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Tracking and Regulation Control
of a Mobile Robot System With
Kinematic Disturbances: A
Variable Structure-Like Approach
This paper presents the design of a variable structure-like tracking controller for a mo
robot system. The controller provides robustness with regard to bounded disturbanc
the kinematic model. Through the use of a dynamic oscillator and a Lyapunov-b
stability analysis, we demonstrate that the position and orientation tracking errors e
nentially converge to a neighborhood about zero that can be made arbitrarily small
the controller ensures that the tracking error is globally uniformly ultimately bound
(GUUB)). In addition, we illustrate how the proposed tracking controller can also
utilized to achieve GUUB regulation to an arbitrary desired setpoint. An extension is
provided that illustrates how a smooth, time-varying control law can be utilized
achieve setpoint regulation despite parametric uncertainty in the kinematic model. S
lation results are presented to demonstrate the performance of the proposed contro
@S0022-0434~00!00504-9#
c
i

o
i
o

i
o
t

b

t

f

l
n
a

he

be-
lve

R,
rm.
like
to
d in
revi-

er
sed
ck-
ero
t
d
ce
also
rol
is
e-

tic

the
r-
tes
t the
. In
hat
c-
ller.
egu-
e-
s-
tion

t

c

1 Introduction
Over the past twenty years the control of wheeled mobile rob

~WMRs! has been heavily studied~see@1,2#, and the references
therein for an in-depth review of the previous work! due to the
challenging theoretical nature of the problem~i.e., WMRs are
nonlinear, underactuated systems subject to nonholonomic
straints imposed by a pure rolling and nonslipping assumpt!
and the wide range of applications that are well suited to their
~e.g., munitions handling, exploration, security, and monitorin
etc.!. Several researchers have examined the regulation@3,4# and
the tracking control@5# problems for WMRs that are subject t
disturbances in the kinematic model that violate the pure roll
and nonslipping assumption. Specifically, a quasi-sliding m
controller was presented by Canudas de Wit et al. in@3# that
achieved exponential regulation of the position/orientation o
WMR subject to either a constant matched disturbance or a s
vanishing disturbance that violates the nonholonomic constra
In @4#, Corradini et al. proposed a discrete-time, quasi-slid
mode controller that regulated the position of a WMR subject t
similar disturbance to a neighborhood about the origin. Note
the quasi-sliding mode regulation controllers presented in@3,4#
are not differentiable, and unfortunately, the standard backs
ping procedure, often used for incorporating the mechanical
namics, requires that the kinematic controller be differentia
~see the discussion in@1#!. In @6#, d’Andrea-Novel et al. proposed
a singular perturbation formulation that led to robustness res
for feedback linearizing control laws with sufficiently small slip
ping and skidding effects. In@5#, Leroquais et al. used the resul
in @6# to design a linear, differentiable time-varying feedback la
that achieved local uniformly asymptotically stable tracking o
time-varying reference trajectory; however, due to restrictions
the reference trajectory, the tracking controller cannot be app
to the regulation problem. It should be noted that the contro
proposed in@5# included the dynamic model of the WMR. I
addition to problems concerning disturbances in the kinem
model, researchers have also investigated the effects of param
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uncertainty in the kinematic model. For example,@7–9# examined
regulating a WMR with uncertain parameters multiplied by t
control inputs of the kinematic model. Specifically, in@7#, Hes-
panha et al. utilized a supervisory control strategy to switch
tween a suitably defined family of candidate control laws to so
the so-called ‘‘parking problem’’ for a WMR. In@8#, Jiang pro-
posed a switching controller to exponentially regulate a WM
and in@9#, Jiang extended the results to the general chained fo

In this paper, we present the design of a variable structure-
tracking controller for a mobile robot system that is subject
kinematic disturbances. The kinematic disturbances considere
this paper represent a broader class of disturbances than p
ously examined~i.e., the kinematic model presented in@3,4# are
special cases of the kinematic model examined in this pap!.
Through the use of a dynamic oscillator and a Lyapunov-ba
stability analysis, we show that the position and orientation tra
ing errors exponentially converge to a neighborhood about z
that can be made arbitrarily small~i.e., the controller ensures tha
the tracking error is globally uniformly ultimately bounde
~GUUB!!. In addition, since we only require that the referen
trajectory be bounded, the proposed tracking controller can
be utilized to achieve GUUB regulation; hence, a unified cont
framework for both the tracking and the regulation problem
proposed. Finally, we also illustrate how the differentiable, tim
varying controller presented in@2# can be utilized to solve the
regulation problem of a WMR with the same uncertain kinema
model as examined in@7–9#.

