
3618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023

Approximate Optimal Trajectory Tracking With Sparse
Bellman Error Extrapolation

Max L. Greene , Member, IEEE, Patryk Deptula , Scott Nivison , Member, IEEE,
and Warren E. Dixon , Fellow, IEEE

Abstract—This article provides an approximate online adap-
tive solution to the infinite-horizon optimal tracking problem for
control-affine continuous-time nonlinear systems with uncertain
drift dynamics. A model-based approximate dynamic programming
(ADP) approach, which is facilitated using a concurrent learning-
based system identifier, approximates the optimal value function.
To reduce the computational complexity of model-based ADP, the
state space is segmented into user-defined segments (i.e., re-
gions). Off-policy trajectories are selected within each segment
to facilitate learning of the value function weight estimates; this
process is called Bellman error (BE) extrapolation. Within certain
segments of the state space, sparse neural networks are used to
reduce the computational expense of BE extrapolation. Disconti-
nuities occur in the weight update laws since different groupings
of extrapolated BE trajectories are active in certain regions of
the state space. A Lyapunov-like stability analysis is presented
to prove boundedness of the overall system in the presence of
discontinuities. Simulation results are included to demonstrate the
performance and validity of the developed method. The simulation
results demonstrate that using the sparse, switched BE extrapo-
lation method developed in this article reduces the computation
time by 85.6% when compared to the traditional BE extrapolation
method.

Index Terms—Adaptive control, nonlinear control, optimal con-
trol, reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL)-based methods, such as [1]–[4], have
been used to obtain online approximate solutions to optimal con-
trol problems for systems with finite state spaces and stationary en-
vironments. Generally, when formulating optimal control problems,
the Hamilton–Jacobi–Bellman (HJB) equation provides an optimality
condition. The designed optimal control policy depends on the value
function [5]. It is generally difficult to solve the HJB equation due to
uncertainties and nonlinearities in the system. To combat this deficiency,
approximate dynamic programming (ADP) has become a popular
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method to approximate the value function online (e.g., [6]–[10]). By
approximating the optimal value function, a stabilizing and approxi-
mately optimal control policy can be determined.

In trajectory tracking optimal control problems, the value function
explicitly depends on time. Since universal function approximators
can approximate functions with arbitrary accuracy only on compact
domains, the infinite-horizon optimal tracking value function cannot
be directly approximated. Developments, such as [11], provide frame-
works to reformulate the system into a stationary environment by
separating the controller into steady-state and transient components.
In such approaches, the optimal control problems can be reformulated
to penalize the transient portion of the controller and eliminate the
time-dependency of the value function. The caveat is that this method
requires the exact model knowledge to identify the steady-state compo-
nent of the controller. To alleviate the need for exact model knowledge,
a concurrent learning (CL)-based adaptation law can be used to identify
the drift dynamics online.

Traditional adaptive control-based ADP methods require a per-
sistence of excitation (PE) condition to be satisfied to successfully
approximate the value function and drift dynamics [2]. Satisfying the
PE conditions often motivates ad hoc methods, which may affect perfor-
mance or destabilize the system. To relax the PE condition, the method
in this article uses a CL-based system identifier (see [12] and [13]) and
a model-based RL (MBRL)-based technique to approximate the value
function online (see [14] and [15]).

MBRL methods are useful for applications in which a model of
the system is available (e.g., robotic manipulators) [16] and [17].
Utilizing a model to complete an RL-based objective leads to faster
convergence to an approximate optimal solution [16]. The Bellman
error (BE) is used as a performance metric in ADP. The BE indirectly
measures the quality of the estimation of the value function along
the system trajectory. Previous works (e.g., [14] and [15]) show that
if the system dynamics are successfully approximated, then the BE
can be evaluated at an arbitrary number of points in a system’s state
space. This process is called BE extrapolation. To facilitate improved
data richness and value function approximation, BE extrapolation is
performed at a sufficiently large number of user-selected off-trajectory
points. These off-trajectory extrapolation points are sometimes placed
over large regions of the state space in high density. Each BE ex-
trapolation point requires additional computations. Furthermore, since
value function approximation is sought over a large compact domain
of the state space, neurons are similarly distributed across a large
region of the state space. Like BE extrapolation points, every addi-
tional neuron in the basis function for value function approximation
increases the total number of computations. Together, additional BE
extrapolation points and neurons compound the computational com-
plexity of performing regional model-based ADP. Results in [18]
and [19] address the computational drawbacks of BE extrapolation by
leveraging local and computationally efficient state-following (StaF)
kernels. However, StaF kernels do not facilitate function approximation
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across the entire operating domain. Computational efficiency is neces-
sary, and it is desirable to perform traditional BE extrapolation over
the entire operating domain to improve value function approximation.
Hence, this article develops two modifications to existing BE extrap-
olation to increase computational efficiency for the model-based ADP
tracking problem. The first modification is to use sparse neural networks
(SNNs) to alleviate the computational expense of BE extrapolation, and
the second is to dynamically select BE extrapolation points and basis
functions based on the system state.

