖e1,i‖ ≤ 1 for all i ∈ V and t ∈ [30, 60].

network and simulation parameters are

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
1 1 0 0 0
1 0 1 0 0

⎤
⎥⎥⎥⎥⎦ ,

α = 4 kp = 5 N = 5
n = 5 m = 1 κ = 1.2
δ = 1 � = 5 n1 = 5

n2 = 10 n3 = 10 n4 = 10
n5 = 4 n6 = 4 L = 4,

L1 = 6, L2 = 11, L3 = 11, L4 = 11, L5 = 4, p = 4, ρ = 1.15,
k2 = 1.5, ε = 75.3566, and Γi = diag(0.3, 0.5, 0.2, 0.4). Using these
parameters, k1 = 2.8225, C1 = 3.4767× 103, C2 = 0.0286, and the
solution to the BMI in (10) is K1 = 21.0371 · I5 (computed us-
ing CVX MATLAB toolbox [23], [24]). For the projection opera-
tor parameters θ0 and ε in [17, Eq. 4], θ0 = 21 and ε = 10. Us-
ing (11), φ1(s) � [s�, 1]�, φk(s) � [tansig(s)�, 1]� for k = 2, 3, 4,
and φ5(s) = σ(s) � tansig(s) � 2/(1 + exp(−2 s))− 1, which are
defined elementwise for vector-valued inputs. Furthermore, x0(0) =
[5, 5, 0, 0, 0]�, and x̂i(0) = 05 for i ∈ V . All DNN weights are ran-
domly initialized as matrices with elements in [0, 0.1]. All simulations
are conducted in MATLAB using the Hybrid Systems Toolbox [25]. The
first simulation investigates the performance of the observer when the
inner layer weights are held constant and only the outer layer weights
are updated with (13). The second simulation is identical to the first
with the exception that the inner layer weights are trained using the
Levenberg–Marquardt algorithm [26] and collected data. The step size
used to train the inner layer weights is lower bounded by 10−3. The
training loss function is the mean squared error (MSE) between the
estimated output generated by a known input and the corresponding
known output. Each training iteration lasts until the MSE is less than
10−2 or a maximum of 30 training epochs elapse. For each training
iteration, 70% of the data were used for training, 15% were used
for validation, and 15% were used for testing. Figs. 1–4 and Table I
summarize the results.
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Fig. 3. With respect to the second simulation, the event times of each
agent are depicted during t ∈ [25, 26] while using (22) and (23). A
× represents a communication event for an agent, and a white space
corresponds to a period of noncommunication.

Fig. 4. Angular position trajectories at steady state (t ≥ 30) for the two-
link robotic manipulator and five-agent sensor network.

TABLE I
STATE ESTIMATION RMSE WITH AND WITHOUT DNN LEARNING

VIII. CONCLUSION

A distributed state observer for an uncertain nonlinear system is
developed. The observer employs event-triggered communication to
exchange information between agents, leverages DNNs and supervised
learning to improve state estimation, provides robustness to bounded
disturbances, and renders the state estimation error UUB as shown
through a nonsmooth Lyapunov stability analysis. Each agent is as-
signed their own DNN, which they train themselves. The outer layer
weights are updated with output feedback to ensure stability, while
the inner layer weights are trained using the Levenberg–Marquardt
algorithm with collected input-output data, i.e., the estimated state
and estimated state derivative. Employing fully trained DNNs allowed

each agent to reduce their state reconstruction error by approximately
77% relative to the case where the inner layer weights were held
constant. Furthermore, the performance improvement only required
a single training iteration, where additional training iterations can
be executed as desired. A key observation is that high-quality data,
such as that generated from frequent communication, leads to better
training and improved state estimation. Future work includes utilizing
DNNs to learn the system’s dynamics and disturbance, developing
distributed consensus algorithms for the DNN weights to provide model
synchronization, using stochastic communication graph models, and
exploring the tradeoff between triggering and state estimation using
DNNs.

APPENDIX A
ALGORITHM FOR AGENT i

Require: δ, ε, κ ∈ R>0, k2 > 1/κ, ρ ≥ χ̃max, N ∈ Z>1,
n,L, � ∈ Z>0, L, {Ci}i∈V , {nq}q∈[�+1] ⊂ Z�+1

≥1 ,
{Lq}q∈[�] ⊂ Z�

≥1, {φq : Rnq → RLq}q∈[�],
σ : Rn�+1 → RL, {Ŵq,i(0) ∈ RLq×nq+1}q∈[�],
Ŵi(0) ∈ RL×n, Ni, {x̃j(0)}j∈Ni∪{i} ⊂ Rn,
x̂i(0) ∈ Rn, Γi ∈ RL×L, dt ∈ R>0, t = 0, k = 0
T1 < T2 ∈ R>0, DataArray, DeployFlag = 1

1: L← L⊗ In, C ← diag(C1, C2, . . ., CN )
2: k1 ← k2 + ρ2/δ, α← k2 − 1/κ
3: Compute K1 : 1

2
K1 C

�C + 1
2
C�CK1 +K1L ≥ k1InN

4: C1 ← k2/2 + κ‖K1L‖2/2, C2 ← k2/(4‖L‖2)
5: while True do
6: Measure yi, ŷi ← Cix̂i, e3,i ← ŷi − yi
7: zi ←

∑
j∈V aij(x̃j − x̃i), ωi ← vec(Ŵi)

8: Φ̂i(x̂i)← (Ŵ�
�,iφ� ◦ Ŵ�

�−1,iφ�−1 ◦ . . . ◦ Ŵ�
1,iφ1)(x̂i)

9: ˙̂xi ← Ŵ�
i σ(Φ̂i(x̂i)) +K1(zi − C�i e3,i)

10: ω̇i ← proj(−vec(Γiσ(Φ̂i(x̂i))e
�
3,iCi), ωi)

11: x̂i ← x̂i + dt · ˙̂xi, ωi ← ωi + dt · ω̇i

12: t← t+ dt, k ← k + 1
13: Reshape ωi: Ŵi ← vec−1(ωi)
14: e2,i ← x̃i − x̂i

15: if C2‖zi‖2 − C1‖e2,i‖2 + ε/N = 0 then
16: Broadcast x̂i, x̃i ← x̂i

17: end if
18: if agent j ∈ Ni broadcasts then
19: x̃j ← x̂j

20: end if
21: if t < T1 then
22: DataArray(k)← (x̂i, ˙̂xi)
23: end if
24: if T1 ≤ t ≤ T2 then
25: Train inner DNN weights using Levenberg–Mar-

quardt algorithm, DataArray, and {φq}q∈[�].
Store new inner DNN weights in {Ŵ new

q,i }q∈[�]
26: end if
27: if t > T2 and DeployFlag = 1 then
28: DeployFlag← 0
29: for q = 1 : � do
30: Ŵq,i ← Ŵ new

q,i

31: end for
32: end if
33: end while
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