The paper is organized as follows. In Section 2, we develop
kinematic model of a WMR that is subject to kinematic distu
bances and then transform the model into a form which facilita
the subsequent control development. In Section 3, we presen
control law and the corresponding closed-loop error system
Section 4, we provide a Lyapunov based stability analysis t
illustrates global uniformly ultimately bounded tracking. In Se
tion 5, we present a setpoint extension for the proposed contro
In Section 6, we present an extension regarding the setpoint r
lating problem for a WMR with uncertain parameters in the kin
matic model. In Section 7, we provide simulation results to illu
trate the performance of the proposed controllers, and in Sec
8, we present some concluding remarks.

he

iate
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2 Problem Formulation

2.1 WMR Kinematic Model. The kinematic model for the
so-called kinematic wheel is given as follows

q̇5S~q!v1@r1~ t ! r2~ t ! r3~ t !#T (1)

whereq(t), q̇(t)PR3 are defined as

q5@xc yc u#T q̇5@ ẋc ẏc u̇ #T (2)

xc(t) andyc(t) denote the Cartesian position of the center of ma
~COM! of the WMR along theX and Y-coordinate axis of the
Cartesian plane~see Fig. 1!, u(t)PR1 represents the orientation
of the WMR ~see Fig. 1!, ẋc(t), ẏc(t) denote the Cartesian com
ponents of the linear velocity of the COM,u̇(t)PR1 denotes the
angular velocity of the COM, the matrixS(q)PR332 is defined
as follows

S~q!5F cosu 0

sinu 0

0 1
G , (3)

the velocity vectorv(t)PR2 is defined as follows

v5@v1 v2#T5@v l u̇ #T (4)

with v l(t)PR1 denoting the linear velocity of the COM, an
r1(t),r2(t),r3(t)PR1 represent unknown disturbances that a
assumed to be upper bounded as shown below

ur1~ t !u<z1 , ur2~ t !u<z2 , ur3~ t !u<z3 (5)

wherez1 ,z2 ,z3PR1 are positive bounding constants. Note that
r1(t),r2(t),r3(t)50, the standard kinematic model for the pu
rolling and nonslipping kinematic wheel is recovered.

Remark 1. Note that the kinematic model for a WMR subjec
the so-called matched disturbance is given as follows [3]

q̇5S~q!v1rM~ t !@cosu sinu, 0#T (6)

whererM(t)PR1 denotes a bounded disturbance. In addition, t
kinematic model for a WMR subject to the so-called unmatc
disturbance is given as follows [3]

q̇5S~q!v1rU~ t !@sinu 2cosu 0#T (7)

where rU(t)PR1 denotes a bounded disturbance. Note that
order to obtain the exponential regulation result presented in [3
the unmatched disturbancerU(t) must be upper bounded by
function of the states, whereas the GUUB result obtained in
required the disturbance be upper bounded by a constant. Fro

Fig. 1 Two-dimensional kinematic wheel
Journal of Dynamic Systems, Measurement, and Control
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control point of view, it is easy to see from (1), (6), and (7) th
the matched disturbance and unmatched disturbance probl
are both special cases of the model used in (1).

2.2 Model Transformation. As defined in previous work
~e.g., see@10# and@11#!, the time-varying reference trajectory fo
the WMR is generated via a reference robot which moves acc
ing to the following dynamic trajectory

q̇r5S~qr !v r (8)

where S(•) was defined in ~3!, qr(t)5@xrc(t) yrc(t) u r(t)#T

PR3 denotes the desired time-varying position/orientation traj
tory, andv r(t)5@v r1(t) v r2(t)#TPR2 denotes the reference time
varying linear/angular velocity. With regard to~8!, it is assumed
that the signalv r(t) is constructed to produce the desired moti
and thatv r(t), v̇ r(t), qr(t), andq̇r(t) are bounded for all time.