SNNs are a tool to facilitate learning in uncertain systems [20]–[23]
by decreasing the number of active neurons in a neural network (NN).
By reducing the number of active neurons, then the number of overall
computations is also reduced. SNN-based adaptive controllers have
been developed to update a smaller number of neurons within certain
regions in the state space [22]. Making an NN more sparse (i.e., sparsi-
fication) encourages local learning through intelligently segmenting the
state space [21]. Sparsification enables local approximation within each
segment, which characterizes regions with significantly varying dynam-
ics or unknown uncertainties. Motivated by the idea of segmenting the
state space and to facilitate improved learning, the developed method
divides the state space into smaller regions. Each region contains a
unique distribution of extrapolation points and NNs, some of which
may be SNNs, that facilitate BE extrapolation. In doing so, a subset of
the total number of BE extrapolation points are used and the number
of computations associated with the NN basis functions is decreased
while retaining sufficient data richness. However, as the system state
moves between the divided regions of the state space, discontinuities
are introduced into the weight update laws. Such discontinuities re-
quire specific attention within the Lyapunov-like analysis to prove
stability.

The contribution of this article and its preliminary works in [23]
and [24] is to analyze the stability of using a sparse switched BE
term with an NN-based estimator. The primary contribution extends
beyond our preliminary works in [23] and [24] by extending them to
the optimal tracking problem with completely unknown drift dynamics
and by quantifying the benefit of using SNNs in BE extrapolation via
simulations. Unlike the previous ADP-based approximately optimal
trajectory tracking result in [11], this article examines the impact of
SNN-based BE extrapolation and simultaneous system identification on
the stability of the dynamical system. A simulation study is performed
to demonstrate the ability to simultaneously approximate the system
dynamics and optimal control policy; furthermore, this study quantifies
the benefit of using sparse BE extrapolation by examining five simula-
tion cases with varying degrees of sparsity. The simulation result shows
that the developed sparse BE extrapolation method reduces simulation
computation time by 85.6% when compared to the traditional BE
extrapolation method.

The remainder of this article is structured as follows. Section II for-
mulates the tracking ADP problem and objectives. Section III outlines
the NN-based system identifier, which is used to approximate the system
dynamics online. Section IV introduces sparse BE extrapolation, which
requires the NN-based model from Section III. Section V defines the
update laws that facilitate the stability analysis. Section VI presents
a nonsmooth Lyapunov-like stability analysis. Section VII presents
multiple simulation results to illustrate the effectiveness of the devel-
oped technique in comparison to an existing ADP-based result in [15].
Finally, Section VIII concludes this article.

A. Notation

In the following manuscript, for notational brevity, time-dependence
is omitted while denoting trajectories of the dynamical systems. For
example, the trajectory x(t), where x : R≥0 → Rn, is denoted as x ∈

Rn and referred to as x instead of x(t). For example, an equation of the
form f + h(y, t) = g(x) should be interpreted as f(t) + h(y(t), t) =

g(x(t)) ∀t ∈ R≥0. The gradient [ ∂f(x,y)
∂x1

T
, . . . , ∂f(x,y)

∂xn

T
]T is denoted

by ∇xf(x, y). ‖ · ‖ denotes both the Euclidean norm for vectors and
Frobenius norm for matrices. 1n×m and 0n×m denote matrices of ones
and zeros with n rows and m columns, respectively. In×n denotes an
n× n identity matrix.

II. BACKGROUND INFORMATION

A. Problem Formulation

Consider a class of nonlinear control-affine systems ẋ = f(x) +
g(x)u, where x ∈ Rn denotes the system state, u ∈ Rm denotes the
control input, f : Rn → Rn is the drift dynamics, and g : Rn → Rm×n

is the control effectiveness matrix, where n > m and the pseudoin-
verse of g(x) exists. The control objective is to track a time-varying
continuously differentiable signal xd ∈ Rn. To quantify the tracking
objective, the tracking error is defined as e � x− xd. Using the tech-
nique in [15] to transform the time-varying tracking problem into an
infinite horizon regulation problem, the control-affine dynamics can be
rewritten as

ζ̇ = F (ζ) +G (ζ)μ (1)

where ζ ∈ R2n is the concatenated state vector ζ � [eT , xT
d ]

T , μ �
u− ud(xd) is the transient portion of the controller, hd : Rn → Rn

is subsequently-defined, ud : Rn → Rm is the subsequently-defined
trajectory tracking component of the controller, F : R2n → R2n is
defined as

F (ζ) �
[
f (e+ xd)− hd (xd) + g (e+ xd)ud (xd)

hd (xd)

]
(2)

and G : R2n → R2n×m is defined as

G (ζ) �
[
g (e+ xd)

T ,0m×n

]T
. (3)

The action space forμ isU ⊂ Rm.The following assumptions facilitate
the formulation of the approximate optimal tracking controller [15].

Assumption 1: The function f is continuously differentiable and
f(0) = 0.

Assumption 2: The function g is a known locally Lipschitz and
bounded such that 0 < ‖g(x)‖ ≤ g ∀x ∈ Rn, where g ∈ R>0 is the
supremum over allx of the maximum singular values of g(x). It follows
that 0 < ‖G(ζ)‖ ≤ G ∀ζ ∈ R2n,whereG ∈ R>0 is a known constant.

Assumption 3: The desired trajectory is bounded from above by a
known positive constant xd ∈ R such that supt∈R≥0

‖xd(t)‖ ≤ xd.
Assumption 4: There exists a locally Lipschitz function hd such

that hd(xd) � ẋd and g(xd)g
+(xd)(hd(xd)− f(xd)) = hd(xd)−

f(xd), ∀t ∈ R≥0, where g+ : Rn → Rm×n is defined as g+(x) �
(gT (x)g(x))−1gT (x).

