
24 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

Graph Matching-Based Formation Reconfiguration of
Networked Agents With Connectivity

Maintenance
Zhen Kan, Leenhapat Navaravong, John M. Shea, Eduardo L. Pasiliao, Jr., and Warren E. Dixon

Abstract—Various applications require networked agents to
cooperatively achieve specified formations. In this paper, forma-
tion reconfiguration for a group of identical agents with limited
communication capabilities is considered. Since the considered
agents are identical, their roles are interchangeable, and each
position in the desired formation can be taken by any agent. To
reduce the total amount of node movement required for formation
reconfiguration, a weighted graph-matching-based node-mapping
strategy is developed to specify the node correspondence between
an arbitrary initial graph and the desired graph. After the node
mapping is determined, agents are required to move physically to
form the desired formation. Since agents are only able to commu-
nicate within a certain range, formation reconfiguration must be
accomplished with network connectivity constraints (i.e., specified
nodes remain within specified sensing and communication ranges).
A decentralized control scheme is developed to guarantee network
connectivity by maintaining a desired neighborhood determined
by the node-mapping algorithm, and to ensure convergence of
all agents to the desired configuration with collision avoidance
among agents. The developed strategy is demonstrated through
simulation results.

Index Terms—Formation reconfiguration, graph matching,
network connectivity.

I. INTRODUCTION

G REAT efficiency and operational capability can be real-
ized by networked agents in various civilian and military

applications. To enable these applications, agents are required
to perform in a coordinated manner through their interactions,
which are generally captured by the underlying network graph.
The graph determines which agents can exchange and share
information and how robust the group can behave in a dynamic
environment. For example, the formations developed in [1] and

Manuscript received March 4, 2014; revised August 30, 2014; accepted
October 3, 2014. Date of publication November 12, 2014; date of current ver-
sion March 13, 2015. This work was supported in part by the National Science
Foundation under award numbers 1161260 and 1217908, and a contract with
the AFRL Mathematical Modeling and Optimization Institute. Recommended
by Associate Editor Michael Chertkov.

Z. Kan and W. E. Dixon are with the Department of Mechanical and
Aerospace Engineering, University of Florida, Gainesville, FL USA (e-mail:
kanzhen0322@ufl.edu; wdixon@ufl.edu).

L. Navaravong and J. M. Shea are with the Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL USA (e-mail:
leenhapat@ufl.edu; jshea@ece.ufl.edu).

E. L. Pasiliao, Jr. is with Munitions Directorate, Air Force Research Labora-
tory, Eglin Air Force Base, FL 32542 USA (e-mail: pasiliao@eglin.af.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2014.2367363

[2] are beneficial in data gathering, data processing, and fore-
casting in surveillance and exploration. The graphs designed in
[3] are robust with respect to maintaining a required level of
network connectivity in the presence of node and link failures.
In consensus applications (see [4] and [5] for a comprehensive
literature review for consensus problems), different topologies
yield different consensus rates [6]–[8]. Although designing an
optimal graph with respect to the consensus rate or efficiency
of information collection has attracted much research attention,
achieving the designed optimal graph from an arbitrary initial
graph with minimum movement and constraints on communi-
cation is still a problem of wide interest.

Graph matching is widely used in pattern recognition, such as
computer vision, scene analysis, chemistry, and biology, where
the relationships and interactions between objects are modeled
as graphs. To identify the similarities between two different
graphs (i.e., patterns), various graph-matching methods have
been developed to identify vertex correspondence between
graphs. If two graphs are isomorphic, Ullmann’s algorithm [9]
can be directly used to obtain node correspondence. However,
Ullmann’s algorithm is only applicable to isomorphic graphs,
and the graphs are generally not isomorphic in most applica-
tions. In addition, the complexity of Ullmann’s algorithm is
O(NN), which requires significant computational resources for
large graphs. An alternative to Ullmann’s algorithm is to find
an approximate solution of the optimal matching. In [10], an
efficient Eigen-decomposition approach is developed to find ap-
proximated optimal matching in terms of minimizing the aggre-
gated edge weights between two graphs. Other approximated
approaches based on spectral representation of graphs include
[11]–[13]. However, all of the aforementioned results focus on
identifying the similarities between two graphs, without consid-
ering the mapping of nodes in terms of graph reconfiguration.

In this paper, the formation reconfiguration of networked
agents from an arbitrary initial network graph to a desired graph
is considered. Each agent is represented as a node, and the local
interaction among agents is modeled by an undirected graph
with each edge representing the neighborhood between two
agents. The model is based on the assumption that each agent
has limited communication capability (i.e., available informa-
tion exchange by agents within a certain range). A connected
graph indicates that the agents are able to exchange information
with other agents and coordinate their motion to achieve the
desired topology. Hence, two main objectives are as follows:
1) minimize the node movement required during formation

2325-5870 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 25

reconfiguration in terms of the number of edges that a node
must traverse and 2) physically steer the agents to achieve
the desired formation while preserving network connectivity
and avoiding collisions among agents. In our previous work
[14], the physical formation control of a group of agents with
constraints on network connectivity is investigated. However,
the initial topology in [14] is assumed to be a supergraph
of the desired topology, which ensures that the agents are
originally in a feasible interconnected state. The supergraph
assumption may not be applicable given an arbitrary initial
graph as in the current result. In this paper, based on the
weighted graph-matching algorithm in [10], a node-mapping
algorithm is developed to determine the node correspondence
between the arbitrary initial topology and the specified desired
topology, and build a tree on the initial graph such that the node
movement required in topology reconfiguration is minimized
and the routing algorithm developed from our previous work
[15]–[17] can be applied to specify how the initial graph can be
transformed to the desired graph.

After node correspondence is determined, nodes are required
to physically move to perform network reconfiguration with
limited communication. Generally speaking, formation con-
trol focuses on the control design for a group of agents to
stabilize at a specific geometric formation or move in the
environment, keeping a suitable relative configuration. The
network reconfiguration problem is a subset of formation con-
trol problems which considers additional constraints, such as
network connectivity. Some representative results in controlling
mobile robot networks while preserving network connectivity
are surveyed in the work of [18]. Other results on formation
control include [19]–[26], where various control methods are
developed to reorganize the formation of networked agents with
limited communication capabilities.

In contrast to the results such as [19]–[23], this work con-
siders identical agents which can interchange their roles during
formation control, allowing the neighborhood for each agent to
be dynamically determined, that is, which nodes in the initial
graph that will take which positions in the final graph are
not specified in advance; rather, the objective only requires
that there be an agent in each position specified in the final
graph. Although identical agents are considered in the works
of [24]–[27] for formation control, the preservation of network
connectivity is not considered in [24], and no effort is made
in [25] and [26] to reduce the amount of node movement in
formation reconfiguration. To preserve a connected network,
network connectivity is modeled as an artificial obstacle. A
navigation function (cf., [28]) based control scheme is devel-
oped to ensure the convergence of all agents to the desired
configuration; collision avoidance among agents and network
connectivity maintenance are achieved through only local com-
munication. An information flow model is then proposed based
on the work of [29] and [30] to specify the required movement
for agents to their destination nodes. Compared to the works
of [22], [23], and [27] the information flow-based approach
generally provides a path with more freedom of motion without
disconnecting the network and allows communication links to
be formed or broken dynamically. Consensus is proven using
Rantzer’s Dual Lyapunov Theorem [31]. Simulation results are

provided to demonstrate the developed network reorganization
strategy.

