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1 Introduction uncertainty in the kinematic model. For examgl&;-9] examined
Ort%gulatinc‘:] a WMR with uncertain parameters multiplied by the
control inputs of the kinematic model. Specifically, [in], Hes-
panha et al. utilized a supervisory control strategy to switch be-

challenging theoretical nature of the probleire., WMRs are tween a suitably defined family of candidate control laws to solve

nonlinear, underactuated systems subject to nonholonomic cgig So-called “parking problem” for a WMR. 18], Jiang pro-
straints imposed by a pure rolling and nonslipping assumptioR°S€d @ switching controller to exponentially regulate a WMR,
and the wide range of applications that are well suited to their u&8d iN[9], Jiang extended the results to the general chained form.
(e.g, munitions handling, exploration, security, and monitoring, ' this paper, we present the design of a variable structure-like
etc). Several researchers have examined the regulédigi and tr_acklng_ controller for a mobll_e robo_t system that is sut_)Ject to_
the tracking contro[5] problems for WMRs that are subject toklnematlc disturbances. The kinematic dlstgrbances considered in
disturbances in the kinematic model that violate the pure rolliri§}iS paper represent a broader class of disturbances than previ-
and nonslipping assumption. Specifically, a quasi-sliding modisly examinedi.e., the kinematic model presented[B\4] are
controller was presented by Canudas de Wit et al[3hthat Special cases of the kinematic model examined in this paper
achieved exponential regulation of the position/orientation of Ehrough the use of a dynamic oscillator and a Lyapunov-based
WMR subject to either a constant matched disturbance or a statability analysis, we show that the position and orientation track-
vanishing disturbance that violates the nonholonomic constraifitg errors exponentially converge to a neighborhood about zero
In [4], Corradini et al. proposed a discrete-time, quasi-slidindpat can be made arbitrarily smaile., the controller ensures that
mode controller that regulated the position of a WMR subject tothe tracking error is globally uniformly ultimately bounded
similar disturbance to a neighborhood about the origin. Note th@UUB)). In addition, since we only require that the reference
the quasi-sliding mode regulation controllers presentefi3id] trajectory be bounded, the proposed tracking controller can also
are not differentiable, and unfortunately, the standard backstdye utilized to achieve GUUB regulation; hence, a unified control
ping procedure, often used for incorporating the mechanical dyamework for both the tracking and the regulation problem is
namics, requires that the kinematic controller be differentiabjsroposed. Finally, we also illustrate how the differentiable, time-
(see the discussion {i]). In [6], d’Andrea-Novel et al. proposed varying controller presented if2] can be utilized to solve the

a singular perturbation formulation that led to robustness resuftsgulation problem of a WMR with the same uncertain kinematic
for feedback linearizing control laws with sufficiently small slip-model as examined if7—9].

ping and skidding effects. Ifb], Leroquais et al. used the results The paper is organized as follows. In Section 2, we develop the
in [6] to design a linear, differentiable time-varying feedback lawinematic model of a WMR that is subject to kinematic distur-
that achieved local uniformly asymptotically stable tracking of gances and then transform the model into a form which facilitates
time-varying reference trajectory; however, due to restrictions gpe subsequent control development. In Section 3, we present the
the reference _trajectory, the tracking controller cannot be appliggntrol law and the corresponding closed-loop error system. In
to the regglatlorj problem. It should.be noted that the controll&action 4, we provide a Lyapunov based stability analysis that
proposed in[5] included the dynamic model of the WMR. Injjystrates global uniformly ultimately bounded tracking. In Sec-
addition to problems concerning disturbances in the kinemajig, 5 e present a setpoint extension for the proposed controller.
model, researchers have also investigated the effects of paramgl{igeaction 6, we present an extension regarding the setpoint regu-
lating problem for a WMR with uncertain parameters in the kine-

Contributed by the Dynamic Systems and Control Division for publication in th?natic model. In Section 7. we provide simulation results to illus-
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Technical Editors: E. Misawa and V. Utkin. 8, we present some concluding remarks.