Based on Assumptions 2–4, the trajectory tracking component of the
controller ud(xd) is defined as ud(xd) � g+(xd)(hd(xd)− f(xd)).
The trajectory tracking component ud(xd) requires knowledge of the
drift dynamics f. Since f is unknown, an approximation of the trajec-
tory tracking component ûd is developed in Section III.

B. Control Objective

The control objective is to solve the infinite-horizon optimal track-
ing problem, i.e., to find a control policy μ that minimizes the cost
functional

J (ζ, μ) =

∫ ∞

0

r (ζ (τ) , μ (τ)) dτ (4)

subject to (1) while eliminating tracking error (i.e., e = 0), where
r : R2n × Rm → R is the instantaneous cost, which is defined
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as r(ζ, μ) � Q(ζ) + μTRμ, where Q ∈ R2n → R≥0 is a positive
semidefinite (PSD) user-defined state cost function and R ∈ Rm×m

is user-defined positive definite (PD) symmetric input cost matrix. Let
Q(ζ) � Q(e),whereQ : Rn → R≥0 is a PD user-defined cost function
that penalizes the error e and not the desired trajectory xd.

Property 1: The function Q is PSD and satisfies q(‖e‖) ≤ Q(ζ) ≤
q(‖e‖) for q, q : R≥0 → R≥0.

The scalar infinite-horizon optimal value function, i.e., the
cost-to-go, denoted by V ∗ : R2n → R≥0, is given by V ∗(ζ) =
minμ∈U

∫ ∞
t

r(ζ(τ), μ(τ))dτ, which has the boundary condition
V ∗(0) = 0. If the optimal value function is continuously differentiable,
then the optimal control policy μ∗ : R2n → Rm can be obtained from
the corresponding HJB equation

0 = min
μ∈U

∇ζV
∗ (ζ) (F (ζ) +G (ζ)μ) +Q (ζ)

+ μ (ζ)T Rμ (ζ) (5)

which yields μ∗(ζ) = − 1
2
R−1G(ζ)T (∇ζV

∗(ζ))T . Generally, the
HJB equation cannot be solved analytically with the exception of a
few cases, such as linear or scalar systems.

Remark 1: Under Assumptions 1–4, the optimal value function
can be shown to be the unique PD solution of the HJB equations.
Approximation of the PD solution to the HJB equation is guaranteed
by appropriately selecting initial weight estimates and Lyapunov-based
update laws [25].

C. Value Function Approximation

The solution to the HJB equation in (5) is the optimal value function.
Parametric methods can be used to approximate the value function over
a compact domain ζ ∈ Ω ⊂ R2n.1 The universal function approxima-
tion property of NNs is used to represent the value function as

V ∗ (ζ) = WTσ (ζ) + ε (ζ) (6)

where W ∈ RL is an unknown bounded weight vector, σ : R2n → RL

is a user-defined vector of continuous basis functions, and ε : R2n → R
is the bounded function approximation error [2, Eq. 7.3].

Assumption 5: There exist constants W,σ,∇ζσ, ε,∇ζε ∈ R>0

such that the unknown weights W , user-defined vector of activation
functions σ, and function approximation error ε, can be bounded
such that ‖W‖ ≤ W , supζ∈Ω ‖σ(ζ)‖ ≤ σ, supζ∈Ω ‖∇ζσ(ζ)‖ ≤
∇ζσ, supζ∈Ω ‖ε(ζ)‖ ≤ ε, and supζ∈Ω ‖∇ζε(ζ)‖ ≤ ∇ζε [2, Assump-
tions 9.1.c-e].

Remark 2: The bound supζ∈Ω ‖σ(ζ)‖ ≤ σ can be easily satisfied
using activation functions, such as radial basis functions and hyperbolic
tangent functions. Other activation functions, such as linear rectifier
units or polynomials, which are not bounded functions on R, can be
bounded on a compact subset of R. Theorem 1 proves that if ζ is
initialized in an appropriately sized compact set, then it will remain in
that set. Since ζ lies on a compact set and if the activation function is
continuous, then supζ∈Ω ‖σ(ζ)‖ ≤ σ [26, 4.13–4.16].

Solving (5) for μ∗ and using (6), the optimal control policy μ∗ :
R2n → Rm is

μ∗ (ζ) = −1

2
R−1G (ζ)T

(
∇ζσ (ζ)T W +∇ζε (ζ)

T
)
. (7)

The ideal weights W in (6) and (7) are unknown; hence, an approx-
imation of W is sought. Specifically, the critic estimate, Ŵc ∈ RL

is substituted to approximate the value function V̂ : R2n × RL → R

1Theorem 1 proves that if ζ and x are initialized within appropriately sized
compact sets, then they will remain in their respective compact sets.

denoted as

V̂
(
ζ, Ŵc

)
= ŴT

c σ (ζ) . (8)

Using an actor–critic approach (see [4] and [27]), the actor estimate
Ŵa ∈ RL is substituted to approximate the optimal control policy μ̂ :
R2n × RL → R defined as

μ̂
(
ζ, Ŵa

)
� −1

2
R−1G (ζ)T

(
∇ζσ (ζ)T Ŵa

)
. (9)