II. PROBLEM FORMULATION

Consider N -networked agents moving in a workspace F
according to

q̇i = ui, i = 1, · · · , N (1)

where qi = [xi yi]
T ∈ R

2 and ui ∈ R
2 denote the position

and velocity (i.e., the control input) of agent i, respectively.
Assume that the workspace F is circular and bounded with
radius R ∈ R

+, and the agents in F are identical and have
limited communication capabilities such that two agents can
only exchange information through communication within an
interdistance Rc < R. Communication between neighboring
agents is assumed to be error and delay free in this work. A col-
lision region is defined as a small disk area with radius δ1 < Rc

centered at agent i, such that the presence of any other agent j
within this region is considered as a potential collision for agent
i. To ensure the availability of communication between agents
i and j, an escape region for each agent i is defined as the outer
ring of the communication area with radius r, where Rc − δ2 <
r < Rc and δ2 ∈ R

+ is a predetermined buffer distance. Agent
i moves with the constraint of avoiding a collision with other
agents located in the collision region, and preventing a break in
the communication link between agents located in the escape
region. The region within the collision region and the escape
region (i.e., δ1 < r < Rc − δ2,) is a constraint-free region.

The interaction among agents is modeled as a simple graph
G(t) = (V, E(t)), with V denoting the set of nodes (i.e., agents)
and E(t) = {(vi, vj) ∈ V × V|dij(t) ≤ Rc} denoting the set
of edges, where dij(t) = ‖qi − qj‖ is the Euclidean distance
between vi and vj . The neighbors of vi are defined as Ni(t) =
{vj |vj ∈ V, (vi, vj) ∈ E}. The initial and desired final graphs
are represented by Gint = (Vint, Eint) and Gf = (Vf , Ef), re-
spectively. The final graph Gf is characterized by the relative
positions {cij ∈ R

2|vi, vj ∈ N f
i , } where each cij is a prede-

termined constant that specifies the physical configuration of
Gf . Here, N f

i is a predefined set of neighbors for vi in Gf .
That is, the desired position qdi for vi in Gf is defined as
qdi = {qi|‖qi − qj − cij‖2 = 0, vj ∈ N f

i }. Note that the set
Ni is time varying and depends on the relative distance of
mobile agents, while N f

i is constant and specified by Gf . A
graph is connected if a path exists that connects any two nodes.
A tree is a particular topology on an undirected graph, where
any two vertices are connected by exactly one simple path. A
tree that contains all nodes in the graph is called a spanning tree.
The control algorithm for repositioning nodes developed in this
paper repositions the nodes by transforming a spanning tree of
the initial graph into a spanning tree of the final graph. Thus,
in most of what follows, we focus on the case of achieving a
desired topology Gf that is a spanning tree, and we assume that
the root is predetermined.

The control algorithm for repositioning the nodes uses an
information flow between pairs of nodes that determines a
path of movement along the nodes in the graph for at least

26 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

one of the nodes. In this paper, these paths of movement are
determined by using an approach first proposed in our previous
work [17]. In [17], a prefix labeling and routing algorithm
is developed to “route” each autonomous vehicle through an
initial tree topology to achieve the desired tree topology while
preserving network connectivity. However, finding a good node
mapping to reduce the amount of node movement in topology
reconfiguration is not considered in [17]. In this paper, since
Gf can be assumed to be a spanning tree, it is desirable to find a
tree Gt

int in the specified Gint that minimizes the node movement
required in topology reconfiguration, and the algorithm in [17]
can be applied to determine how Gint can be transformed into
Gf . In particular, in Section III, weighed graph matching is
used to find a node mapping between Gint and Gf , based on
which an initial tree Gt

int is then built, so that the amount
of node movement in topology reconfiguration is minimized.
After node correspondence is determined, a motion control
algorithm is developed in Section IV to physically steer each
agent toward the desired formation while maintaining network
connectivity and avoiding collision among agents. To achieve
these two objectives, the following assumptions are required.

Assumption 1: The initial graph Gint is connected and the
initial positions do not coincide with some unstable equilibria
(e.g., nodes colliding).

Assumption 2: The connected desired graph Gf is prespeci-
fied and achievable (i.e., δ1 < ‖cij‖ < Rc − δ2).

III. NODE-MAPPING STRATEGY

To achieve the desired Gf from an arbitrary initial Gint while
preserving network connectivity, the developed strategy con-
sists of two stages: 1) a weighed graph-matching-based node-
mapping algorithm over the network topology and 2) a potential
field-based motion control algorithm on the physical graph. The
node-mapping algorithm determines which node in the initial
topology should take which position in the final topology, and
specify how the initial topology can be transformed into the
desired topology.

A. Weighted Graph Matching

Since identical agents are considered and the mapping be-
tween the agents in Gint and Gf is not specified in advance,
the goal of this section is to determine a bijective mapping
Φ : Vint → Vf such that the amount of movement (in terms
of number of edges) required to achieve Gf from Gint is
minimized. Similar to [10], Φ is chosen to minimize a cost
function J(Φ) based on the differences of Gf and Gint as

J(Φ) =

N∑
i=1

N∑
j=1

[wint(vi, vj)− wf (Φ(vi),Φ(vj))]
2 (2)

where wint(·) and wf (·) are weighting functions that specify
the importance of edges in Gint and Gf , respectively. Replacing
Φ in (2) with a permutation matrix P yields

J(P) =
∥∥PAGint

PT −AGf

∥∥ (3)

where ‖ · ‖ denotes the Euclidean norm, and AGint
and AGf

are weighted adjacency matrices for Gint and Gf . Note that
if Gint and Gf correspond to a one-to-one isomorphism, then
J(P) = 0 and PAGint

PT = AGf
. By relaxing the domain of P

from the set of permutation matrices to the set of orthogonal
matrices, (3) can be solved approximately using the graph
spectra. Let the Eigen-decomposition1 of AGint

and AGf
be

AGint
= UintΛintU

T
int and AGf

= UfΛfU
T
f , where Uint and

Uf are orthogonal matrices, and Λint and Λf are diagonal
matrices with distinct eigenvalues. Furthermore, let Ūint and
Ūf be matrices for which each element is the absolute value of
the corresponding element in Uint and Uf , respectively. Let-
ting Π denote the set of permutation matrices, the approximate
solution to (3) is given by [10] as

argmax
P∈Π

tr
(
PT ŪfŪ

T
int

)
(4)

which can be solved by the Hungarian method in O(N3)
time [32].

The choice of weighting functions in (2), which determines
the weighted adjacency matrices in (3), greatly affects the
solution of (4). Inappropriate weighting functions may result
in a mapping Φ where Gint does not preserve most of the
edges in Gf , leading to redundant movement for agents during
graph reconfiguration. Different from the work in [10], where
the weights of edges are known in advance, to facilitate graph
reconfiguration in this paper, unequal priorities are assigned to
the edges in Gf so that most edges in Gf are preserved in Gint.
For instance, an edge in Gf that is closer to the root node with
many descendants should have greater priority than edges that
are further down the tree with fewer descendants. Following this
idea, the weighting function wf for an edge (u, v) ∈ Ef , except
for the edges attached to leaf nodes in Gf , is defined as

wf (u, v) = |cv| · (maxdepth(cv)− depth(v) + 1)

where u, v ∈ Vf denotes a parent node and child node,2 respec-
tively, |cv| denotes the cardinality of cv , where cv indicates the
set of descendants of v in Gf , depth(v) denotes the depth of
node v ∈ Vf , and maxdepth(cv) denotes the maximum node
depth among all nodes in cv . Edges attached to leaf nodes in
Gf are assigned a weight of 1. To preserve most of the edges
in Gint, which correspond to the edges with large weights in
Gf , the weight of edges in Gint is assigned according to the
weighting function

wint(vm, vn) = max
(vi,vj)∈Ef

wf (vi, vj)

for ∀(vm, vn) ∈ Eint, which implies that all edges in Gint are
assigned the maximum weight of the edges in Gf .