Over the past twenty years the control of wheeled mobile rob
(WMRs) has been heavily studiedee([1,2], and the references
therein for an in-depth review of the previous wpdue to the
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2 Problem Formulation control point of view, it is easy to see from (1), (6), and (7) that

) ) ) ] the matched disturbance and unmatched disturbance problems
2.1 WMR Kinematic Model. The kinematic model for the are both special cases of the model used in (1).

so-called kinematic wheel is given as follows ] ) ) )
2.2 Model Transformation. As defined in previous work

a=S(a)v+[pa(t) pa(t) pa(t)]" (1) (e.g., sed10] and[11]), the time-varying reference trajectory for
the WMR is generated via a reference robot which moves accord-
ing to the following dynamic trajectory

q=[%; Ye 01" a=[%. y. 61" @) .= S(a,)v, ®)

Xc(t) andy.(t) denote the Cartesian position of the center of mMags are S(-) was defined in(3) _ T

a H 7 : ) Qr(t)_[xrc(t) yrc(t) 0r(t)]
(COM). of the WMR "?"0”9 thex anld Y-coordinate axis of the e R® denotes the desired time-varying position/orientation trajec-
Cartesian planésee_ Fig. _J, a(t)'ei)‘i represents the 0r_|entat|0n,[ory andu (1) =[,1(t) v,,(t)]T € R2 denotes the reference time-
of the WMR (see Fig. 1, X(1), ¥.(t) denote the Cartesian Com'varying linear/angular velocity. With regard t8), it is assumed

ponents of the linear velocity of the COM(t)  R* denotes the that the si : . :
- - 3%2 ) gnab (t) is constructed to produce the desired motion
angular velocity of the COM, the matri®(q) e 3% is defined and thato, (1), (1), g,(t), andg,(t) are bounded for all time.

whereq(t), q(t) e ®® are defined as

as follows To facilitate the subsequent control synthesis and the corre-
cosd 0O sponding stability proof, we define the following global invertible
) transformation
S(q)=| sing 0|, ®3) - -
0 1 W —6cosf+2singd —6@sind—2cosd O|[x
the velocity vectow (t) e R? is defined as follows [21] =10 0 1 Z
_ 221 | cose sin6 ojL?
v=[vy vy]"=[v; 6] “4) 9

with v(t) e R* denoting the linear velocity of the COM, andwhere w(t) e R' and z(t)=[zy(t) z,(t)]"e R* are auxiliary

p1(t),pa(t),pa(t) e R represent unknown disturbances that argracking error variables ari(t),y(t), 8(t)  R* denote the differ-

assumed to be upper bounded as shown below ence between the actual Cartesian position and orientation of the

COM and the reference position and orientation of the COM as
TG PO PG R 5 folows P

wherel,,,,¢{3e R are positive bounding constants. Note that if - - ~

p1(t),pa(t),pa(t)=0, the standard kinematic model for the pure X=Xc=Xe Y=Yc~VYie 0=6-0;. (10)

rolling and nonslipping klnematlc wheel is recovered. . 2.3 Open-Loop Tracking Error Development. After tak-
Remark 1. Note that the klnematlp m_odel for a WMR subject ﬁ?g the time derivative of9), and using1)—(4), (8)~(10) we can

the so-called matched disturbance is given as follows [3] rewrite the open-loop tracking error dynamics in a more conve-

g=S(q)v+ py(t)[cosd sing, 0] (6) nient form as follows

wherepy, (t) e ! denotes a bounded disturbance. In addition, the W=uTdTz+f+x,

kinematic model for a WMR subject to the so-called unmatched y—u+ (11)
disturbance is given as follows [3] X2
whereJ e :%%*2 is a skew-symmetric matrix defined as

q=S(q)v+py(t)[sind —cosd 0]" )
where py(t) e ®! denotes a bounded disturbance. Note that in J= 0 -1 (12)
order to obtain the exponential regulation result presented in [3], 1 0
the unmatched disturbange,(t) must be upper bounded by a 1 . . )
function of the states, whereas the GUUB result obtained in [4{%Vr:t) € %" is an auxiliary signal defined as
required the disturbance be upper bounded by a constant. From a f=2(v,92,— 1,4 SiNZ;) (13)

the auxiliary kinematic control input, denoted bw(t)
=[uy(t) uy(t)]" e M2, is defined in terms of the WMR position/

Y orientation, the WMR linear velocities, and the reference trajec-
tory as follows

u=Tlv[Ur2 ~
vyq COSH
s i g
v=Tus U1 COSO+ v, (X Sin G- cosh) (14)
Ur2
the auxiliary matrixT e %22 is defined as follows
(Xsinf—ycosh) 1
= 15
1 0 (15)

and x(t) e M and xo(t) =[ x21x22) € R? are auxiliary signals
defined as follows

> X1=2(p1 SiN6— p, c0SH) + p3(Z,+21(X SinH—Y cosh))