To facilitate the subsequent control synthesis and the co
sponding stability proof, we define the following global invertib
transformation

F w
z1

z2

G5F 2 ũ cosu12 sinu 2 ũ sinu22 cosu 0

0 0 1

cosu sinu 0
G F x̃

ỹ

ũ
G

(9)

where w(t)PR1 and z(t)5@z1(t) z2(t)#TPR2 are auxiliary
tracking error variables andx̃(t),ỹ(t),ũ(t)PR1 denote the differ-
ence between the actual Cartesian position and orientation o
COM and the reference position and orientation of the COM
follows

x̃5xc2xrc ỹ5yc2yrc ũ5u2u r . (10)

2.3 Open-Loop Tracking Error Development. After tak-
ing the time derivative of~9!, and using~1!–~4!, ~8!–~10! we can
rewrite the open-loop tracking error dynamics in a more con
nient form as follows

ẇ5uTJTz1 f 1x1

ż5u1x2 (11)

whereJPR232 is a skew-symmetric matrix defined as

J5F0 21

1 0 G (12)

f (z,v r ,t)PR1 is an auxiliary signal defined as

f 52~v r2z22n r1 sinz1! (13)

the auxiliary kinematic control input, denoted byu(t)
5@u1(t) u2(t)#TPR2, is defined in terms of the WMR position
orientation, the WMR linear velocities, and the reference traj
tory as follows

u5T21v2Fv r2

v r1 cosũG
v5Tu1Fv r1 cosũ1v r2~ x̃ sinu2 ỹ cosu!

v r2
G (14)

the auxiliary matrixTPR232 is defined as follows

T5F ~ x̃ sinu2 ỹ cosu! 1

1 0G (15)

and x1(t)PR1 and x2(t)5@x21 x22#PR2 are auxiliary signals
defined as follows

x152~r1 sinu2r2 cosu!1r3~z21z1~ x̃ sinu2 ỹ cosu!!

2z1~r1 cosu1r2 sinu! (16)
DECEMBER 2000, Vol. 122 Õ 617
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x25@r3 r1 cosu1r2 sinu2r3~ x̃ sinu2 ỹ cosu!#T. (17)

In order to facilitate the subsequent stability analysis, we util
the fact that

x̃ sinu2 ỹ cosu5
1

2
~w1z1z2! (18)

to rewrite~16! and~17! in terms of the auxiliary variables define
in ~9! as follows

x152~r1 sinu2r2 cosu!1r3S z21
z1

2
~w1z1z2! D

2z1~r1 cosu1r2 sinu! (19)

x25Fr3 r1 cosu1r2 sinu2
r3

2
~w1z1z2!GT

. (20)

3 Smooth Variable Structure-Like Control
Our control objective is to design a controller for the tran

formed kinematic model given in~11! that forces the actua
position/orientation of the WMR to track the reference tim
varying position/orientation generated in~8!. To facilitate the sub-
sequent control development, we define an auxiliary error sig
z̃(t)PR2 as the difference between the subsequently desig
auxiliary signalzd(t)PR2 and the transformed variablez(t), de-
fined in ~9!, as follows

z̃5zd2z. (21)

3.1 Control Formulation. Based on the open-loop trackin
error dynamics given in~11! and the subsequent stability analys
we design the auxiliary kinematic control signalu(t) as follows

u5ua2k2z (22)

where the auxiliary control signalua(t)PR2 is defined as

ua5S k1w1 f

dd
2 D Jzd1V1zd , (23)

the auxiliary signalzd(t) is defined by the following oscillator-
like relationship

żd5
ḋd

dd
zd1S k1w1 f

dd
2 1wV1D Jzd zd

T~0!zd~0!5dd
2~0!,

(24)

the auxiliary termsV1(t)PR1 anddd(t)PR1 are defined as

V15k21
ḋd

dd
1wS k1w1 f

dd
2 D (25)

and

dd5a0 exp~2a1t !1«1 (26)

respectively,f (z,v r ,t) was defined in~13!, k1(t), k2(t)PR1 are
positive, time-varying functions selected as follows

k15ks1
k1

2

k1uwu1«c1
k25ks1

k2
2

k2i z̃i1«c2
, (27)

k1(w,z̃,t), k2(w,z̃,t)PR1 are positive bounding functions, an
ks , a0 , a1 , «1 , «c1 , «c2PR1 are positive, constant contro
gains.

