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Adaptive Tracking Control of a Wheeled Mobile
Robot via an Uncalibrated Camera System

Warren E. Dixon, Member, IEEE, Darren M. Dawson, Senior Member, IEEE, Erkan Zergeroglu, Member, IEEE,
and Aman Behal

Abstract—This paper considers the problem of position/orien-
tation tracking control of wheeled mobile robots via visual ser-
voing in the presence of parametric uncertainty associated with the
mechanical dynamics and the camera system. Specifically, we de-
sign an adaptive controller that compensates for uncertain camera
and mechanical parameters and ensures global asymptotic posi-
tion/orientation tracking. Simulation and experimental results are
included to illustrate the performance of the control law.

Index Terms—Adaptive control, visual-servoing, wheeled mobile
robot.

I. INTRODUCTION

A S the demand increases for wheeled mobile robots
(WMRs) in settings that range from shopping centers,

hospitals, warehouses, and nuclear waste facilities, the need
for precise control of WMRs is clearly evident; hence, a
closed-loop sensor-based controller is required. Unfortunately,
due to the nonholonomic nature of the WMR and the standard
encoder hardware configuration (e.g., optical encoders mounted
on the actuators), the WMR Cartesian position is difficult to
accurately obtain. That is, the linear velocity of the WMR
must first be numerically differentiated from the position (i.e.,
by the backward difference algorithm) and then the nonlinear
kinematic model must be numerically integrated to obtain the
WMR Cartesian position. Since numerical differentiation/inte-
gration errors may accumulate over time, the accuracy of the
numerically calculated WMR Cartesian position may be com-
promised. An interesting approach to overcome this position
measurement problem is to utilize a vision system to directly
obtain the Cartesian position information required by the
controller (for an overview of the state-of-the-art in robot visual
servoing, see [7] and [18]). Specifically, a ceiling-mounted
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camera system can be used to determine the WMR Cartesian
position without requiring numerical calculations. However, as
emphasized by Bishopet al. in [1], when a vision system is uti-
lized to extract information about a robot and the environment,
adequate calibration of the vision system is required. That is,
parametric uncertainty associated with the calibration of the
camera corrupts the WMR position/orientation information;
hence, camera calibration errors can result in degraded control
performance.

Despite the above motivation to incorporate visual informa-
tion in the control loop, most of the WMR research available in
literature which incorporates visual information in the overall
system seems to be concerned with vision-based navigation
(i.e., using visual information for trajectory planning). It also
seems that the state-of-the-art WMR research that specifically
targets incorporating visual information from an on-board
camera into the closed-loop control strategy can be found in
[5], [15], [21]. Specifically, in [15], Maet al. incorporates the
dynamics of image curves obtained from a mobile camera
system in the design of stabilizing control laws for tracking
piecewise analytic curves. In [1], Espiauet al. proposed a
visual servoing framework and in [5], Samsonet al. address
control issues in the image plane. For the most part, it seems
that previous visual-servoing WMR work has assumed that
the parametric uncertainty associated with the camera system
can been neglected. In contrast, it seems that visual servoing
research for robot manipulators has focused on the design
of controllers that account for uncalibrated camera effects as
well as uncertainty associated with the mechanical dynamics.
Specifically, in [10], Kelly designed a setpoint controller to
take into account uncertainties in the camera orientation to
achieve a local asymptotically stable result; however, the
controller required exact knowledge of the robot gravitational
term and restricted the difference between the estimated and
actual camera orientation to the interval (90 , 90 ). In
[1], Bishop and Spong developed an inverse dynamics-type,
position tracking control scheme (i.e., exact model knowledge
of the mechanical dynamics) with on-line adaptive camera
calibration that guaranteed global asymptotic position tracking;
however, convergence of the position tracking error required
the desired position trajectory to be persistently exciting. In
[16], Maruyama and Fujita proposed setpoint controllers for
the camera-in-hand configuration; however, the proposed
controllers required exact knowledge of the camera orientation
and assumed the camera scaling factors to be the same value
for both directions. In [11], Kellyet al. utilized a composite
velocity inner loop, image-based outer loop fixed-camera
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tracking controller to obtain a local asymptotic stability result;
however, exact model knowledge of the robot dynamics and
a calibrated camera are required, and the difference between
the estimated and actual camera orientation is restricted to
the interval ( 90 , 90 ). Recently, in [23], Zergerogluet al.
designed an adaptive tracking controller that accounted for
parametric uncertainty throughout the entire robot-camera
system; however, the controller required that the difference be-
tween the estimated and actual camera orientation be restricted
to the interval ( 90 , 90 ). Moreover, in [24], Zergerogluet
al. proposed a globally uniformly ultimately bounded (GUUB)
tracking controller that is robust to uncertainty throughout the
entire robot-camera system for a fixed-camera configuration,
and a GUUB regulating controller for a camera-in-hand con-
figuration. Note that in order to achieve the above results, [24]
require that the camera orientation be within a certain range.