III. SYSTEM IDENTIFICATION

Another NN can be used to approximate the drift dynamics f over
a compact domain1 x ∈ C ⊂ Rn as f(x) = θTφ(Y Txθ(x)) + εθ(x),
wherexθ : Rn→Rn+1 is defined as xθ(x)� [1, xT ]T , θ ∈ R(p+1)×n

is a constant, unknown output-layer weight matrix, Y ∈ R(n+1)×p

denotes the constant input-layer weight matrix, φ : Rp → Rp+1 is an
NN basis function that contains an optional bias element, εθ : Rn→Rn

is the NN reconstruction error, and p ∈ N is the user-defined num-
ber of neurons in the NN. Using the universal function approxima-
tion property of single layer NNs there exists constant weights θ
and positive constants θ, φ, ∇xφ, εθ, and ∇xεθ ∈ R≥0, such that
‖θ‖ ≤ θ, sup

x∈C
‖φ(x)‖ ≤ φ,sup

x∈C
‖∇xφ(x)‖ ≤ ∇xφ, sup

x∈C
‖εθ(x)‖ ≤ εθ,

and sup
x∈C

‖∇xεθ(x)‖ ≤ ∇xεθ [2, Assumptions 9.1.c-e].

Let θ̂ ∈ R(p+1)×n be an estimate of the ideal weight matrix θ.
The drift dynamics f are approximated by the function f̂ : Rn ×
R(p+1)×n → Rn defined as f̂(x, θ̂) � θ̂Tφ(Y Txθ(x)). Hence, a state
estimator can be developed as

˙̂x = f̂
(
x, θ̂

)
+ g(x)u+ kx̃ (10)

where x̃ � x− x̂ and k ∈ R>0 is a user-selected estimator learning
gain.

Assumption 6: A history stack of input–output data pairs
{xj , uj}Mj=1 and history stack of numerically computed state deriva-

tives {ẋj}Mj=1, which satisfies λmin(
∑M

j=1 φjφ
T
j ) > 0 and ‖ẋj −

ẋj‖ < d ∀j are available a priori, whered ∈ R>0 is a positive constant,
ẋj = f(xj) + g(xj)uj , φj � φ(Y Txθ(xj)), and the operator λmin(·)
represents the minimum eigenvalue of the argument [12].2

The update law of the system identification NN weight estimates are
updated using the CL-based update law

˙̂
θ = Γθφ

(
Y Txθ(x)

)
x̃T

+ kθΓθ

M∑
j=1

φj

(
ẋj − g (xj)uj − θ̂Tφj

)T

(11)

where Γθ ∈ R(p+1)×(p+1) and kθ ∈ R>0 are constant user-selected
adaptation gains.

Since f is unknown, then the trajectory tracking component of
the controller ud(xd) is not known. An approximation of the trajec-
tory tracking component ûd : Rn × R(p+1)×n → Rm is defined as
ûd(xd, θ̂) � g+(xd)(hd(xd)− f̂(x, θ̂)). Hence, the applied control
policy is

u � μ̂
(
ζ, Ŵa

)
+ ûd

(
xd, θ̂

)
. (12)

2The availability of the system identification history stack a priori is not
necessary [15]. Assumption 6 is used to focus the scope of this manuscript and
simplify the subsequent stability analysis.
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IV. BELLMAN ERROR

The right-hand side of the HJB equation in (5) is equal to zero under
optimal conditions; however, substituting (8), (9), and the approximated
drift dynamics f̂(x, θ̂) into (5) results in a residual term, δ̂ : R2n ×
R(p+1)×n × RL × RL → R, which is referred to as the BE, defined as

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
� μ̂

(
ζ, Ŵa

)T

Rμ̂
(
ζ, Ŵa

)
+Q (ζ)

+∇ζ V̂
(
ζ, Ŵc

)(
Fθ

(
ζ, θ̂

)
+ F1 (ζ) +G (ζ) μ̂

(
ζ, Ŵa

))
(13)

where Fθ : R2n × R(p+1)×n → R2n is defined as Fθ(ζ, θ̂) �
[(f̂(x, θ̂)− g(x)g+(xd)f̂(xd, θ̂))

T , 01×n]
T , and F1 : R2n → R2n is

defined as F1(ζ) � [(−hd(xd) + g(x)g+(xd)hd(xd))
T , hd(xd)

T ]T .
The BE in (13) indicates how close the actor and critic weight es-
timates are to their respective ideal weights. The mismatch between
the estimates and their ideal values are defined as W̃c � W − Ŵc and
W̃a � W − Ŵa. Substituting (6) and (7) into (5), and subtracting from
(13) yields the analytical form of the BE, given by

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
= −WT∇ζσ

(
Fθ (ζ, θ)− Fθ

(
ζ, θ̂

))

− ωT W̃c +
1

4
W̃T

a GσW̃a +O (ζ) (14)

where ω : R2n × RL × R(p+1)×n → RL is defined as ω = ω(ζ,
Ŵa, θ̂)�∇ζσ(ζ)Fθ(ζ, θ̂)+∇ζσ(ζ)F1(ζ)+∇ζσ(ζ)G(ζ)μ̂(ζ, Ŵa),
GR = GR(ζ)� G(ζ)R−1G(ζ)T , Gσ = Gσ(ζ) � ∇ζσ(ζ)GR(ζ)∇ζ

σ(ζ)T , Gε = Gε(ζ) � ∇ζε(ζ)G(ζ)∇ζε(ζ)
T , and O(ζ) � 1

2
∇ζε(ζ)

GR∇ζσ
T (ζ)W + 1

4
Gε − WT∇ζσ(ζ)εθ(ζ) − ∇ζε(ζ)Fθ(ζ, θ)−

∇ζε(ζ)εθ(ζ) − ∇ζε(ζ)F1(ζ). Furthermore, ρ : R2n × RL ×
R(p+1)×n × RL×L → R is defined as ρ � ρ(ζi, θ̂, Ŵa,Γ) = 1 +
νω(ζ, Ŵa, θ̂)

TΓω(ζ, Ŵa, θ̂), where Γ ∈ RL×L is a subsequently
defined user-initialized learning gain and ν ∈ R>0 is a positive
normalization constant.