1The matrix AGint
and AGf

are assumed to have distinct eigenvalues, which
is not a strong assumption as indicated in [10], since small perturbations on the
entries of AGint

and AGf
will not affect the result of matching.

2Different from the classical definitions of child and parent in directed
graphs, the roles of nodes in this paper are determined by their depths from
the selected root in the tree. For instance, given a pair of nodes (u, v) ∈ E ,
if depth(u) = depth(v)− 1, u and v are called the parent and child node,
respectively.

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 27

B. Initial Tree Selection

Since the desired Gf is a spanning tree, to facilitate the graph
reconfiguration, an initial tree Gt

int ⊂ Gint is built according to
Gf based on the permutation Φ obtained from (4). The process
starts from the node vri ∈ Vi in Gint that maps onto the root
node vrf ∈ Vf in Gf (i.e., vri = Φ−1(vrf)), and Gt

int is grown
in breadth-first fashion. The root node vrf first checks if it has
children vcf ∈ Vf in Gf , and vri checks if it has neighbor nodes
vni ∈ Vint in Gint. If vrf and vri have a child vcf and a neighbor
node vni , respectively, vri will first select vni with Φ(vni) = vcf
to form an edge (vri , v

n
i) ∈ Eint in Gt

int which corresponds to
the edge (vrf , v

c
f) ∈ Ef . If a vni that satisfies Φ(vni) = vcf does

not exist, one of the unassigned neighbors vni will be assigned
to form the edge (vri , v

n
i) ∈ Eint in Gt

int which corresponds to
the edge (vrf , v

c
f) ∈ Ef based on

min
(vc

f
,vn

i)
dGf

(
vcf ,Φ(vni)

)
(5)

where dGf
(u, v) is a function of the distance in terms of hops

between nodes u, v ∈ Vf in Gf . The distance dGf
between two

nodes in Gf can be found by applying the breadth-first search
algorithm [33]. The algorithm will map the neighbors vni to
all of the children of the root vcf in the same way, and then
will proceed to map the nodes at consecutively deeper levels
of the tree. If it is no longer possible to build edges for Gt

int

and there still exists a remaining node vi ∈ Vint in Gint that is
disconnected from the existing Gt

int, vi will be connected to one
of the nodes vti ∈ Vint in the existing Gt

int by forming the edge
(vi, v

t
i) ∈ Eint in Gint based on

min
(vi,vt

i)∈Eint
dGf

(
Φ(vi),Φ

(
vti
))

. (6)

The pseudocode of the Initial Tree Selection Algorithm is
shown in Algorithms 1 and 2 based on (5) and (6), respectively.

Algorithm 1 Initial Tree Selection Algorithm (Part I)

1: procedure Input: (Gint;Gf ;Φ); Output: Gt
int = (Vt

int, Et
int);

2: Vt
int = ∅; Et

int = ∅;

3: DesiredTreeRootNode = GetRootNode(Gf);

4: InitialGraphRootNode =Φ−1(DesiredTreeRootNode);

5: DesiredTreeQ = DesiredTreeRootNode; InitialGraphQ =

InitialGraphRootNode;

6: MarkNode(DesiredTreeRootNode);

MarkNode(InitialGraphRootNode);

7: Vt
int = InitialGraphRootNode;

8: while (InitialGraphQ 	= ∅) && (DesiredTreeQ 	= ∅) do

9: DesiredTreeQTemp = ∅; InitialGraphQTemp = ∅;

10: QueueLength = GetQueueLength(DesiredTreeQ);

11: for i = 1 : QueueLength do

12: ChildNodes =GetUnmarkedChildNodes(DesiredTreeQ[i],Gf);

13: NeighborNodes =GetUnmarkedNeighborNodes

(InitialGraphQ[i],Gint);

14: while (ChildNodes 	= ∅) && (NeighborNodes 	= ∅) do

15: MinimumDistance = ∞;

16: for all u ∈ ChildNodes do

17: for all v ∈ NeighborNodes do

18: Distance = GetDistance(u,Φ[v],Gf);

19: if Distance < MinimumDistance then

20: MinimumDistance = Distance;

21: BestPair = [u, v];

22: end if

23: end for

24: end for

25: [u, v] = BestPair;

26: for all vi ∈ Vint do

27: if Φ[vi] = u then

28: Φ[vi] = ΦVint→Vf
[v];

29: end if

30: end for

31: Φ[v] = u;

32: Union(Vt
int, v); Union(Et

int, (InitialGraphQ[i], v));

33: MarkNode(u); MarkNode(v);

34: EnqueueNode(DesiredTreeQTemp, u);

EnqueueNode(InitialGraphQTemp, v);

35: DesiredTreeChildNodes =(DesiredTreeChildNodes \ u);

36: InitialGraphNeighborNodes =

(InitialGraphNeighborNodes\v);

37: end while

38: end for

39: DesiredTreeQ = DesiredTreeQTemp; InitialGraphQ =

InitialGraphQTemp;

40: end while

41: end procedure

Algorithm 2 Initial Tree Selection Algorithm (Part II)

1: procedure Input: (Gint;Gf ;); Output: Gt
int = (Vt

int, Et
int);

2: UnMarkedNode = GetUnMarkedNode(Vint);

3: while UnMarkedNode 	= ∅ do

4: MinimumDistance = ∞;

5: for all u ∈ UnMarkedNode do

6: MarkedNeighborNodes =GetMarkedNeighborNodes(u,Gint);

7: for all v ∈ MarkedNeighborNodes do

8: Distance = GetDistance(Φ(u),Φ(v),Gf);

9: if Distance < MinimumDistance then

10: MinimumDistance = Distance;

11: BestPair = [u, v];

12: end if

13: end for

14: end for

15: [u, v] = BestPair;

16: Union(Vt
int, u); Union(Et

int, (u, v));

17: MarkNode(u);

18: UnMarkedNode = (UnMarkedNode \ u);

19: end while

20: end procedure

C. Example

An example is provided to illustrate the algorithm described
in the previous sections. Consider an initial graph Gint and the
desired graph Gf in Fig. 1, respectively, where Gint is not a su-
pergraph of Gf . The nodes in Gint and Gf are labeled initially in
Fig. 2. After applying the weighted graph-matching algorithm
described in Section III-A, an initial mapping between Gint and
Gf is generated, as shown in Fig. 2(a), where the label a(b)
indicates that the node a in Gint is mapped to the node b in Gf .

28 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

Fig. 1. (a) Initial graph and (b) the desired graph.

Fig. 2. (a) Initial graph and (b) the desired graph with labels. In (a), the label
x(y) indicates that the node x in (a) is mapped to the node y in (b), which is
determined by the weighted graph-matching algorithm in (4). The dashed lines
are the edges in (a), which will be decided later to be kept or not when building
the tree Gt

int according to (b).

The dashed lines connecting two nodes imply the edges in Gint,
and will be decided later to be kept or not when building the
tree Gt

int according to Gf .
Consider the root node v1f in Gf and the corresponding node

v5i = Φ−1(v1f) in Gint. Since v1f has three child nodes, v2f , v3f ,
and v4f in Fig. 2(b), and node v5i has three neighbor nodes
v4i , v6i , and v8i in Gint, whose mappings are the child of v1f in
2(a), the edges are built in the tree Gt

int by connecting v5i to its
neighbor nodes v4i , v6i , and v8i , as shown in Fig. 3(a), where
the newly formed edges in Gt

int are indicated as solid lines.
After all nodes with depth one in Gf (i.e., v2f , v3f , and v4f) are
mapped in Gint, the algorithm proceeds to the nodes with depth
two in Gf . Following a similar procedure, the edge (v4i , v

7
i)

in Gint can be added to Gt
int, since its corresponding nodes

v2f and v5f are also connected in Gf . Note that v4i and v1i are
connected in Gint while their corresponding nodes v2f and v9f are
not immediate neighbors in Gf . According to (5), the original
mapping of v1i → v9f is replaced by v1i → v6f to form the desired
edge (v2f , v

6
f) in Gf , as shown in Fig. 3(b). Following a similar

procedure, the edges (v6i , v
9
i) and (v6i , v

3
i) can be added to Gt

int,
since they correspond to the edges (v4f , v

8
f) and (v4f , v

9
f) in Gf ,

as shown in Fig. 3(c). Finally, the tree Gt
int is built as shown in

Fig. 3(d), where most edges in Gf are preserved in Gint.