Remark 2. In order to facilitate the subsequent stability ana
sis, we note that the auxiliary signals defined in (19) and (20) c
be upper bounded as follows

ux1u<k1 ix2i<k2 (28)

where the positive bounding functionsk1(w,z̃,t), k2(w,z̃,t)
PR1 are defined as follows
618 Õ Vol. 122, DECEMBER 2000
ze

s-

e-

nal
ned

s,

l

ly-
an

k1>2z41S z31z41
z3

2
uwu D ~ izdi1i z̃i !1

z3

2
~ izdi1i z̃i !3

(29)

k2>Az3
21S z41

z3

2
~ izdi1i z̃i !21

z3

2
uwu D 2

(30)

and z4PR1 is a positive bounding constant selected as follow

z4>r11r2 . (31)

Remark 3. Motivation for the structure of (24) is obtained
taking the time derivative of zd

Tzd as follows

d

dt
~zd

Tzd!52zd
Tżd52zd

TS ḋd

dd
zd1S k1w1 f

dd
2 1wV1D JzdD (32)

where~24! has been utilized. After noting that the matrix J of (1
is skew symmetric, we can rewrite (32) as follows

d

dt
~zd

Tzd!52
ḋd

dd
zd

Tzd . (33)

As result of the selection of the initial conditions given in (24),
is easy to verify that

zd
Tzd5izdi25dd

2 (34)

is a unique solution to the differential equation given in (33). T
relationship given by (34) will be used during the subsequ
error system development and stability analysis.

Remark 4. Note that the exponential term in (26) is not nec
sary for the subsequent stability analysis. That is, ifa0 is selected
as a050 then the subsequent stability proof is still valid. Th
motivation for selectinga0Þ0 is to provide the designer with
increased flexibility with regard to ensuring that the control effo
is maintained at a reasonable magnitude. Specifically, for the c
of large initial tracking error, the magnitude of the control coul
possibly be reduced through the selection ofa0 .

3.2 Closed-Loop Error System Development. To deter-
mine the closed-loop tracking error dynamics forw(t), we sub-
stitute ~22! for u(t) in the open-loop tracking error system give
by ~11! add and subtractua

TJzd to the resulting expression, an
then utilize~21! to rewrite the dynamics forw(t), as follows

ẇ5ua
TJz̃2ua

TJzd1 f 1x1 (35)

where the fact thatJT52J was utilized. Finally, by substituting
~23! for only the second occurrence ofua(t) in ~35! and then
utilizing the equality given by~34! and the fact thatJTJ5I 2 ~note
that I 2 denotes the standard 232 identity matrix!, we can obtain
the final expression for the closed-loop tracking error system
w(t) as follows

ẇ5ua
TJz̃2k1w1x1 . (36)

To determine the closed-loop error system forz̃(t), we take the
time derivative of~21!, substitute~24! for żd(t), and then substi-
tute ~11! for ż(t) to obtain the following expression

z85
ḋd

dd
zd1S k1w1 f

dd
2 1wV1D Jzd2u2x2 . (37)

After substituting~22! for u(t), and then substituting~23! for
ua(t) in the resulting expression, we can rewrite~37! as follows

z85
ḋd

dd
zd1wV1Jzd2V1zd1k2z2x2 . (38)

After substituting~25! for only the second occurrence ofV1(t) in
~38! and using the fact thatJJ52I 2 , we can cancel common
terms and rearrange the resulting expression to obtain
Transactions of the ASME
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z852k2z̃1wJF S k1w1 f

dd
2 D Jzd1V1zdG2x2 (39)

where~21! has been utilized. Finally, since the bracketed term
~39! is equal toua(t) defined in ~23!, we can obtain the fina
expression for the closed-loop tracking error system forz̃(t) as
follows

z852k2z̃1wJua2x2 . (40)

4 Stability Analysis
Theorem 1. The kinematic control law given in (22)–(27) en-

sures the position and orientation tracking errors defined in (1
are GUUB in the sense that

ux̃~ t !u,u ỹ~ t !u,uũ~ t !u<Ab0 exp~2g0t !1b1~«c11«c2!