A. Sparse BE Extrapolation

At each time instant t ∈ R≥0, the approximated BE in (13) and policy
in (9) are evaluated using the current system state, critic weight estimate,
and actor weight estimate to get the instantaneous BE and control
policy, which are denoted by δ̂ � δ̂(ζ, θ̂, Ŵc, Ŵa) and μ̂ � μ̂(ζ, Ŵa),
respectively. However, using only the on-trajectory BE and control
policy requires the traditional PE condition to be satisfied to prove
exponential convergence.

Motivated to increase computational efficiency and to provide simu-
lation of experience, local BE extrapolation has been performed in [18]
and [19] around unexplored areas of the state space by utilizing more
efficient computational capabilities compared with previous methods.
Similarly, SNNs improve computational efficiency and use segmenta-
tion to extrapolate the BE. This allows the BE to be approximated across
a larger, combined region of the state space. Therefore, leveraging
the increased computational efficiency of SNNs and segmentation to
extrapolate the BE, the BE can be approximated across the entire
operating region of the state space without the computational burden
of nonsparse methods.

To facilitate the sparse BE extrapolation, let the operating domain
Ω be partitioned into S ∈ N segments such that S � {j ∈ N|j ≤ S}
defines the set of segments in the operating domain as Ω =

⋃S
j=1 Ωj .

To simulate PE and extrapolate BE over off-policy trajectories, the

segments {ζi : ζi ∈ Ωj}Nj

i=1 are selected,3 where Nj ∈ N denotes the
number of extrapolated states in each segment Ωj . Each segment
is assigned a certain number of off-policy trajectories.4 Using the
extrapolated trajectories ζi ∈ Ωj for j ∈ S, the BE in (13) is eval-
uated such that δ̂i � δ̂(ζi, θ̂, Ŵc, Ŵa). For a given j ∈ S, the tuple
(Σj

c,Σ
j
a,Σ

j
Γ) is defined as the extrapolation stacks corresponding toΩj

such thatΣj
c � 1

Nj

∑Nj

i=1
ωi
ρi
δ̂i, Σj

a � 1
Nj

∑Nj

i=1

GT
σi

ŴaωT
i

4ρi
, and Σj

Γ �
1
Nj

∑Nj

i=1

ωiω
T
i

ρi
, where ωi � ω(ζi, θ̂, Ŵa), ρi � ρ(ζi, θ̂, Ŵa,Γ) =

1 + νωT
i Γωi, and Assumption 7 is provided to facilitate the subsequent

stability analysis.
Assumption 7: Over each segment j ∈ S, there exist a fi-

nite set of trajectories {ζi : ζi ∈ Ωj}Nj

i=1 such that 0 < c �
inft∈R≥0, j∈S λmin{Σj

Γ}, where λmin{·} is the minimum eigenvalue,
and the constant c is the lower bound of the value of each input–output
data pairs’ minimum eigenvalues.

Remark 3: BE extrapolation can be performed in parallel if needed
(i.e., BE extrapolation across multiple segments can be performed
simultaneously). Since SNNs are used to improve computational ef-
ficiency, the extrapolation within multiple segments can be performed
at once. For certain systems, parallel computing may be more computa-
tionally efficient in time and power when compared to methods that use
traditional NNs for BE extrapolation across the entire state space. One
difference in the developed technique compared to previous results is
that the actor and critic update laws take a new form in which switching
extrapolation stacks are introduced. The extrapolation stacks, Σj

c, Σ
j
Γ,

and Σj
a correspond to user-defined segments of the state space. Upon

entering a new segment of the state space, the extrapolation stacks
will recall data previously recorded from when the system was last
operating in that segment. This allows the user to use separate analysis
tools (e.g., machine learning tools) to select segment properties (e.g.,
size, spacing, quantity, etc.). Switching extrapolation stacks introduces
discontinuities in the Lyapunov function time-derivative, requiring a
more nuanced stability analysis with generalized solutions.

V. ACTOR AND CRITIC WEIGHT UPDATE LAWS

Using the instantaneous BE δ̂ and extrapolated BEs δ̂i, the critic and
actor weights are updated according to

˙̂
Wc = − ηc1Γ

ω

ρ
δ̂ − ηc2ΓΣ

j
c (15)

Γ̇ =

(
λΓ− ηc1

ΓωωTΓ

ρ2
− ηc2ΓΣ

j
ΓΓ

)
1{Γ≤‖Γ‖≤Γ} (16)

˙̂
Wa = − ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa

+
ηc1G

T
σ Ŵaω

T

4ρ
Ŵc + ηc2Σ

j
aŴc (17)

where ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are constant learning gains,
Γ andΓ ∈ R>0 are upper and lower bound saturation constants, and
1{·} denotes the indicator function.5

3See [14] for guidance on selecting off-policy trajectories for BE extrapola-
tion.

4The segments are predetermined by the user and are state dependent (e.g.,
in [22], the states: altitude, angle of attack, and Mach number determine segment
activation).