D. Complexity

The worst-case complexity for the initial tree selection al-
gorithm occurs when Gf and Gint have depth one (i.e., star
graphs), which indicates that all nodes except the root in Gf (or
the mapped root node in Gint) are the children of the root (or the
mapped root). To match each edge in Gf to an edge attached
to the mapped root in Gint, the algorithm compares all of the

Fig. 3. Process of building a tree Gt
int in Gint according to Gf . In (a), the

edges {(5,4),(5,6),(5,8)} in Gint are preserved to form the tree Gt
int, which are

indicated by solid lines. In (b), the edges {(4,7),(4,1)} in Gint are added to
tree Gt

int, where the original mappings of nodes 1 and 3 (i.e., shaded nodes)
are exchanged for desired neighbors. In (c), the edges {(6,9),(6,3)} in Gint are
added to tree Gt

int. In (d), the tree Gt
int is finally formed by connecting nodes 5

and 2.

edges in Gf and Gint and decides which pair of edges should be
formed based on (5). Note that the star graph with N nodes only
has N − 1 edges. Since the number of nodes connecting to the
root in Gf and the mapped root in Gint are N − 1, the number of
edges to be considered for matching in each topology is equal to
N − 1, which indicates that the star graphs are the worst cases
for mapping. Hence, the complexity of the initial tree selection
algorithm is O(N3) from

T (N) =

N−1∑
i=1

(N − 1)2 <

N−1∑
i=1

N2 < N3

which is also the complexity of the graph-matching step from
the Eigen-decomposition.

IV. CONTROL DESIGN

After the node mapping is determined in Section III, a
decentralized control strategy is developed in this section to
physically move all nodes to achieve the desired Gf with the
preservation of network connectivity and collision avoidance
among agents.

A. Information Flow

When Gf is not isomorphic to a subgraph of Gint, there is
no node mapping where every edge in Gf is preserved in Gint.
After applying the node-mapping strategy, in most scenarios,
most of the nodes in Gint are mapped in such a way that their
neighbors in Gint are also neighbors in Gf . However, there will
be some edges in Gf that do not have a corresponding edge
in Gint, that is, there exists at least one edge (vi, vj) ∈ Ef for
which (Φ−1(vi),Φ

−1(vj)) 	∈ Eint. For such nodes, it is required
that Φ−1(vi) and Φ−1(vj) are able to communicate through

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 29

intermediate nodes, which will allow them to move to achieve
the desired graph. After the initial tree selection algorithm
finishes, the nodes in Gt

int can be labeled with a prefix labeling
as in [17]. Then, the prefix routing can be used as in [17] to
determine a path between Φ−1(vi) and Φ−1(vj) such that these
nodes can move along the specified path to form the desired
edge, while preserving network connectivity. An information
flow Iij is introduced along the nodes in the specified route that
enables communication between Φ−1(vi) and Φ−1(vj).

The information flow Iij can be realized by a series of
nodes forming a path connecting Φ−1(vi) and Φ−1(vj). If the
length of Iij is two, which indicates that Φ−1(vi) and Φ−1(vj)
are connected by a mutual neighbor, the connectivity of Iij
can be ensured by maintaining the connectivity of Φ−1(vi)
and Φ−1(vj) with the mutual neighbor. If the length of Iij is
greater than two, this indicates that node Φ−1(vi) and Φ−1(vj)
are connected through more than one intermediate node. The
connectivity between node Φ−1(vi) and Φ−1(vj) is not guar-
anteed by just maintaining the connection with its immediate
neighbors, since the intermediate nodes have the potential to
break the existing edge between themselves, resulting in the
partition of Φ−1(vi) and Φ−1(vj). Therefore, the following
development is based on the assumption that the length of Iij
is, at most, two, which is not restrictive in the sense that an
Iij with a path length greater than two can be partitioned into
several connected partial paths (i.e., Iik1

, Ik1k2
, · · · , Iknj with

k1, · · · , kn denoting the intermediate nodes of Iij) with the
length of each section being, at most, two. The node Φ−1(vi)
can move in a step-by-step fashion by first approaching node k1,
then node k2, · · · , kn, until achieving its destination Φ−1(vj).

An information flow Iij can be realized by several different
paths, where the interest is not only maintaining the information
flow Iij , but also finding a short path to connect Φ−1(vi) and
Φ−1(vj). The mutual node is called the relay node, since it
is used to pass information between Φ−1(vi) and Φ−1(vj). To
indicate the freedom of motion that each agent can take without
disconnecting the communication link, inspired by the work of
[29] and [34], a locally measurable edge robustness term δmn

is defined as

δmn =
1

2
(Rc − dmn) (7)

for any two immediate nodes vm and vn in the graph G (i.e.,
(vm, vn) ∈ E). The edge robustness δmn is used to measure the
robustness of the edge (vm, vn), since vm and vn will remain
connected with each other, unless both of them are displaced
by a distance of δmn. Therefore, a larger δmn indicates more
freedom of motion. Due to node motion, some nodes may enter
the communication zone of Φ−1(vi) and Φ−1(vj) at some time
instant for an information flow Iij , resulting in multiple options
for the relay node. Using (7), the length of the two-edge path lij
is represented as lij = dir + drj = 2Rc − 2(δir + δrj), where
δir and δrj are the robustness of each communication link
(Φ−1(vi), vr) and (vr,Φ

−1(vj)) computed from (7), respec-
tively. Finding the shortest path for Iij (i.e., minimizing lij)
is equal to maximizing the addition of δir and δrj , since Rc

is a constant). Path robustness is defined as ΔIij = δir + δrj ,

and the goal is to maximize the path robustness. Based on the
previous discussion, a relay node is determined by

vr = arg max
vr∈Ni∩Nj

ΔIij (8)

where the maximum taken over the intersection of communi-
cation neighbors Ni ∩Nj aims to find a node providing the
shortest path connecting Φ−1(vi) and Φ−1(vj).

To illustrate the proposed information flow, consider the
example given in Section III-C. Nodes v3f and v7f are required
to be neighbors in Gf , while their mappings v2i = Φ−1(v7f)

and v8i = Φ−1(v3f) in Gint are not immediate neighbors. The
information flow Iij in this case is a series of paths connecting
v2i and v8i (e.g., through the path (v2i , v

5
i), (v

5
i , v

8
i) or other

longer path). A short path can be identified by choosing a relay
node to maximize the path robustness in (8).

B. Navigation Function-Based Control Scheme

A navigation function-based controller is developed to en-
sure the connectivity of the required communication links
during formation reconfiguration. Consider a decentralized nav-
igation function candidate ϕi : F → [0, 1] for vi as

ϕi =
γi

(γα
i + βi)

1
α

(9)

where α ∈ R
+ is a tuning parameter, γi : R2 → R

+ is the goal
function, and βi : R

2 → [0, 1] is a constraint function.
The goal function γi in (9) drives the system to a desired

configuration, specified in terms of the desired relative pose
with respect to the information neighbor vj ∈ N f

i . The goal
function γ is designed as

γi =
∑

vj∈N f
i

‖qi − qj − cij‖2. (10)

The gradient and Hessian matrix of γi are given as

∇qiγi =
∑

vj∈N f
i

2(qi − qj − cij) (11)

and

∇2
qi
γi = 2I2ζi (12)

where I2 is the identity matrix in R
2×2, and ζi ∈ R

+ denote
the number of information neighbors in the set N f

i . Since the
Hessian matrix of γi in (12) is always positive definite, the
goal function (10) has a unique minimum, and the minimum
is reached only when ∇qiγi = 0, which implies that qi and qj
achieve the desired relative pose from (11).