Fig. 1 Two-dimensional kinematic wheel —21(py COSO+ p, Sin ) (16)
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X2=[p3 p1COSO+p,sinf—ps(Xsind—ycosh)]". (17)
K1=2{4+

4 4
ot il + 12D+ Szl + 121

(29)
K= \/§§+

to rewrite(16) and(17) in terms of the auxiliary variables definedand £, ! is a positive bounding constant selected as follows
in (9) as follows
{a=p1tps. (31)

Remark 3. Motivation for the structure of (24) is obtained by
taking the time derivative ofgzd as follows

In order to facilitate the subsequent stability analysis, we utilize
the fact that

{3 . G )?
19) for Sz 2wl 30

1
X sin -y cosf= 2 (W+2,25)

X1=2(p1 Sin6—p;, cosb) +p3

Z
Z+ E(w+ 2,25)

—21(py COSO+ p,Sin ) (29) .
T T. | 94 kow+f
T &(zdzd)=22dzd=22d 5—zd+ T+WQ1 Jzy| (32)
. (20) d d
where(24) has been utilized. After noting that the matrix J of (12)
is skew symmetric, we can rewrite (32) as follows

X2=|p3 p1COS¢9+p28inn9*%(W+ZlZZ)

3 Smooth Variable Structure-Like Control

Our control objective is to design a controller for the trans-
formed kinematic model given irf11) that forces the actual
position/orientation of the WMR to track the reference time-
varying position/orientation generated(8). To facilitate the sub- As result of the selection of the initial conditions given in (24), it
sequent control development, we define an auxiliary error sigrigleasy to verify that
7(t) e |? as the difference between the subsequently designed
auxiliary signalzy(t) e %2 and the transformed variab&t), de-

d 5
T d_1
Z4Z 2 Z4Z4 - 33
dt(dd) ded ()

z524= 24 *= 53 (34)

fined in(9), as follows
7=2z4—2. (22)

3.1 Control Formulation.

is a unique solution to the differential equation given in (33). The
relationship given by (34) will be used during the subsequent
error system development and stability analysis.

Based on the open-loop tracking Remark 4. Note that the exponential term in (26) is not neces-

error dynamics given iiL1) and the subsequent stability analysissary for the subsequent stability analysis. That isgfis selected

we design the auxiliary kinematic control signglt) as follows

u=u,—kyz (22)
where the auxiliary control signai,(t) e "2 is defined as
kow+ f
Uy= 2 Jzy+Qq24, (23)
d

the auxiliary signalzy(t) is defined by the following oscillator-
like relationship

. 8y (kgwf . )
Zd=5_dzd+ 5—§+W91 Jzy  24(0)z4(0) = 64(0),

(24)
the auxiliary terms),(t) € R and 8,4(t) e R! are defined as

Q=K+ ﬁ+w( klw;rf (25)
54 5
and
Sg= agexp(— aqt) + e, (26)

respectivelyf(z,v, ,t) was defined if13), ky(t), k,(t) R are
positive, time-varying functions selected as follows

ky=ko+ < ko= ks+ <2 @7)
R kwl e P kol e’

Kk1(W,Z,t), ky(W,Z,t) e R! are positive bounding functions, and
K, ag, ay, €1, €01, Ecx€ R are positive, constant control

gains.

Remark 2. In order to facilitate the subsequent stability anal
sis, we note that the auxiliary signals defined in (19) and (20) can

be upper bounded as follows

Ixil=<x1 lxall=«2 (28)

where the positive bounding functions,(w,Z,t), x,(w,Zz,t)
e M! are defined as follows
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as ap=0 then the subsequent stability proof is still valid. The
motivation for selectingrg#0 is to provide the designer with
increased flexibility with regard to ensuring that the control effort
is maintained at a reasonable magnitude. Specifically, for the case
of large initial tracking error, the magnitude of the control could
possibly be reduced through the selectiorgt

3.2 Closed-Loop Error System Development. To deter-
mine the closed-loop tracking error dynamics foft), we sub-
stitute (22) for u(t) in the open-loop tracking error system given
by (11) add and subtracml\]zd to the resulting expression, and
then utilize(21) to rewrite the dynamics fow(t), as follows

W=ulJz—uldzg+f+x; (35)
where the fact thal"= —J was utilized. Finally, by substituting
(23) for only the second occurrence af(t) in (35 and then
utilizing the equality given by34) and the fact thai"J=1, (note
thatl, denotes the standardx2 identity matrix, we can obtain
the final expression for the closed-loop tracking error system for
w(t) as follows

W=u]Jz— KW+ x;. (36)