In this paper, we design a global asymptotic position/orienta-
tion tracking controller for a WMR with a ceiling-mounted fixed
camera that adapts for uncertainty associated with the camera
calibration (e.g., magnification factors, focal length, and orien-
tation) in addition to the uncertainty associated with the me-
chanical parameters of the WMR dynamic model (e.g., mass,
inertia, friction). We note that most of the vision-based naviga-
tion approaches found in WMR literature can be utilized to gen-
erate the camera-space reference trajectory for use in the pro-
posed controller. However, if the camera is not assumed to be
perfectly calibrated, then it is not obvious how to generate the
reference trajectory in the task-space using the camera-system;
hence, it seems that the reference trajectory must be generated
in the camera-space and the control loop must be closed in
the camera-space. Following this line of reasoning, we use a
camera-space reference trajectory generator and the camera-
space WMR kinematic model to formulate an open-loop error
system. This open-loop error system and the previous control
structure given in [3] and [20] are then used to develop a kine-
matic control to ensure tracking in the camera-space. We then
use the standard pin-hole camera model and the WMR camera-
space model to develop a transformation between the actual
WMR velocity and the camera-space WMR velocity. This trans-
formation is then used to transform the WMR dynamic model
into a form that facilitates the design of a torque input adaptive
controller that compensates for parametric uncertainty associ-
ated with camera calibration effects as well as the WMR me-
chanical dynamics. The proposed adaptive controller achieves
global asymptotic tracking and requires the following signals
for implementation:

1) WMR position/orientation in the camera-space;
2) WMR linear and angular velocity in the camera-space;
3) actual WMR orientation and angular velocity.

Note that the orientation and angular velocity of the WMR can
be obtained from the on-board optical encoders and the back-
ward difference algorithm while the WMR linear and angular
velocity in the camera-space can be calculated from the WMR
position/orientation in the camera-space using the backward dif-
ference algorithm; hence, the proposed controller does not re-
quire integration of the nonlinear kinematic model for obtaining
the WMR Cartesian position.

This paper is organized as follows. In Section II, we describe
the kinematic model of a WMR in the task-space and the
camera-space, and then we utilize the pin-hole camera model
to formulate a global invertible transformation between the
two spaces. In Section III, the control objective of the paper is
stated and then a kinematic tracking controller along with the
corresponding open-loop error system is developed. In Section
IV, we develop the dynamic model for the WMR that facilitates
the subsequent closed-loop control development given in Sec-
tion V and the corresponding stability analysis given in Section
VI. In Section VII, the controller’s performance is illustrated
through simulation and experimental results. In Section VIII,
we present some concluding remarks.

II. K INEMATIC MODEL

A. WMR Kinematic Model in the Task-Space

The kinematic model of a WMR in the task-space is assumed
to be of the following form [17]:

(1)

where , are defined as

(2)

, , and denote the position and orientation,
respectively, of the center of mass (COM) of the WMR (which
is assumed to coincide with the center of the axis of rotation
of the WMR), , denote the Cartesian components of
the linear velocity of the COM, denotes the angular
velocity of the COM, the matrix is defined as
follows:

(3)

and the velocity vector is defined as

(4)

with denoting the linear velocity of the COM of the
WMR.

B. WMR Kinematic Model in the Camera-Space

Based on the task-space kinematic formulation given in (1)
and the desire to craft a camera-space tracking controller, we
assume that the representation of the WMR kinematic model in
the camera-space takes the following form

(5)

where was defined in (3),
denotes the position and orientation of the WMR in the camera-
space, and denotes the linear and
angular velocity of the WMR in the camera-space. That is, we
assume that the WMR in the camera-space must satisfy the same
kinematic model as the WMR in the task-space. With regard to
the robot-camera system configuration, it is assumed that the
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camera is fixed above the robot workspace such that we have
the following.

1) Its image plane is parallel to the plane of motion of the
robot.

2) The camera can capture images throughout the entire
robot workspace.

3) The camera system can determine the COM of the WMR
by recognizing some physical characteristic (e.g., a light
emitting diode).