The constraint function βi in (9) is designed for vi as

βi = Bi0

∏
vj∈N f

i

brij
∏

vk∈Ni

Bik. (13)

In (13), brij
Δ
= b(qi, qr) : R

2 → [0, 1] ensures connectivity of an
information flow Iij (i.e., guarantees that the relay node vr will

30 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

always be connected to vi) and is designed as

brij =

⎧⎪⎪⎨
⎪⎪⎩

1 dir ≤ Rc − δ2
− 1

δ22
(dir + 2δ2 −Rc)

2

+ 2
δ2

(dir + 2δ2 −Rc) Rc − δ2 < dir < Rc

0 dir ≥ Rc.

(14)

Node vi is aware of δrj and Nj in (8) through communication
with vj . Thus, vr can be determined locally from (8). Also, in

(13), Bik
Δ
= B(qi, qk) : R

2 → [0, 1], for point vk ∈ Ni, ensures
that vi is repulsed from all nodes located within its sensing zone
to prevent a collision, and is designed as

Bik =

{
− 1

δ21
d2ik + 2

δ1
dik dik < δ1

1 dik ≥ δ1.
(15)

Similarly, the function Bi0 in (13) is used to model the potential
collision of vi with the workspace boundary, where the positive
scalar Bi0 ∈ R is designed similar to Bik with the replacement
of dik by di0, where di0 ∈ R

+ is the relative distance of vi to
the workspace boundary defined as di0 = R− ‖qi‖.

Based on the definition of the navigation function candidate,
a decentralized controller for each node is designed as

ui = −Ki∇qiϕi (16)

where Ki is a positive gain, and ∇qiϕi is the gradient of ϕi

with respect to qi, given as

∇qiϕi =
αβi∇qiγi − γi∇qiβi

α (γα
i + βi)

1
α + 1

. (17)

In (14) and (15), brij and Bik are designed to be continuous
and differentiable functions in (0, Rc), with brij achieving the
minimum when the communication link (vi, vr) is about to be
broken (e.g., dir = Rc) and Bik achieves the minimum when
vi and vk are about to collide. The constraint function only
takes effect whenever vi has the potential to break an existing
communication link or collide with other nodes. The gradient of
brij and Bik are the zero vector in the free motion region, (i.e.,
the interval of (δ1, Rc − δ2)), which indicates that vi is only
driven by its goal function in (10) to form the desired relative
pose with vj ∈ N f

i from (16) and (17). If vi dynamically
builds new communication links or breaks existing links to
the agents within the free motion region, the controller is still
continuous from (17), since ∇qiβi = 0 and βi = 1 in the free
motion region. In contrast with the discontinuity introduced
in the switching topology in current literature (cf., [35]), this
highlighted feature enables a smooth transition between vi and
other connected nodes.

C. Connectivity and Convergence Analysis

The previous development indicates that G is connected if the
information flow Iij is maintained in G. The following proof
indicates that the controller in (16) guarantees connectivity of
the information flow Iij in G.

Proposition 1: For any information flow Iij with vr as the
relay node, the controller in (16) guarantees that Iij is main-
tained and, hence, vi and vj are connected in a communication
path in G.

Proof: An information flow Iij is realized in the commu-
nication graph G by a path from vi to vj through a mutual node
vr. From the definition of a relay node, vr ∈ Ni ∩Nj , which
means vr is located in the communication zone of vi and vj .
To show that the edge (vi, vr) is maintained under the control
law (16), consider vi located at a point q0 ∈ F that causes brij =
0, which indicates that vi is about to disconnect with vr. Since
brij = 0, βi = 0 from (13), and the navigation function achieves
its maximum value from (9). Since ϕi is maximized at q0,
no open set of initial conditions can be attracted to q0 under
the negated gradient control law designed in (16). Therefore,
the communication link between node vi and vr is maintained
by the controller in (16). Following the same procedure, the
edge (vr, vj) can be maintained by a similar control applied
to vj . Due to the motion of the nodes, some other node vk
may provide a shorter path connecting vi and vj than node
vr at some time instant. When this occurs, it is reasonable to
create a new path from vi to vj through node vk to maintain
the information flow Iij . The relay node vk can be determined
according to (8). Following the aforementioned analysis, the
connectivity of the new path can also be guaranteed. �

D. Convergence Analysis

Our previous work in [14] proves that the proposed ϕi in
(9) is a qualified navigation function, which guarantees conver-
gence of the system to the desired configuration. From [14], the
controller in (16) ensures that almost all initial conditions are
either brought to a saddle point or to the unique minimum qdi
on a compact connected manifold with boundary, as long as the
tuning parameter α in (9) is selected that α > max{1,Γ(ε)},
where Γ(ε) is a lower bound developed in [14] to ensure
a qualified navigation function. The following development
uses Rantzer’s Dual Lyapunov Theorem [31] to show that the
undesired critical points (i.e., saddle points) all measure zero,
and the system can only converge to the unique minimum
qdi. For the bounded workspace in this paper, a variation of
Rantzer’s Dual Lyapunov Theorem is stated as [36]:

Theorem 1: Suppose x∗ = 0 ∈ S where S is an open, pos-
itively invariant, bounded subset of R

n, which is a stable
equilibrium point for ẋ(t) = f(x(t)), where f ∈ C1(S,Rn),
f(0) = 0. Furthermore, suppose there exists a function ρ ∈
C1(S − {0},R) such that ρ(x)f(x)/‖x‖ is integrable on {x ∈
S : ‖x‖ ≥ 1} and

[∇ · (fρ)] > 0 for almost all x ∈ S. (18)

Then, for almost all initial states x(0) ∈ S, the trajectory x(t)
exists for t ∈ [0,∞) and tends to zero as t → ∞.3

Theorem 1 requires x∗ = 0 ∈ S to be a stable equilibrium
point. The goal function evaluated at the desired point is
γi|qdi = 0 from (10), and ∇qiγi|qdi = 0 from (11), which can
be used to conclude that ∇qiϕi|qdi = 0 from (17). Thus, the
desired point qdi in the workspace F is a critical point of
ϕi. Using the facts that γi|qdi = 0 and ∇qiγi|qdi = 0 and the

3For a function f : Rn → R
n, the notation of divergence is defined as ∇ ·

f = (∂f1/∂x1) + · · ·+ (∂fn/∂xn).

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 31

Hessian of γi is ∇2
qi
γi = 2ζiI2 from (12), the Hessian of ϕi

evaluated at qdi is given by ∇2
qi
ϕi|qdi = 2β

−(1/α)
i I2ζi. Since

the constraint function βi > 0 at the desired configuration by
Assumption 2, and ζi is a positive number, the Hessian of
ϕi evaluated at qdi is positive definite. Hence, the navigation
function ϕi is minimized at qdi.

Proposition 2: The closed-loop kinematics of system (1)
with the controller in (16) are given by q̇ = f(q), where q

denotes the stacked states of each node as q = [qT1 · · · qTN]
T

and
f(q) = [fT

1 · · · fT
N] with fT

i = −Ki∇qiϕi for ∀i ∈ N . Con-
sider the system q̇ = f(q) for ∀i ∈ N and a density function
as ρ = −ϕ, where ϕ =

∑N
i=1 ϕi in Theorem 1. The undesired

critical points are sets of measure zero from Theorem 1, pro-
vided α > max{1,Γ(ε), ε′} at any saddle points, where α is a
parameter in the navigation function (9).