To determine the closed-loop error system(t), we take the
time derivative of(21), substitute(24) for zy(t), and then substi-
tute (12) for z(t) to obtain the following expression

Sy kow+ f
7= —z4+| ——+wQ, |JZg—u—x>.
Sy Oy
After substituting(22) for u(t), and then substituting23) for
u,(t) in the resulting expression, we can rewrig) as follows

@7

y- .
. Oy
z:ﬁ—zd+wﬂlsz—led+kzz—X2. (38)
d
After substituting(25) for only the second occurrence 8f;(t) in
(38) and using the fact thalJ=—1,, we can cancel common

terms and rearrange the resulting expression to obtain
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kyw+ f that x1(t), xo(t), k1(w, Z, t), xo(w, Z, t) e L... Based on these
(T ~X2 (39) facts, we can now use the assumption thaf(t),v,»(t) € L., ,

d (13), (22)—(26), and (34) to show thatf(z, v,, t), us(t), z4(t),
where(21) has been utilized. Finally, since the bracketed term ifd(t), u(t) e £... Now, in order to illustrate that the Cartesian
(39 is equal tou,(t) defined in(23), we can obtain the final position and orientation signals defined (i) are bounded, we
expression for the closed-loop tracking error systemz{d) as utilize the inverse of the transformation given(® as follows
follows

7=—kyZ2+wJ Jzy+ Q424

1 1.
. ~ 1 o = .
3= — Kz +WIU,— xo. (40) 5 2smﬁ 2(ts?sm 0+ 2 cosf) w
. . V= 1 1. 7.
4  Stability Analysis 2 - Ecosa 0 - E(g cos6—2 sind) 21]
Theorem 1The kinematic control law given in (22(27) en- 2
sures the position and orientation tracking errors defined in (10) 0 1 0
are GUUB in the sense that (50)
%(t)],[V(0)],[0(t)| < exnl — val) + T Since z(t) € L., it is clear from (10) and (50) that 6(t), 6(t)
ROLIVOLIBO]= VBo exal = yot) + Ba(ecs + ecz) e L, . Furthermore, from (10), (50, and the fact that
+ Bo expl— yit) + Bzeq (41)  w(t), z(t), o(t) e L., we can conclude that

' . ' . X(t), V(1) x(t), y(t) e L., . We can utilize(14) the assumption
ghe'gsll‘g"’asﬁdef';‘edéz d(iG)ch;{ fe ﬁiﬁedﬁﬁgﬁiéncfggtiﬂi thatv,1(t), vra(t) e L., and the fact that(t), u(t), X(t), J(t)
0, P1y» P2s P3» /01 1 . . . .
With regard to (41) we note that;, ., ¢, can be made arbi- iﬁx-' 0 s_how thaﬁ;(t) € Le; thecriefccnire,_ I fOI||0;/1VS from(l) )
trarily small. that (1), X(t), y.(t) e L. . Standard signal chasing arguments
can now be employed to conclude that all of the remaining signals

Proof: To prove Theorem 1we define a non-negative, scalar. . .
function denoted by/(t) c R* as follows in the control and the system remain bounded during closed-loop

operation.
1 1 In order to prove that(t) defined in(9) is GUUB, we can now
V= §W2+ {ZT'Z. (42) ?pply(/ t)he triangle inequality t€21) to obtain the following bound
or z(t

After taking the time derivative of42), making the appropriate
substitutions from(36) and (40), and then cancelling common
terms, we obtain the following expression

Izl <Irzl| + | zdl

< \/exp(—2k 01w (0)[2+ %2 (1 ey — 2ket))
V=—kW2— K22+ Wy, —Z x> (43) s Ks s

where we utilized the fact thaf’ = —J. After substituting27) for +agexp —at)+e;g (51)
ky(t) andka(t), we can upperboundl(t) of (43) as follows where(26), (34), (48) and(49) have been utilized. Based ¢48)—

_ waz (51), the result given in41) can now be directly obtained. [J
V< —kw?—kd|[Z|2+] k1 |W|— ————— Remark 5. It is clear that if the control ternag; and e, are
K1| W+ e set to zero in (44), then the stability analysis would be the same as
<222 for a variable structure controller. We refer to the control scheme
~ 2 ar o
+| 1|2 — — (44) as "variable structure-like” due to the close resemblance of the
w2 + e stability analysis to the classic variable structure stability

where(28) was utilized. We can now utilize+2) and the facts that analysis.