1b2 exp~2g1t !1b3«1 (41)

where«1 was defined in (26),«c1 , «c2 were defined in (27) and
b0 , b1 , b2 , b3 , g0 , and g1PR1 are some positive constants
With regard to (41) we note that«1 , «c1 , «c2 can be made arbi-
trarily small.

Proof: To proveTheorem 1, we define a non-negative, scal
function denoted byV(t)PR1 as follows

V5
1

2
w21

1

2
z̃Tz̃. (42)

After taking the time derivative of~42!, making the appropriate
substitutions from~36! and ~40!, and then cancelling commo
terms, we obtain the following expression

V̇52k1w22k2z̃Tz̃1wx12 z̃Tx2 (43)

where we utilized the fact thatJT52J. After substituting~27! for
k1(t) andk2(t), we can upperboundV̇(t) of ~43! as follows

V̇<2ksw
22ksi z̃i21Fk1uwu2

k1
2w2

k1uwu1«c1
G

1Fk2i z̃i2
k2

2i z̃i2

k2i z̃i1«c2
G (44)

where~28! was utilized. We can now utilize~42! and the facts that

Fk1uwu2
2k1

2w2

k1uwu1«c1
G<«c1 Fk2i z̃i2

2k2
2i z̃i2

k2i z̃i1«c2
G<«c2

(45)

to upper boundV̇(t) of ~44! as follows

V̇<22ksV1«c11«c2 . (46)

After solving the differential inequality given in~46!, we obtain
the following expression

V<exp~22kst !V~0!1
«c11«c2

2ks
~12exp~22kst !!. (47)

Finally, we can utilize~42! to rewrite the inequality given by~47!
as

iC~ t !i<Aexp~22kst !iC~0!i21
«c11«c2

ks
~12exp~22kst !!

(48)

where the vectorC(t)PR3 is defined as

C5@w z̃T#T. (49)

Based on~48! and ~49!, it is clear thatw(t), z̃(t)PL` . After
utilizing ~21!, ~34!, and the fact thatz̃(t), dd(t)PL` , we can
conclude thatz(t), zd(t)PL` . From ~5! and the fact that
w(t), z(t), z̃(t), zd(t)PL` , it is clear from~19!, ~20!, ~28!–~30!
Journal of Dynamic Systems, Measurement, and Control
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thatx1(t), x2(t), k1(w, z̃, t), k2(w, z̃, t)PL` . Based on these
facts, we can now use the assumption thatv r1(t),v r2(t)PL` ,
~13!, ~22!–~26!, and ~34! to show thatf (z, v r , t), ua(t), żd(t),
V1(t), u(t)PL` . Now, in order to illustrate that the Cartesia
position and orientation signals defined in~1! are bounded, we
utilize the inverse of the transformation given in~9! as follows

F x̃
ỹ

ũ
G5F 1

2
sinu 0

1

2
~ ũ sinu12 cosu!

2
1

2
cosu 0 2

1

2
~ ũ cosu22 sinu!

0 1 0

G F w
z1

z2

G .

(50)

Since z(t)PL` , it is clear from ~10! and ~50! that ũ(t), u(t)
PL` . Furthermore, from ~10!, ~50!, and the fact that
w(t), z(t), u(t)PL` , we can conclude tha
x̃(t), ỹ(t), xc(t), yc(t)PL` . We can utilize~14! the assumption
that v r1(t), v r2(t)PL` , and the fact thatu(t), u(t), x̃(t), ỹ(t)
PL` , to show thatv(t)PL` ; therefore, it follows from~1!–~5!
that u̇(t), ẋc(t), ẏc(t)PL` . Standard signal chasing argumen
can now be employed to conclude that all of the remaining sign
in the control and the system remain bounded during closed-l
operation.

In order to prove thatz(t) defined in~9! is GUUB, we can now
apply the triangle inequality to~21! to obtain the following bound
for z(t)

izi<i z̃i1izdi

<Aexp~22kst !iC~0!i21
«c11«c2

ks
~12exp~22kst !!