Proof: The function ρ is defined for all points in the
workspace other than the desired equilibrium qdi, and each ϕi

is C2 and takes a value in [0,1]. Thus, the function ϕ and its
gradient are bounded functions in the workspace, which indi-
cates that the integrability condition in Theorem 1 is fulfilled.
From the divergence criterion, ∇ · (fρ) = (∇ρ)T f + ρ∇ · (f),
and from the definition of a critical point, ∇qiϕi = 0. Hence,
fT
i = −Ki∇qiϕi = 0 for ∀i ∈ N , which indicates that f = 0,

and ∇ · (fρ) can be simplified as

∇ · (fρ) = ϕ

N∑
i=1

Ki

(
∂2ϕi

∂x2
i

+
∂2ϕi

∂y2i

)
. (19)

Since ϕ are positive at undesired critical points from (9), and
Ki is a positive gain, a sufficient condition for (19) to be
strictly positive is (∂2ϕi/∂x

2
i) + (∂2ϕi/∂y

2
i) > 0. Using (17),

∂2ϕi/∂x
2
i and ∂2ϕi/∂y

2
i are computed as

∂2ϕi

∂x2
i

=

(
∂βi

∂xi

∂γi

∂xi
+ βi

∂2γi

∂x2
i

− 1
α

∂βi

∂xi

∂γi

∂xi
− γi

α
∂2βi

∂x2
i

)

(γα
i + βi)

1
α+1

(20)

∂2ϕi

∂y2i
=

(
∂βi

∂yi

∂γi

∂yi
+ β ∂2γi

∂y2
i

− 1
α

∂βi

∂yi

∂γi

∂yi
− γi

α
∂2βi

∂y2
i

)

(γα
i + βi)

1
α+1

. (21)

Observing that ∂2ϕi/∂x
2
i and ∂2ϕi/∂y

2
i have a similar struc-

ture, it suffices to show that ∂2ϕi/∂x
2
i > 0 for ∀i ∈ N , since

the same results can be derived for ∂2ϕi/∂y
2
i . Since γi and

βi are positive from (10) and (13), and cannot be zero simul-
taneously from Assumption 2, the positivity of (20) can be
proven by showing that the numerator on the right side of (20)
is positive. Using the fact that ∂βi/∂xi = (αβi/γ)(∂γi/∂xi)
at a critical point, the following expression can be obtained
from (20):

C1α
2 + C2α+ C3 > 0 (22)

where C1=(βi/γi)(∂γi/∂xi)
2, C2=(βi/γi)((γi∂

2γi/∂x
2
i)−

(∂γi/∂xi)
2), and C3 = −(γi∂

2βi/∂x
2
i). Note that βi = 0 in-

dicates ϕi achieves its maximum from (9). However, since the
set of initial conditions is open, and no open set of initial con-
ditions can be attracted to the maxima of ϕi along the negative
gradient motion −Ki∇qiϕi [22], then βi 	= 0. In addition, γi is

Fig. 4. Average movement (hops) required to achieve Gf for the NMS
algorithm, the Ullmann’s algorithm, and the BFS algorithm.

evaluated at the undesired critical points (i.e., except the qdi),
so γi 	= 0 and ∂γi/∂xi 	= 0 from (10) and (11). To satisfy the
condition in (22), two cases are considered for

C1α
2 + C2α+ C3 = 0. (23)

Case 1: No solution of α exists for (23): Since (βi/γi)
(∂γi/∂xi)

2 > 0 and α is a positive gain in (9), as long as α > 0,
the condition in (22) is valid in Case 1.

Case 2: Two solutions S1 and S2 exist in (23). In this
case, the condition in (22) is satisfied as long as α >
max{S1, S2, 0}. Combining Cases 1 and 2 indicates
that if α > max{1,Γ(ε), ε′}, where ε′ is defined as ε′ =
max{S1, S2, 0}, all saddle points measure zero, and the
system will only converge to the desired configuration. �

Remark 1: Since physical formation reconfiguration with
minimum node movement is still an open problem, as a first
attempt to these challenging problems, the developed node-
mapping algorithm focuses on minimization of node movement
in terms of the number of edges that an agent must traverse on
the topology level, and a motion control law is then applied for
formation reconfiguration with preservation of network connec-
tivity. Note that agents that are separated by the same number of
hops in the network topology may be at very different distances
in the physical formation. Future work will consider including
the node movement in the physical graph to the node-mapping
algorithm so that the amount of node movement in physical
formation reconfiguration can also be minimized.

V. SIMULATION

Simulation results are provided in this section to illustrate the
performance of the node-mapping strategy (NMS) developed
in Section III and the decentralized motion controller designed
in Section IV. The performance of the NMS is evaluated by
comparing the amount of movement (in terms of the number
of edges that an agent must traverse) required to achieve Gf

from Gint with Ullmann’s algorithm in [9] and the breadth first
strategy (BFS) in [15]. Specifically, 500 pairs of Gint and Gf

are randomly generated for each network size which ranges
from 3 to 100 nodes. For each pair of Gint and Gf , the NMS,

32 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

Fig. 5. Average running time to achieve Gf for the NMS algorithm, the
Ullmann’s algorithm, and the BFS algorithm.

Fig. 6. (a) Initial graph and (b) the desired graph. The agents are represented
as nodes and the solid lines indicate the neighborhood of agents.

Fig. 7. Tree Gt
int is built on Gint, where the label x(y) on each node indicates

that the node x on Gt
int corresponds to the node y on Gf . A tree Gf is generated

on the desired graph in (b), where the edges are indicated by the solid lines and
all nodes are labeled.

BFS, and Ullmann’s algorithm are applied to reconfigure Gint

to Gf , where the minimum amount of movement is provided
by the Hungarian method in [32]. For each network size, the
averaged amount of node movement from the 500 pairs of Gint

and Gf is shown in Fig. 4, and the average running time for each
algorithm is shown in Fig. 5, where the y-axis is in log scale due
to the range of the results. In the NMS and BFS algorithms, a
tree Gt

int is generated according to Gf first. It is clear that NMS
significantly outperforms BFS as shown in Fig. 4, especially
when the network size is large. Minimum movement is obtained
by Ullmann’s algorithm due to its optimal nature. However,

Fig. 8. Change of the network topology during network reconfiguration.

Fig. 9. Plot of node trajectories in achieving the desired formation, where
the dashed line indicates the trajectory of each node, and diamonds and circles
represent the initial and desired positions of nodes, respectively.

Fig. 10. Evolution of the Fiedler Value during the formation reconfiguration.
A positive Fiedler Value indicates the network maintains connectivity.

Ullmann’s algorithm is only applicable to isomorphic graphs,
and Fig. 4 indicates that Ullmann’s algorithm is valid for a
network size with 10 or fewer nodes because of its exponential
computational complexity. In Fig. 5, the average running time
increases with respect to the network size for all algorithms.
The average running time of BFS is less than NMS, since Gt

int

is selected randomly in BFS while NMS runs graph matching

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 33

TABLE I
COMPARISON OF TOTAL NODE MOVEMENT FOR RANDOM (R1 TO R10) AND NODE-MAPPING STRATEGY (NMS) ASSIGNMENTS BETWEEN NODES IN

INITIAL AND FINAL FORMATIONS

to improve the selection of Gt
int. The average running time of

Ullmann’s algorithm is low when the network size is small.
However, as the network size increases to seven or more nodes,
the average running time of Ullmann’s algorithm increases
significantly and eventually makes this approach impractical
due to its exponential complexity.