5Using the indicator function in (16) ensures that Γ ≤ ‖Γ(t)‖ ≤ Γ for all
t ∈ R>0. The indicator function in (16) can be removed with minor changes
and additional assumptions [19].
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VI. STABILITY ANALYSIS

To facilitate the stability analysis, let θ̃ � θ − θ̂,
and Z ∈ Rn(3+p)+2 L denote a concatenated state Z �
[eT , W̃T

c , W̃T
a , x̃T , vec(θ̃)T ]T . From Property 1, Q is PSD, therefore,

V ∗(ζ) is also PSD. Hence, V ∗ is not a valid Lyapunov function. The
result in [11] can be used to show that a nonautonomous form of V ∗,
denoted as V ∗

na : Rn × R≥0 → R and defined as V ∗
na(e, t) � V ∗(ζ),

is PD and decrescent. Furthermore, V ∗
na(0, t) = 0 ∀t ∈ R≥0 and

there exist class K∞ functions v, v : R≥0 → R≥0 that bound
v(‖e‖) ≤ V ∗(e, t) ≤ v(‖e‖) ∀e ∈ Rn, t ∈ R≥0. Hence, V ∗

na(e, t) is a
valid Lyapunov function candidate. LetVL : Rn(3+p)+2 L × R≥0 → R
be a candidate Lyapunov function defined as

VL(Z, t) � V ∗
na(e, t) +

1

2
W̃T

c Γ(t)−1W̃c +
1

2
W̃T

a W̃a

+
1

2
x̃T x̃+

1

2
tr
(
θ̃TΓ−1

θ θ̃
)
. (18)

Using the properties of V ∗
na(e, t) and [28, Lemma 4.3], then (18) be

bounded as α1(‖Z‖) ≤ VL(Z, t) ≤ α2(‖Z‖) for class K functions
α1, α2 : R≥0 → R≥0. Using (16), the normalized regressors ω

ρ
and ωi

ρi

can be bounded as supζ∈Ω ‖ω
ρ
‖ ≤ 1

2
√

νΓ
and supζi∈Ωj , j∈S ‖ωi

ρi
‖ ≤

1

2
√

νΓ
. The matrices GR and Gσ can be bounded as supζ∈Ω ‖GR‖ ≤

λmax{R−1}G2 � GR and supζ∈Ω ‖Gσ‖ ≤ (∇ζσG)2λmax{R−1} �
Gσ, respectively, where λmax{·} denotes the maximum eigenvalue.

Theorem 1: Given the dynamics in (1), Assumptions 1–7, and the
sufficient conditions

ηa1 + ηa2 ≥ 1√
νΓ

(ηc1 + ηc2)WGσ (19)

c ≥ 3
ηa1
ηc2

+
3
(
(ηc1 + ηc2)WGσ

)2
16ηc2νΓ (ηa1 + ηa2)

+
9
(
(ηc1 + ηc2)W∇ζσφ

)2
8ηc2kθνΓλmin

{∑M
j=1 φjφT

j

} (20)

ν−1
l (l) < α−1

2 (α1(r)) (21)

where l and r are positive constants, then the system state ζ, weight
estimation errors W̃c and W̃a, state estimation error x̃, output-layer
weight matrix error θ̃, and control policy μ̂ are uniformly ultimately
bounded (UUB).

Proof: Let r ∈ R>0 be the radius of a compact ball
χ ⊂ Rn(3+p)+2 L centered at the origin. Let Z(t) for t ∈ R≥0 be a
Filippov solution to the differential inclusion Ż ∈ K[h](Z), where
K[·] is defined in [29] and h : Rn(4+p)+2L+L2 → Rn(4+p)+2L+L2

is defined as h � [ζ̇T , ˙̃WT
c , ˙̃WT

a , vec(Γ̇−1)T , ˙̃xT , vec( ˙̃θ)T ]T . Due
to the discontinuity in the update laws in (15)–(17), the time
derivative of (18) exists almost everywhere (a.e., i.e., for almost all

t ∈ R≥0) and V̇L(Z, t)
a.e.∈ ˙̃VL(Z, t), where ˙̃VL is the generalized

time-derivative of (18) along the Filippov trajectories of Ż = h(Z)
[30]. Using the class of dynamics in (1); the calculus of K[·]
from [30]; V̇ ∗(ζ) = ∇ζV

∗(ζ)(F (ζ) +G(ζ)μ); substituting (10),
(11), and (14)–(17); using Young’s Inequality and nonlinear damping;
Assumption 6 and 7; and substituting the sufficient conditions in (19)

and (20) yields V̇L

a.e.≤ −νl(‖Z‖), ∀ν−1
l (l) ≤ ‖Z‖ ≤ α−1

2 (α1(r)),

where νl(‖Z‖) � q(‖e‖)
2

+
ηc2c

12
‖W̃c‖2 + ηa1+ηa2

16
‖W̃a‖2 +

k
4
‖x̃‖2 + kθλmin

{∑M

j=1
φjφ

T
j

}

6
‖vec(θ̃)‖2. Since (18) is a

common Lyapunov function across each segment j ∈ S, [28,
Th. 4.18] can be invoked to conclude that Z is UUB such

that lim supt→∞ ‖Z‖ ≤ α−1
1 (α2(ν

−1
l (l))) and μ̂ converges to

a neighborhood around the optimal policy μ∗. Furthermore,
since Z ∈ L∞, it follows that e, W̃c, W̃a, x̃, θ̃ ∈ L∞, hence,
x, Ŵc, Ŵa, θ̂ ∈ L∞ and u ∈ L∞.