1a0 exp~2a1t !1«1 (51)

where~26!, ~34!, ~48! and~49! have been utilized. Based on~48!–
~51!, the result given in~41! can now be directly obtained. h

Remark 5. It is clear that if the control terms«c1 and «c2 are
set to zero in (44), then the stability analysis would be the sam
for a variable structure controller. We refer to the control schem
as ‘‘variable structure-like’’ due to the close resemblance of t
stability analysis to the classic variable structure stabili
analysis.

5 Setpoint Extension
Unlike some of the previously proposed tracking controlle

~see@12,10,11#, etc.! we have not imposed any restrictions on t
desired trajectory ~other than the assumption tha
v r(t), v̇ r(t), qr(t), and q̇r(t)PL`!; hence, the position and ori
entation tracking problem reduces to the position and orienta
regulation problem in a similar manner as illustrated in@13#. That
is, if the control objective is targeted at the regulation proble
the desired position and orientation vector, denoted byqr

5@xrc yrc u r #
TPR3 and originally defined in~8!, becomes an ar-

bitrary desired constant vector. Based on the fact thatqr(t) is now
defined as a constant vector, it is straightforward thatv r(t) given
in ~8!, and consequentlyf (z,v r ,t) defined in~13! equal zero. We
also note that the auxiliary variableu(t) originally defined in~14!,
is now defined as follows

u5T21v v5Tu (52)

where the matrixT was defined in~15!. Based on the above sim
plifications, it is easy to show that the result given byTheorem 1
is valid for the regulation problem as well. Furthermore, we n
that the proposed kinematic control law given in~22!, ~23!, ~24!,
~25!, ~26!, and~27! can be slightly modified as illustrated in Re
mark 5.5 of @14# to reject parametric uncertainty and bound
disturbances in the dynamic model.
DECEMBER 2000, Vol. 122 Õ 619
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6 Uncertain Kinematic Model Extension
Several researchers have examined the setpoint regulation

lem for a WMR with a kinematic model containing paramet
uncertainties~see @7–9#!. Specifically, the kinematics of the
WMR are given as follows

q̇5S~q!Av (53)

where q(t) was defined in~2! S(•) was defined in~3!, v(t)
5@v1 v2# was defined~4!, andAPR232 is defined as follows

A5Fp1* 0

0 p2*
G (54)

wherep1* , p2* PR1 are uncertain positive parameters that rep
sent the radius of the wheels and the distance between them

6.1 Error System Development. In order to facilitate the
subsequent control design, we utilize the following global inve
ible transformation@2#

F e1

e2

e3

G5F sinu 2cosu 0

0 0 1

cosu sinu 0
G F x̃

ỹ

ũ
G (55)

where e1(t), e2(t), e3(t)PR1 are auxiliary tracking error vari-
ables, andxrc , yrc , u r , originally defined in~8!, are now defined
as arbitrary desired constants. After taking the time derivative
~55! and using~2!–~4!, ~53!–~55!, we can rewrite the open-loop
error dynamics in a more convenient form as follows

F ė1

ė2

ė3

G5F p2* v2e3

p2* v2

p1* v12p2* v2e1

G . (56)

Based on the open-loop error dynamics given in~56! and the
subsequent stability analysis, we utilize the following smoo
time-varying controller@2#

Fv1

v2
G5F2k2e32e1v2

2k1e21e1
2 sin~ t !G . (57)

After substituting~57! into ~56! and performing some algebrai
manipulation, we obtain the following closed-loop error system

3
1

p2*
S 11

p2*

p1*
D ė1

1

p2*
ė2

1

p1*
ė3

4 5F S 11
p2*

p1*
D v2e3

2k1e21e1
2 sin~ t !

2k2e32e1v2S 11
p2*

p1*
D G . (58)

Remark 6. Note that the closed-loop dynamics for e2(t) given
in (58) represent a stable linear system subjected to an add
disturbance given by the product e1

2(t)sin(t). If the additive dis-
turbance is bounded (i.e., if e1(t)PL`), then it is clear that
e2(t)PL` . Furthermore, if the additive disturbance asympto
cally vanishes (i.e., iflimt→` e1(t)50) then it is clear that
limt→` e2(t)50.