W 2i3w? 2 2151712
K{W|— ———[=¢ Kol Z||— — = | SS¢€
' KW tee ] [ kol +ec] 5 Setpoint Extension
. Unlike some of the previously proposed tracking controllers
to upper bound/(t) of (44) as follows (see[12,10,117, etc) we have not imposed any restrictions on the
Vs~ 2KV eyt 2. (46) desired trajectory (other than the assumption that

v, (t), v,(1), g,(t), andq,(t) e L..); hence, the position and ori-
After solving the differential inequality given ifd6), we obtain entation tracking problem reduces to the position and orientation
the following expression regulation problem in a similar manner as illustratedl1if]. That
is, if the control objective is targeted at the regulation problem,
V=exg — 2k)V(0) + 801+802(1—exp(—2k5t)). (47) the desired position an_d_ orientati_on \_/ector, denoted dyy
2ks =[Xre Yrc 6:1" € %2 and originally defined ir(8), becomes an ar-
: " : : P bitrary desired constant vector. Based on the factdh@) is now
Z|Snally, we can utilizg42) to rewrite the inequality given by4?) defined as a constant vector, it is straightforward thét) given
in (8), and consequentlf(z,v, ,t) defined in(13) equal zero. We
eatee also note that the auxiliary variablgt) originally defined in(14),
W (t)]|< \/exp(— 2kst)[[ W (0)[*+ i (1-exp(—2kd)) is now defined as follows
S

(48) u=T" v=Tu (52)
where the vecto® (t) e R is defined as where the matrixr was defined irf(15). Based on the above sim-
v=[w 7T (49) plifications, it is easy to show that the result givenTiyeorem 1

is valid for the regulation problem as well. Furthermore, we note
Based on(48) and (49), it is clear thatw(t), Z(t) e £... After that the proposed kinematic control law given(2p), (23), (24),
utilizing (21), (34), and the fact tha¥®(t), d4(t) € L., we can (25), (26), and(27) can be slightly modified as illustrated in Re-
conclude thatz(t), z4(t)e £L... From (5) and the fact that mark 5.5 of[14] to reject parametric uncertainty and bounded
w(t), z(t), Z(t), z4(t) e L., itis clear from(19), (20), (28)—(30)  disturbances in the dynamic model.
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p;
p1

1+ ez-kiie2 (60)
tapp Y

6 Uncertain Kinematic Model Extension 11
Several researchers have examined the setpoint regulation prob- V= 2 E
lem for a WMR with a kinematic model containing parametric . . R . .
uncertainties(see [7—9]). Specifically, the kinematics of the Ater taking the time derivative of60), making the appropriate
WMR are given as follows substitutions from(58), and then canceling common terms, we

obtain the following expression
a=S(q)Av (53)

V=—ky€3. (61)
where q(t) was defined in(2) S(-) was defined in(3), v(t) -
o i 2% : i Based on(61) and (60), it is clear thate,(t), es(t) e £, and
=[v1 v] was defined4), andAe %" is defined as follows thates(t) e £,. Sincee,(t) e L., it is clear from Remark 6 that

p* 0 e,(t) eﬁx Based on the fact thag(t), e,(t), eg(t) eﬁo?, we
= (54) can utilize(57) and(58) to prove that(t), v,(t), e(t), ex(t),
0 p3 e;(t) e L... Sincee,(t), e,(t), e5(t) e L., we can conclude that

- N ) . e,(t), ex(t), es(t) are uniformly continuous. After taking the
wherepy , p; € " are uncertain positive parameters that reprpme derivative of(57) and utilizing the aforementioned facts, we
sent the radius of the wheels and the distance between them. can show thati,(t), v,(t) e £.., and hencep,(t), v,(t) are

6.1 Error System Development. In order to facilitate the Uniformly continuous.

subsequent control design, we utilize the following global invert- Based on the facts thag(t) e £, and thates(t) is uniformly
ible transformatiorj2] continuous, we can now utilize Barbalat's lemifib] to prove

that lim,_... e5(t) =0. After taking the time derivative of the prod-
ucte,(t)es(t) and substituting58) in the resulting expression, we

e sing —cosfd O|[x
1 - can conclude that
e |=|0 0 1|y (55)
e : 7 P3 :
@ Loos sing  0JL¢ i (€18 = | p1| 1+ o5 |elvz | +es(&i~kopfen). (62)
1

where e, (1), e,(t), es(t) e R* are auxiliary tracking error vari- ) ) ) ) )
as arbitrary desired constants. After taking the time derivative Bf(t),v2(t) are uniformly continuousand lim .. e5(t)=0, we
(55) and using(2)—(4), (53—(55), we can rewrite the open-loop ¢an utilize an extension of Barbalat's lemi# to conclude that

error dynamics in a more convenient form as follows *

d P2
lim —(e;e3)=0 lim p¥| 1+ —|e?v,=0. 63
e p3v293 t—oo dt( 183) tow P1 pi‘ 1v2 (63)
e *
€ |=| pyv, : (56) From the second limit i63), it is clear that lim_ ., e;(t)v,(t)