The result in [28, Th. 4.18] can be invoked to show that every tra-
jectory Z(t) that satisfies the initial condition ‖Z(0)‖ ≤ α−1

2 (α1(r))
is bounded for all t ∈ R≥0. That is, Z ∈ χ ∀t ∈ R≥0. Since Z ∈ χ it
follows that the individual states ofZ lie on compact sets. Furthermore,
since xd ≤ xd, then ζ ∈ Ω and x ∈ C, where Ω is the compact set that
facilitates value function approximation, and C is the compact set that
facilitates NN-based system identification.

Remark 4: Theorem 1 expands on previous results by examining a
different candidate Lyapunov function (18) that contains system iden-
tification terms x̃ and θ̃, considers a nonautonomous form of the value
function, considers different weight update laws (15)–(17), results in
different sufficient conditions due to the system uncertainty (19)–(21),
and provides convergence guarantees on the system identification terms,
whereas [23, Th. 1] and [24, Th. 1] do not.

Remark 5: For insight into satisfying the conditions in (19)–(21),
see [15].

VII. SIMULATION

In this section, the developed technique is applied to a linear
quadratic tracking problem, which has a cost function r(ζ, μ) =
eTQe+ μTRμ. The Euler Lagrange system

u = a1ÿ + a2ẏ, (22)

where y, ẏ, ÿ ∈ R2, is leveraged in this simulation since the ana-
lytical solution to the HJB equation in (5) can be calculated. The
concatenated state x is defined as x � [yT , ẏT ]T . The matrix a1 ∈
R2×2 is defined as a1 �

[
1 1

5
1
2

1
5

]
, and a2 ∈ R2×2 is defined as a2 �[

1 −1
1
2

1
2

]
. The objective is to determine a policy μ online to en-

sure that the concatenated state x tracks the desired trajectory xd =
[cos(0.5t), 2 cos(t), −0.5 sin(0.5t), −2 sin(t)]T while minimizing
the cost function, which is selected as r(ζ, μ) = eTQe+ μTRμ.

The dynamics in (22) can be rewritten in the form A �[
02×2 I2×2

02×2 a−1
1 a2

]
, f(x) = Ax, g(x) = [0T

2×2, (a
−1
1 )T ]T , g+(xd) =

[02×2, a1], hd(xd) = [xd3, xd4,−0.25xd1,−xd2]
T , which can be ex-

pressed as in (1), where ζ � [eT , xT
d ]

T .
To achieve the desired objective, the developed value function

approximation method is used. The basis selected for value func-
tion approximation is a polynomial basis function with 23 elements
given by σ(ζ) = 1

2
[ζ22 , ζ

2
1 , ζ1ζ3, ζ1ζ4, ζ2ζ3, ζ2ζ4, ζ

2
1ζ

2
2 , ζ

2
1ζ

2
5 , ζ

2
1ζ

2
6 ,

ζ21ζ
2
7 , ζ

2
1ζ

2
8 , ζ

2
2ζ

2
5 , ζ

2
2ζ

2
6 , ζ

2
2ζ

2
7 , ζ

2
2ζ

2
8 , ζ

2
3ζ

2
5 , ζ

2
3ζ

2
6 , ζ

2
3ζ

2
7 , ζ

2
3ζ

2
8 , ζ

2
4ζ

2
5 ,

ζ24ζ
2
6 , ζ

2
4ζ

2
7 , ζ

2
4ζ

2
8 ]

T , where, generally, ζi refers to the ith entry of
ζ. The drift dynamics are unknown, but are approximated using the
developed system identification method. The unknown drift dynamics
are approximated with the linear basis φ(x) = [x1, x2, x3, x4]

T . Five
separate simulation cases were performed that use identical gains,
initial conditions, and basis function for system identification and
on-trajectory BE. The differences between the simulations is that
BE extrapolation is performed with different NNs, which have vary-
ing sparsity, which are specified in Table I. Case 1 (i.e., [15]) uses
traditional BE extrapolation, Cases 2–4 use sparse BE extrapola-
tion, and Case 5 uses sparse BE extrapolation and switches the ex-
trapolation stacks depending on the system state. Each simulation case
was executed in Simulink using a discrete-time differential equation
solver at a frequency of 100 Hz on the same machine. Each simulation
case is executed for 120 seconds of simulated time.
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TABLE I
SIMULATION CASE PARAMETERS

Fig. 1. (a) Errors e1, e2, ė1, ė2 in Case 1. (b) Errors e1, e2, ė1, ė2
in Case 5. The vertical line represents the time at which the system
switched BE extrapolation data stacks due to (23). Case 5 has faster
convergence than Case 1; however, Case 1 has a smaller steady-state
error.