6.2 Stability Analysis. Theorem 2. The smooth, time
varying kinematic control law given in (57) ensures glob
asymptotic position and orientation regulation in the sense th

lim
t→`

x̃~ t !,ỹ~ t !,ũ~ t !50. (59)

Proof: To proveTheorem 2, we define a non-negative, scal
function denoted byV2(t)PR1 as follows
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V5
1

2

1

p2*
S 11

p2*

p1*
D e1

21
1

2

1

p1*
e3

2. (60)

After taking the time derivative of~60!, making the appropriate
substitutions from~58!, and then canceling common terms, w
obtain the following expression

V̇52k2e3
2. (61)

Based on~61! and ~60!, it is clear thate1(t), e3(t)PL` and
that e3(t)PL2 . Sincee1(t)PL` , it is clear from Remark 6 that
e2(t)PL` . Based on the fact thate1(t), e2(t), e3(t)PL` , we
can utilize~57! and~58! to prove thatv1(t), v2(t), ė1(t), ė2(t),
ė3(t)PL` . Sinceė1(t), ė2(t), ė3(t)PL` , we can conclude tha
e1(t), e2(t), e3(t) are uniformly continuous. After taking the
time derivative of~57! and utilizing the aforementioned facts, w
can show thatv̇1(t), v̇2(t)PL` , and hence,v1(t), v2(t) are
uniformly continuous.

Based on the facts thate3(t)PL2 and thate3(t) is uniformly
continuous, we can now utilize Barbalat’s lemma@15# to prove
that limt→` e3(t)50. After taking the time derivative of the prod
ucte1(t)e3(t) and substituting~58! in the resulting expression, we
can conclude that

d

dt
~e1e3!52Fp1* S 11

p2*

p1*
D e1

2v2G1e3~ ė12k2p1* e1!. (62)

Since the bracketed term in~62! is uniformly continuous~i.e.,
e1(t),v2(t) are uniformly continuous! and limt→` e3(t)50, we
can utilize an extension of Barbalat’s lemma@2# to conclude that

lim
t→`

d

dt
~e1e3!50 lim

t→`

p1* S 11
p2*

p1*
D e1

2v250. (63)

From the second limit in~63!, it is clear that limt→` e1(t)v2(t)
50. From the facts that limt→` e1(t)v2(t)50 and limt→` e3(t)
50, we can utilize~57! to conclude that limt→` v1(t)50, and
hence, from ~58!, we can prove that limt→` ė1(t)50 and
limt→` ė3(t)50.

To facilitate further analysis, we take the time derivative of t
product e1(t)v2(t) and utilize ~58! to obtain the following
expression

d

dt
~e1v2!5@e1

3 cos~ t !#1ė1~v212e1 sin~ t !!2p2* k1e1v2 .

(64)

Since the bracketed term in~64! is uniformly continuous,
limt→` ė1(t)50, and limt→` e1(t)v2(t)50, we can utilize an ex-
tension of Barbalat’s lemma@2# to conclude that

lim
t→`

d

dt
~e1v2!50 lim

t→`

e1
3 cos~ t !50. (65)

From the second limit in~65!, it is clear that limt→` e1(t)50.
Since we have shown that limt→` e1(t),e2(t),e3(t)50, we can
now utilize the inverse of the transformation defined in~55!, given
as follows

F x̃
ỹ

ũ
G5F sinu 0 cosu

2cosu 0 sinu

0 1 0
G F e1

e2

e3

G (66)

to obtain the result given in~59!. h

7 Simulation Results
The control law given in~22!–~27! was simulated based on th

kinematic model given in~1! wherer1(t), r2(t), r3(t) were se-
lected in a similar manner as in@4# as follows

r15@0.01H~ t22!20.01H~ t24!#sinu (67)
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r252@0.01H~ t22!20.01H~ t24!#cosu (68)

r350.01H~ t22!20.01H~ t24! (69)

where H(•) denotes the standard Heaviside step function. T
desired reference linear and angular velocity were selected a

v r151~m/s! v r25
2sin~xr !cosu r

11tan2 u r
~rad/s!, (70)

respectively, where

xcr~0!50~m!, ycr~0!50~m!, u r~0!50.78539~rad!
(71)

~see Fig. 2 for the resulting reference time-varying Cartesian
sition and orientation!.