€l [pivi—pzvzer =0. From the facts that lim... e;(t)v,(t)=0 and lim_... e5(t)

) . . =0, we can utilize(57) to conclude that lim...v4(t)=0, and
Based on the open-loop error dynamics given(56) and the hence, from (58), we can prove that lim.. e,()=0 and

subsequent stability analysis, we utilize the following smooth

> . Iim_., e3(t)=0.
time-varying controllef2] To facilitate further analysis, we take the time derivative of the

—ko€3— €105 } product e;(t)v,(t) and utilize (58) to obtain the following

U1 -
—kye,+ €5 sint) (57) expression

U2

After substituting(57) into (56) and performing some algebraic g(elv2)=[ef coqt)]+ ey (v,+2e; sin(t)) —ps kieqvs.
manipulation, we obtain the following closed-loop error system dt

(64)
i 1+ ﬁ a ps Since the bracketed term ii64) is uniformly continuous,
ps * 1 1+ —|v.e; lim,_. e (t)=0, and lim_,.. e;(t)v,(t) =0, we can utilize an ex-
1 P1 tension of Barbalat's lemmi2] to conclude that
— e, =| —kie,+e?sin(t) . (58) d
P2 o3 lim == (ev2)=0  lim e3 cogt)=0. (65)
1 —kpe3—ev,| 1+ —i) o i
583 P1 From the second limit in65), it is clear that lim_ .. e;(t)=0.

- . ) ) Since we have shown that ljim., e;(t),e,(t),e3(t)=0, we can
Remark 6. Note that the closed-loop dynamics fgtlegiven now utilize the inverse of the transformation defined5B), given
in (58) represent a stable linear system subjected to an additige follows

disturbance given by the producf(e)sin(t). If the additive dis-

turbance is bounded (i.e., if;&) e L.), then it is clear that X sing 0 cosd €
e,(t) e L... Furthermore, if the additive disturbance asymptoti- Y|=| —cos# 0 sind||e, (66)
cally vanishes (i.e., ifim,_. e (t)=0) then it is clear that D 0 1 0 e;
lim;_ . e,(t)=0.
to obtain the result given if69). O

6.2 Stability Analysis. Theorem 2. The smooth, time-
varying kinematic control law given in (57) ensures global7 Simulation Results

asymptotic position and orientation regulation in the sense that
The control law given in22)—(27) was simulated based on the

lim(t),y(t),6(t)=0. (59) kinematic model given ir{1) wherep,(t), p,(t), ps(t) were se-
t— lected in a similar manner as 4] as follows
Proof: To prove Theorem 2we define a non-negative, scalar p1=[0.0H(t—2)—0.0H(t—4)]sin 6§ (67)

function denoted by, (t) e |t as follows
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pr=—[0.01H(t—2)—0.01H(t—4)]cos8 (68) Simulation results for th_e kinematic mode_l given (B3) and
(54) are also presented to illustrate the effectiveness of the control
p3=0.01H(t—2)—0.01H(t—4) (69) law given in(57) wherep? (t) andp3 (t) were selected as follows
where H(-) denotes the standard Heaviside step function. The p¥=15 pi=25 (76)
desired reference linear and angular velocity were selected as
— 1/ _—sin(xr)coser d/ 20
U= (m S) Ur2= 1+tar\2 0( (ra $l ( ) X-Coordinate Position Error
1 T T v r
respectively, where 05 ﬂ/\r B ]
Xer(0)=0(m), Y¢,(0)=0(m), 6,(0)=0.7853qrad) i ]
(71) ‘
(see Fig. 2 for the resulting reference time-varying Cartesian po-  ° ! Y~Coardnale Posiion Eror ¢ !
sition and orientation s ' ' ' ' T '
The Cartesian position/orientation and the auxiliary siggét) off : :
were initialized as follows E_OS ) |
XC(O):_l(m)7 yc(o):_l(m)r (72) _10 1- é o; - Ef ; é S
6,(0)=0(rad), z4(0)=[2 0]. 2 : . : ! . ,
The control gains that resulted in the best performance are givens, ° |
below g2
40 ]
kS: 10’ o~ 2’ “ lo‘ (73) _600 ; é ; Time (sec) I é é !
£,=0.001, &,=0.002, &.,=0.002

where the bounding term§, 5, {5, and{, given in(5) and(31)
were selected as follows