To demonstrate the performance of the decentralized motion
controller, a network of nine identical agents is tasked with
reconfiguration to a new formation. The initial graph and the
desired graph are shown in Fig. 6(a) and (b), respectively, where
the agents are represented as nodes and the solid lines indicate
the neighborhood of agents. In [3], an attack tolerance graph
is developed that can maintain a required level of network
connectivity in the presence of node and link failures. In this
simulation, the particular graph in [3] is taken as the desired
graph in Fig. 6(b). Since a tree structure is required, we first
build a tree Gf on the desired graph as indicated by the solid
lines in Fig. 7(b). Given the tree Gf in Fig. 7(b), the NMS
developed in Section III is applied to generate a tree Gt

int to
map nodes between the initial and desired graph, as shown in
Fig. 7(a), where the label x(y) on each node indicates that the
node x on Gt

int corresponds to the node y on Gf , and the edges
of Gt

int are represented by solid lines. Comparing Fig. 7(a) and
(b), most edges in Gf are preserved in Gt

int, except the edge
connecting nodes 2 and 7.

The decentralized control law described in Section IV is
implemented to physically move the nodes to form the desired
graph. As the nodes move along the specified information flow,
the network topology changes. The network topology is shown
in Fig. 8 for several representative times during the reconfigu-
ration. At the time t = 3 s, the dashed line in Fig. 8 indicates
that node 7 preserves connectivity with node 1 to ensure the
specified information flow while moving toward node 2 to build
a new link with it. The evolution of node trajectories is shown
in Fig. 9, where the initial and final positions of nodes are
denoted by diamonds and circles, respectively. Fig. 10 is a plot
of the Fiedler Value (i.e., the second smallest eigenvalue of
the Laplacian matrix of the underlying time-varying graph).
A positive Fiedler Value indicates that the graph remains
connected [37].

The results in Table I compare the performance of the de-
veloped decentralized motion controller with either the NMS
or a random mapping of the nodes in the initial formation to
the roles in the desired formation. The numerical values are the
total Euclidean distance traveled by all of the nodes. The results
for R1 to R10 are the distances traveled for ten different initial
trees Gt

int created from random node assignments. The total
movement under the graph-matching-based NMS technique is
24.12, whereas the total movement with random assignments
varies from 23.34 to 41.17. Thus, the benefit of using the NMS
algorithm is demonstrated.

VI. DISCUSSION AND CONCLUSION

The combined NMS and decentralized motion controller
provides a novel solution to the problem of formation recon-
figuration with identical agents. Simulation results show that
using NMS decreases the amount of movement required in
comparison to a random mapping in an example formation
reconfiguration scenario. The simulations in this work included
a network ranging from 3 to 100 nodes. When considering large
networks (e.g., hundreds to millions of nodes), the complexity
of the developed initial tree selection algorithm will approxi-
mately increase as O(N3), and the large size of the adjacency
matrix may prohibit the use of standard Eigen-decomposition
algorithms. However, as indicated in [38], large networks gen-
erally contain sparsity in the associated adjacency matrix. To
facilitate efficient computation, various approaches have been
developed to enable parallel computation by partitioning sparse
matrices (e.g., [38] and [39]) or apply scalable approaches to
reduce the complexity of large sparse matrices [40]. Further
efforts could potentially be applied to take advantage of sparsity
in the adjacency matrix to extend the current work to large
networks as in [38]–[40].

REFERENCES

[1] F. Zhang and N. Leonard, “Cooperative filters and control for cooperative
exploration,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 650–663,
Mar. 2010.

[2] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sen-
sor networks: Adaptive gradient climbing in a distributed environment,”
IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1292–1302, Aug. 2004.

[3] A. Veremyev and V. Boginski, “Robustness and strong attack tolerance of
low-diameter networks,” in Dynamics of Information Systems: Mathemat-
ical Foundations. New York, USA: Springer, 2012, pp. 137–156.

[4] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in mul-
tivehicle cooperative control,” IEEE Control Syst. Mag., vol. 27, no. 2,
pp. 71–82, Apr. 2007.

[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[6] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Control,
vol. 51, no. 1, pp. 116–120, Jan. 2006.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[8] R. Dai and M. Mesbahi, “Optimal topology design for dynamic net-
works,” in Proc. IEEE Conf. Dec. Control, 2011, pp. 1280–1285.

[9] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[10] S. Umeyama, “An eigendecomposition approach to weighted graph
matching problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10,
no. 5, pp. 695–703, Sep. 1988.

[11] L. S. Shapiro and J. Michael Brady, “Feature-based correspondence: An
eigenvector approach,” Image Vis. Comput., vol. 10, no. 5, pp. 283–288,
1992.

[12] M. Carcassoni and E. R. Hancock, “Spectral correspondence for point
pattern matching,” Pattern Recogn., vol. 36, no. 1, pp. 193–204, 2003.

[13] T. Caelli and S. Kosinov, “An eigenspace projection clustering method for
inexact graph matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,
no. 4, pp. 515–519, Apr. 2004.

34 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

[14] Z. Kan, A. Dani, J. M. Shea, and W. E. Dixon, “Network connectivity pre-
serving formation stabilization and obstacle avoidance via a decentralized
controller,” IEEE Trans. Autom. Control, vol. 57, no. 7, pp. 1827–1832,
Jul. 2012.

[15] L. Navaravong, J. M. Shea, and W. E. Dixon, “Physical- and network-
topology control for systems of mobile robots,” in Proc. Military
Commun. Conf., Baltimore, MD, USA, Nov. 2011, pp. 1079–1084.

[16] L. Navaravong, J. M. Shea, E. L. Pasiliao, and W. E. Dixon, “Graph
matching-based topology reconfiguration algorithm for systems of net-
worked autonomous vehicles,” presented at the Military Commun. Conf.,
San Diego, CA, USA, Nov., 2013.

[17] L. Navaravong, Z. Kan, J. M. Shea, and W. E. Dixon, “Formation recon-
figuration for mobile robots with network connectivity constraints,” IEEE
Netw., vol. 26, no. 4, pp. 18–24, Jul./Aug. 2012.

[18] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph theoretic connectivity
control of mobile robot networks,” Proc. IEEE: Spec. Issue on Swarming
in Nat. Eng. Syst., vol. 99, pp. 1525–1540, 2011.

[19] K. Do, “Bounded controllers for formation stabilization of mobile agents
with limited sensing ranges,” IEEE Trans. Autom. Control, vol. 52, no. 3,
pp. 569–576, Mar. 2007.

[20] J. Huang, S. Farritor, A. Qadi, and S. Goddard, “Localization and
follow-the-leader control of a heterogeneous group of mobile robots,”
IEEE/ASME Trans. Mechatron., vol. 11, no. 2, pp. 205–215, Apr. 2006.

[21] H. Tanner and A. Kumar, “Towards decentralization of multirobot nav-
igation functions,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2005,
pp. 4132–4137.

[22] D. Dimarogonas and K. Johansson, “Bounded control of network con-
nectivity in multi-agent systems,” Control Theory Appl., vol. 4, no. 8,
pp. 1330–1338, Aug. 2010.

[23] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent
systems while preserving connectedness,” IEEE Trans. Robot., vol. 23,
no. 4, pp. 693–703, 2007.

[24] M. M. Zavlanos and G. J. Pappas, “Distributed formation control with
permutation symmetries,” in Proc. IEEE Conf. Decis. Control, 2007,
pp. 2894–2899.

[25] M. Turpin, N. Michael, and V. Kumar, “Trajectory planning and as-
signment in multirobot systems,” in Algorithmic Found. Robot. X. New
York, USA: Springer, 2013, pp. 175–190.