The Cartesian position/orientation and the auxiliary signalzd(t)
were initialized as follows

xc~0!521~m!, yc~0!521~m!,
(72)

u r~0!50 ~rad!, zd~0!5@2 0#T.

The control gains that resulted in the best performance are g
below

ks510, a052, a1510,
(73)

«150.001, «c150.002, «c150.002

where the bounding termsz1 , z2 , z3 , andz4 given in~5! and~31!
were selected as follows

z150.5, z250.05, z350.1 and z451.0. (74)

The position/orientation tracking error of the COM of the WM
and the associated control inputs are shown in Fig. 3 and Fig
respectively. Utilizing the same control gains and initial con
tions, we also demonstrate the effectiveness of the proposed
troller with regard to the regulation problem. That is, with t
reference velocity signals in~70! set to zero and the desired pos
tion and orientation setpoint selected as zero, the proposed
troller yields position/orientation regulation errors as shown
Fig. 5 with the associated control inputs given in Fig. 6. Note t
by increasing the control terms«1 , «c1 , and«c2 , the ‘‘chatter-
ing’’ effect observed in Fig. 4 and Fig. 6 can be eliminated; ho
ever, from ~41! it is clear that steady-state position/orientati
tracking error will be bounded by a larger neighborhood about
origin. To illustrate this fact, the control parameters«1 , «c1 , and
«c2 , were increased until the ‘‘chattering’’ effect was reduce
The resulting values of the control parameters are given belo

«150.001, «c150.001, «c150.015. (75)

The resulting position/orientation errors and the associated co
torque input are given in Figs. 7 and 8 for the tracking contro
and Figs. 9 and 10 for the regulation controller.

Fig. 2 Desired Cartesian trajectory
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Simulation results for the kinematic model given in~53! and
~54! are also presented to illustrate the effectiveness of the con
law given in~57! wherer1* (t) andr2* (t) were selected as follows

r1* 51.5, r2* 52.5 (76)

Fig. 3 Position Õorientation tracking errors

Fig. 4 Tracking control input

Fig. 5 Position Õorientation regulation errors
DECEMBER 2000, Vol. 122 Õ 621
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and the Cartesian position/orientation was initialized as follow

xcr~0!52~m!, ycr~0!522~m!, u r~0!51 ~rad!. (77)

The control gains that resulted in the best performance are g
below

Fig. 6 Regulation control input

Fig. 7 Position Õorientation tracking errors

Fig. 8 Tracking control input
622 Õ Vol. 122, DECEMBER 2000
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k150.75, k250.5. (78)

The resulting position/orientation regulation error and the ass
ated control inputs are shown in Figs. 11 and 12, respectively

Fig. 9 Position Õorientation regulation errors

Fig. 10 Regulation control input

Fig. 11 Position Õorientation regulation errors
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8 Conclusion
In this paper, we designed a variable structure-like track

controller for a mobile robot system subject to bounded dis
bances in the kinematic model. Through the use of a Lyapun
based stability analysis, we have demonstrated that;~i!: the posi-
tion and orientation tracking errors exponentially converge t
neighborhood about zero that can be made arbitrarily small,
~ii ! the controller provides robustness with regard to bounded
turbances in the kinematic model. In addition, we illustrated t
the proposed controller can be utilized to regulate the position
orientation of the WMR to an arbitrary desired setpoint. Mo
over, since the proposed tracking controller is smooth, we no
that it can be modified to include the dynamic model of the WM
to enhance the overall robustness. An additional extension
also provided to illustrate that the smooth, time-varying contro
designed in@2# can be applied to solve the setpoint regulati
problem of a WMR with parametric uncertainties in the kinema
model. It should also be noted that in addition to the WMR pro
lem, the proposed controllers can be applied to other nonh
nomic systems~see@16# for example!. Finally, simulation results
provide verification for the proposed controllers.

Fig. 12 Regulation control input
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