Fig. 3 Position /orientation tracking errors

vi

{1=05, (,=0.05, (3=0.1 and{,=1.0. (74)

The position/orientation tracking error of the COM of the WMR

and the associated control inputs are shown in Fig. 3 and Fig. 4,8
respectively. Utilizing the same control gains and initial condi- "
tions, we also demonstrate the effectiveness of the proposed con
troller with regard to the regulation problem. That is, with the

reference velocity signals ifY0) set to zero and the desired posi-
tion and orientation setpoint selected as zero, the proposed con

troller yields position/orientation regulation errors as shown in
Fig. 5 with the associated control inputs given in Fig. 6. Note that
by increasing the control terms;, e.;, ande,, the “chatter-

ing” effect observed in Fig. 4 and Fig. 6 can be eliminated; how-
ever, from(41) it is clear that steady-state position/orientation
tracking error will be bounded by a larger neighborhood about the ~
origin. To illustrate this fact, the control parameters ¢.,, and

8
9
3

e

eco, Were increased until the “chattering” effect was reduced.
The resulting values of the control parameters are given below

£,=0.001, £.,=0.001, &¢=0.015. (75)

The resulting position/orientation errors and the associated control
torque input are given in Figs. 7 and 8 for the tracking controller
and Figs. 9 and 10 for the regulation controller.

05

{ a4 L L s L
2 3 a4 5 6 7
Time {sec}

Fig. 4 Tracking control input

X-Coordinate Posilion Error
T T

[} 1 2 3 4 [ 7
1.5 Y-Coordinate Position Error
0.5 T T T T T T T
B » : :
= 1 \ B /Y ' LAN ) o} :
< £ : :
5 05 L 4 9 OO U N DO RS IO S T S S ]
c ¢ 4 . : : .
w -1 1. n . ol " L — 1 1
% 0 ” . ' [} 05 1 18 25 3 35 4 4.5 5
c Orientation Error
=] 40 T
g 05 4 v f i T
S 20k S : O 4
: K |
R Lg & ofil - :
-20 P : 4
5, 0 1 2 3 4 5 6 7 8 9 a0 ) 1 . 1 L 1
0 1 2 5 1] 7
X Coordinate Frame (m) Time (sec)

Fig. 2 Desired Cartesian trajectory
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Fig. 5 Position /orientation regulation errors
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vi
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20 B

m/sec
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Fig. 6 Regulation control input
X-Coordinate Position Error
1 T T T T T T
0s . 1
E 0
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o ; i 1 R ; ;
1 2 5 ] 7
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Fig. 7 Position /orientation tracking errors
vi
60 T T T T T T

Time {sec)

Fig. 8 Tracking control input

and the Cartesian position/orientation was initialized as follows
Xer(0)=2(m), Y (0)=—=2(m), 6,(0)=1(rad. (77)

X-Coordinate Position Error

T T T T T T T T

1 2 5 7
Time (sec)
Fig. 9 Position /orientation regulation errors
vi
60 T T T T T T
wob ]
2 _
8
E 0
s
-20 B
405 3 2 s p s P 7
v2
% ] 2 ; . s s 7
Time (sec)
Fig. 10 Regulation control input
X-Coordinate Position Error
. H
0 5 15
Y-Coordinate Position Error
T
1‘0 15
Orientation Error
: 1
i
10 15
Time (sec)
Fig. 11 Position /orientation regulation errors
k,=0.75, k,=0.5. (78)

The control gains that resulted in the best performance are givEne resulting position/orientation regulation error and the associ-

below
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ated control inputs are shown in Figs. 11 and 12, respectively.

Transactions of the ASME



v References

[1] McCloskey, R., and Murray, R., 1997, “Exponential Stabilization of Driftless
Nonlinear Control Systems Using Homogeneous Feedback,” IEEE Trans. Au-
tom. Control,42, No. 5 pp. 614-628, May.

[2] Samson, C., 1997, “Control of Chained Systems Application to Path Follow-
ing and Time-Varying Point-Stabilization of Mobile Robots,” IEEE Trans.
Autom. Control,40, No. 1, Jan pp. 64-77.