For Cases 1–4, BE extrapolation is performed over the domain
Ω1 � {ζ ∈ R8 : −5 ≤ ζi ≤ 5 ∀i ∈ [1, 8]} with N1 = 64 extrapolated
trajectories. However, for Case 5, two segments are defined: Ω1 ⊂ R8

and Ω2 ⊂ R8, where Ω1 � {ζ ∈ R8 : −5 ≤ ζi ≤ 5 ∀i ∈ [1, 8]} with
N1 = 64 extrapolated trajectories. The second segment is defined such
that Ω2 � Ω1 with N2 = 32 extrapolated trajectories. In Case 5, both
Ω1 and Ω2 use the same basis, which is defined in the Table I. The
active BE extrapolation stack Ωj is selected via the policy

j �
{
1 ‖e‖ > 2

2 ‖e‖ ≤ 2
. (23)

For each simulation case the cost parameters are Q =
[1000, 1000, 0.2, 0.2]T · I4×4 and R = 10 · I2×2, the gains are ηc1 =
0.012, ηc2 = 0.001, ηa1 = 0.005, ηa2 = 0.005, λ = 0.075, ν =
0.005, kθ = 100, Γθ = 0.02× I4×4. Γ = 103, Γ = 10, and the initial
conditions are Ŵc(0) = 10 · 123×1, Ŵa(0) = 6 · 123×1,Γ(0) = 200 ·
I23×23, θ̂(0) = 04×4,

6x̂(0) = 04×1, and x(0) = [15,−15, 0, 0]T .
The tracking errors for Cases 1 and 5 are compared in Fig. 1. The

purpose of Fig. 1(a) is to show the performance of an existing, nonsparse
result. To contrast Fig. 1(a), (b) presents the performance of the most
sparse simulation case. These figures, when paired with Table II, exhibit
the benefits and drawbacks to using the techniques described in Cases
1 and 5. Case 1 may take slightly longer to converge, but it has a
lower steady-state error, which indicates that the use of additional BE
extrapolation data results in improved value function approximation.
The convergence rate of Case 5 (SNN with switched BE extrapolation
stack) is better than that of Case 1 (standard BE extrapolation from [15]).

For this class of dynamics and cost function, the solution to the
HJB equation can be determined analytically by solving the Algebraic

6From (22), θ = AT .

Fig. 2. Comparison of the optimal value function V ∗(ζ) to the approx-
imated optimal value function V̂ (ζ, Ŵc) for Case 5. The vertical line
represents the time at which the system switched BE extrapolation data
stacks due to (23).

Riccati Equation offline. Hence, the approximate value function
V̂ (ζ, Ŵc) can be compared to the optimal value function V ∗(ζ). This
comparison is shown in Fig. 2.

To examine the effects of increased sparse BE extrapolation, data
were collected from each simulation case to facilitate a quantitative
comparison. The median computation time,7 integral of error (i.e.,∫ 120

0
‖e(τ)‖dτ ), 5% rise time, and root mean squared (RMS) error

for each case are shown in Table II.
The computation time is the amount of real-world time it takes to run

120 s of simulation time. The computation times were measured by a
built-in function in MATLAB. There is a clear trend in the computation
times of each case. Case 1 has the highest computation time because
it performs the highest amount of BE extrapolation. Case 5 has the
shortest computation time. By combining the switched extrapolation
stacks and sparse BE, the computation time is reduced by 85.6%
compared to the nonsparse BE extrapolation method in [15]. As the BE
extrapolation becomes more sparse (from Cases 2 to 4) the computation
time significantly decreases. Case 5 uses a switched extrapolation stack
with sparse BE extrapolation (the same SNN as Case 4). By decreasing
the number of points in each extrapolation stack, the computation
time is decreased. Additionally, by performing sparse BE extrapolation
on the smaller extrapolated stacks, the computation time is further
reduced. Hence, as the BE extrapolation becomes more sparse and
more switching extrapolations stacks are used, the computation time
significantly decreases.

The 5% rise time is the amount of time it takes for the error to reach
5% of its initial value (i.e., ‖e(t)‖ ≤ 0.05 · ‖e(0)‖).8 While the rise
time is the worst for Case 1, there is no clear explanation. Increasing
sparsity seems to have a minor effect on rise time. The RMS steady-state
error is lowest for Case 1. This is likely due to the fact that Case 1 uses
the most data and computations; however, this has a negative effect on
computation time. Cases 2–5 have similar RMS steady-state error; we
can conclude that the increasing amount of sparsity has little impact on
the RMS steady-state error.

7The computation time varied between multiple instances of the same sim-
ulation case. To better measure the computation time of each case, the median
computation time was determined by running each case 10 times. The median
was selected to eliminate the effect of outliers because the computation times
are skewed toward higher computation times. For each case, the integral of error,
5% rise time, and RMS steady-state error of each case were identical between
multiple simulation trials.

8The 5% rise time was used as a performance metric to better compare the
convergence of the test cases. If a 10% rise time were used, the performance
difference between Case 1 and Cases 2–5 would not be as pronounced.
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TABLE II
SIMULATION RESULTS FOR SIMULATION CASES 1–5.

VIII. CONCLUSION

An online approximate optimal tracking controller is developed for
an initially unknown dynamical system. The value function is approx-
imated by performing sparse BE extrapolation over segments of the
state space. Motivated by reducing the computational complexity of BE
extrapolation, sparse BE extrapolation is performed over user-defined
subsets of the state space. UUB tracking of each agent’s state to the
neighborhood of the desired state and convergence of the control policy
to the neighborhood of the optimal policy are proven using a Lyapunov-
like stability analysis in the presence of discontinuities. A simulation
study shows that this method enables the system to track a desired
trajectory while approximating the value function and optimal control
policy to their optimal values. Furthermore, the simulation shows that
sparse, switched BE extrapolation reduces computation time by 85.6%
when compared to the method in [15]. Future efforts will investigate if
BE extrapolation data and system identification input–output data can
be exploited together to reduce the overall amount of data used by this
control technique.
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