[26] M. Schuresko and J. Cortés, “Distributed tree rearrangements for reacha-
bility and robust connectivity,” SIAM J. Control. Optimiz., vol. 50, no. 5,
pp. 2588–2620, 2012.

[27] H. Su, G. Chen, X. Wang, and Z. Lin, “Adaptive secondorder consensus of
networked mobile agents with nonlinear dynamics,” Automatica, vol. 47,
no. 2, pp. 368–375, 2011.

[28] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robot. Autom., vol. 8, no. 5, pp. 501–
518, Oct. 1992.

[29] D. Spanos and R. Murray, “Robust connectivity of networked vehicles,”
in Proc. IEEE Conf. Decis. Control, Dec. 2004, vol. 3, pp. 2893–2898.

[30] Z. Kan, A. Dani, J. Shea, and W. E. Dixon, “Information flow based
connectivity maintenance of a multi-agent system during formation
control,” in Proc. IEEE Conf. Decis. Control, Orlando, FL, USA, 2011,
pp. 2375–2380.

[31] A. Rantzer, “A dual to lyapunov’s stability theorem,” Syst. Control Lett.,
vol. 42, no. 3, pp. 161–168, 2001.

[32] M. D. R. Burkard and S. Martello, Assignment Problems. Philadelphia,
PA, USA: SIAM, 2009.

[33] T. Cormen, Introduction to Algorithms. Cambridge, MA, USA: MIT
Press, 2001.

[34] D. Spanos and R. Murray, “Motion planning with wireless network
constraints,” in Proc. Amer. Control Conf., Jun. 2005, pp. 87–92.

[35] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed
and switching networks,” IEEE Trans. Autom. Control, vol. 52, no. 5,
pp. 863–868, May 2007.

[36] D. Dimarogonas and K. Johansson, “Analysis of robot navigation schemes
using Rantzer dual Lyapunov theorem,” in Proc. Amer. Control Conf.,
Jun. 2008, pp. 201–206.

[37] C. Godsil and G. Royle, Algebraic Graph Theory. New York, USA:
Springer, 2001, ser. Graduate Texts in Mathematics.

[38] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices
with eigenvectors of graphs,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3,
pp. 430–452, 1990.

[39] A. Gupta, G. Karypis, and V. Kumar, “Highly scalable parallel algorithms
for sparse matrix factorization,” IEEE Trans. Parallel Distrib. Syst., vol. 8,
no. 5, pp. 502–520, May 1997.

[40] U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis for billion-scale
graphs: Discoveries and implementation,” in Advances in Knowledge Dis-
covery and Data Mining. New York, USA: Springer, 2011, pp. 13–25.

Zhen Kan received the B.S degree (Hons.) and the
M.S. degree in mechanical engineering from Hefei
University of Technology, Hefei, China, in 2005 and
2007, respectively, and the Ph.D. degree in mechan-
ical and aerospace engineering at the University of
Florida, Gainesville, FL, USA, in 2011.

Currently, he is a Postdoctoral Research Associate
in the Research and Engineering Education Facility
(REEF) at the University of Florida. His research
interests are in the area of cooperative control of
multiagent systems, Lyapunov-based nonlinear con-

trol, vision-based estimation and control, human-robot interaction, as well as
human-assisted estimation, planning, and decision-making.

Leenhapat Navaravong received the B.E. degree
in telecommunications engineering (Hons.) from
Shinawatra International University, Pathumthani,
Thailand, in 2007, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the Uni-
versity of Florida, Gainesville, FL, USA, in 2010 and
2013, respectively.

After his graduation, he was a Postdoctoral Re-
search Associate at the Air Force Research Labo-
ratory (AFRL) at the Eglin Air Force Base, Eglin
Air Force Base, FL, USA, and the University of

Florida/Research and Engineering Education Facility (REEF), Shalimar, FL,
from 2013 to 2014. His research interests are wireless communications and
networking with applications to systems of autonomous vehicles.

Currently, he is a Project Manager in the Business Development Department
of Thaicom PLC.

John M. Shea (S’92–M’99) received the B.S.
(Hons.) degree in computer engineering and the M.S.
and Ph.D. degrees in electrical engineering from
Clemson University, Clemson, SC, USA, in 1993,
1995, and 1998, respectively.

Currently, he is an Associate Professor of Electri-
cal and Computer Engineering at the University of
Florida, Gainesville, FL, USA. Previously, he was
an Assistant Professor at the University of Florida
from 1999 to 2005 and a Postdoctoral Research Fel-
low at Clemson University in 1999. He is currently

engaged in research on wireless and military communications and networked
autonomous systems.

Dr. Shea received the Technical Achievement Award for contributions to
military communications from the IEEE Military Communications Confer-
ence (MILCOM) in 2012. He received the Ellersick Award from the IEEE
Communications Society for the Best Paper in the Unclassified Program of
MILCOM in 1996 and 2013, and the Outstanding Young Alumni award from
the Clemson University College of Engineering and Science in 2011. He was
selected as a Finalist for the 2004 Eta Kappa Nu Outstanding Young Electrical
Engineer. He has been an Editor for IEEE Wireless Communications magazine
since 2010. He was an Editor for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS from 2008 to 2012 and was an Associate Editor for the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY from 2002 to 2007.
He was the Technical Program Chair for the Unclassified Program of MILCOM
in 2010.

Eduardo L. Pasiliao, Jr. was born in the Philip-
pines. He received the B.S. degree in mechanical
engineering from Columbia University, New York,
USA, the M.E. degree in coastal and oceanographic
engineering, and the Ph.D. degree in industrial and
systems engineering from the University of Florida,
Gainesville, FL, USA.

Currently, he is a Senior Research Engineer with
the Air Force Research Laboratory (AFRL) Muni-
tions Directorate, Eglin Air Force Base, FL, USA,
and is the Director of the AFRL Mathematical Mod-

eling and Optimization Institute, Eglin Air Force Base, FL, USA. His research
interest is in mathematical optimization with an emphasis on social and
communication networks.

KAN et al.: GRAPH MATCHING-BASED FORMATION RECONFIGURATION OF NETWORKED AGENTS 35

Warren E. Dixon received the Ph.D. degree in
electrical and computer engineering from Clemson
University, Clemson, SC, USA, in 2000.

After completing his doctoral studies, he was
selected as an Eugene P. Wigner Fellow at Oak
Ridge National Laboratory (ORNL), Oak Ridge,
TN, USA. In 2004, he joined the University of
Florida, Gainesville, FL, USA, in the Mechanical
and Aerospace Engineering Department. He has pub-
lished more than 300 refereed papers and several
books in this area. His main research interest has

been the development and applications of Lyapunov-based control techniques
for uncertain nonlinear systems.

Dr. Dixon is currently a member of the U.S. Air Force Science Advisory
Board and the Director of Operations for the Executive Committee of the IEEE
CSS Board of Governors. Previously, he was an Associate Editor for several
journals, and is currently an Associate Editor for Automatica and the Interna-
tional Journal of Robust and Nonlinear Control. His work has been recognized
by the 2013 Fred Ellersick Award for Best Overall MILCOM Paper, 2012–2013
University of Florida College of Engineering Doctoral Dissertation Mentoring
Award, 2011 American Society of Mechanical Engineers (ASME) Dynamics
Systems and Control Division Outstanding Young Investigator Award, 2009
American Automatic Control Council (AACC) O. Hugo Schuck (Best Paper)
Award, 2006 IEEE Robotics and Automation Society (RAS) Early Academic
Career Award, a National Science Foundation CAREER Award (2006–2011),
2004 DOE Outstanding Mentor Award, and the 2001 ORNL Early Career
Award for Engineering Achievement. He is an IEEE Control Systems Society
(CSS) Distinguished Lecturer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