[3] Canudas de Wit, C., and Khennouf, H., 1995, “Quasi-Continuous Stabilizing
Controllers for Nonholonomic Systems: Design and Robustness Consider-
ations,” Proceedings of the 3rd European Control Conferenpp. 2630—

v2 2635.

[4] Corradini, M. L., Leo, T., and Orlando, G., 1999, “Robust Stabilization of a
Mobile Robot Violating the Nonholonomic Constraint via Quasi-Sliding
Modes,” Proceedings of the American Control Conferengp. 3935—3939.

[5] Leroquais, W., and d’Andrea-Novel, B., 1996, “Modeling and Control of
Wheeled Mobile Robots Not Satisfying Ideal Velocity Constraints: The Uni-

: cycle Case,”Proceedings of the 35th Conference on Decision and Cantrol

........................ - pp. 1437-1442.

; [6] d’Andrea-Novel, B., Campion, G., and Bastin, G., 1995, “Control Of Wheeled

Mobile Robots Not Satisfying Ideal Constraints: A Singular Perturbation Ap-

proach,” Int. J. Robust Nonlinear Contrd, No. 5, pp. 243-267.

Fig. 12 Regulation control input [7] Hespanha, J., Liberzon, D., and Morse, A., 1999, “Towards the supervisory
control of uncertain nonholonomic systemsProceedings of the American
Control Conferencepp. 3520—3524.
8 Conclusion [8] Jiang, Z., 1999, “Robust Controller Design for Uncertain Nonholonomic Sys-
tems,” Proceedings of the American Control Conferengp. 3525-3529.
In this paper, we designed a variable structure-like tracking[9] Jiang, z., 2000, “Robust Exponential Regulation of Nonholonomic Systems
controller for a mobile robot system subject to bounded distur-  with Uncertainties,” Automatica36, No. 2, pp. 189—209, February.

bances in the kinematic model. Through the use of a Lyapunovi0] Jiang, Z., and Nijmeijer, H., 1997, “Tracking Control of Mobile Robots: A

based stability analysis, we have demonstrated thatthe posi- Case Study in Backstepping,” Automatic33, No. 7, pp. 1393-1399.

tion and orientation tracking errors exponentially converge to &1l Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T., 1990, “A Stable

neighborhood about zero that can be made arbitrarily small, and | "2¢king Control Method for an Autonomous Mobile RoboBYoceedings of

(ii) the controller provides robustness with regard to bounded dis;, ' 'EEE International Gonference on Robotics and Automapen3s4 389,

. . . L. . 12] Canudas de Wit, C., and Sordalen, O., 1992, “Exponential Stabilization of
turbances in the kinematic mOde_l'_ In addition, we |IIustra§¢d tha Mobile Robots with Nonholonomic Constraints,” IEEE Trans. Autom. Con-
the proposed controller can be utilized to regulate the position and |, 37, No. 11, pp. 1791-1797.
orientation of the WMR to an arbitrary desired setpoint. More{13] bixon, W. E., Dawson, D. M., Zergeroglu, E., and Zhang, F., 2000, “Robust
over, since the proposed tracking controller is smooth, we noted Tracking and Regulation Control for Mobile Robots,” Int. J. Robust Nonlinear
that it can be modified to include the dynamic model of the WMR Control: Special Issue on Control of Underactuated Nonlinear Systéifis
to enhance the overall robustness. An additional extension was No. 4, pp. 199-216. . ‘
also provided to illustrate that the smooth, time-varying controllef14] Dawson, D. M., Bridges, M., and Qu, Z., 199pnlinear Control of Robotic
designed in[2] can be applied to solve the setpoint regulation Systems for Environmental Waste and RestorafRentice Hall, Englewood

. . - X . . Cliffs, NJ.
problem of a WMR with parametric uncertainties in the klnematl(ilS] Slotine, J. J. E., and Li, W., 199Applied Nonlinear ContrglPrentice Hall,

Time (sec)

model. It should also be noted that in addition to the WMR prob-"" ¢, 11004 ciiffs, NJ.

Iem,_the proposed controllers can be_ app“e.d to qther nonhol@re) Bloch, A., Reyhanoglu, M., and McClamroch, N., 1992, “Control and Stabi-
nomic syster_nis_ee[16] for example. Finally, simulation results lization of Nonholonomic Dynamic Systems,” IEEE Trans. Autom. Control,
provide verification for the proposed controllers. 37, No. 11, Nov.

Journal of Dynamic Systems, Measurement, and Control DECEMBER 2000, Vol. 122 / 623