4) The camera can determine the orientation of the WMR,
and hence, the direction that the WMR is traveling, by
recognizing an additional characteristic (e.g., an arrow
painted on the WMR, a second light emitting diode, etc).

C. Task-Space to Camera-Space Transformations

In order to force the WMR to track the reference trajectory in
the camera-space, we are motivated to relate the kinematic con-
trol inputs [i.e., ] in the camera-space to the kinematic con-
trol inputs [i.e., ] in the task-space. To this end, we utilize the
so-called pin-hole lens model [1] for the robot-camera system
to express the WMR camera-space position vector in terms of
the task-space position vector as shown below (see Fig. 1)

(6)

where is a diagonal, positive-definite, constant ma-
trix defined as follows:

(7)

, are positive constants defined as follows:

(8)

represents the constant height of the camera’s optical
center with respect to the task-space plane, is a constant
representing the camera’s focal length, the positive constants
denoted by , represent the camera’s constant scale
factors (in pixels/m) along their respective Cartesian directions,
respectively, is a constant, rotation matrix de-
fined by

(9)

represents the constant, clockwise rotation angle of the
camera coordinate system with respect to the task-space
coordinate system, denotes a projection
of the camera’s optical center on the task-space plane, and

denotes the image center which is defined as
the frame buffer coordinates of the intersection of the optical
axis with the image plane (see [13] for explicit details).

To relate to , we first take the time derivative of
(6) and substitute (1) for the time derivative of (2) to obtain the
following relationship:

(10)

Fig. 1. Robot-camera system configuration.

After multiplying of (10) by , multi-
plying of (10) by , and substituting (5)
for and , we obtain the following expression:

(11)

After adding rows of the vector equality given by (11), we have

(12)

where is a positive scalar function defined
as

(13)

and were defined in (8), and is some positive
constant (see Appendix A for explicit details).

To relate to , we eliminate in the first two
rows of the vector equality given by (5) to conclude that

(14)

hence, after substituting (10) for and into (14), we
obtain the following relationship:

(15)

After taking the time derivative of (15) and then performing
some algebraic manipulation, we have that

(16)

where is a positive scalar function defined as

(17)

where and were defined in (8), and is some pos-
itive constant. Based on (12)) and (16), we can now formulate a
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global invertible transformation between the task-space WMR
velocities and the camera-space WMR velocities as follows:

(18)

where is defined as

(19)

and the positive scalar functions , , and
were defined in (13) and (17), respectively.

III. K INEMATIC CONTROL FORMULATION

A. Control Objective

The primary control objective is to force the representation
of the WMR in the camera-space to track a trajectory generated
in the camera-space in the presence of parametric uncertainty
(i.e., the camera calibration parameters and the mechanical pa-
rameters associated with the dynamic model). Similar to pre-
vious WMR research performed in the task-space (e.g., see [8]
and [9]), the desired trajectory of the WMR is generated via a
reference robot which moves in the camera-space according to
the following dynamic trajectory:

(20)

where was defined in (3), =
denotes the reference position and orientation trajectory

in the camera-space, and = de-
notes the reference linear and angular velocity of the WMR in
the camera-space. With regard to (20), it is assumed that the
signal is obtained from a path planning algorithm and is
constructed to produce the desired motion in the camera-space
and that , , , and are bounded for all time.

B. Open-Loop Error System Development

To facilitate the subsequent closed-loop error system devel-
opment and stability analysis, we define an auxiliary error signal
denoted by = , that is related to
the difference between the reference position/orientation and the
camera-space position/orientation of the WMR through a global
invertible transformation as follows [3], [20]:

(21)

where , , and are defined as

(22)

We can now formulate the open-loop error dynamics for by
differentiating (21) to obtain the following expression:

(23)

where is an auxiliary signal de-
fined in terms of the camera-space orientation/velocity, and the
desired trajectory as follows:

(24)

with the auxiliary variable being
defined as follows:

(25)

To facilitate the kinematic closed-loop error system develop-
ment, we inject the auxiliary control inputs, denoted by =

, into the open-loop dynamics of and
by adding and subtracting and to the right-side of
(23) to obtain the following expression:

(26)

where the kinematic tracking error signal, denoted by
, is defined as follows:

(27)

C. Control Design and Closed-Loop Error System
Development

Based on (26) and the subsequent closed-loop error system
development, we design as shown below [3], [20]

(28)

where , denote positive constant control gains. After
substituting (28) into (26), the resulting kinematic closed-loop
error system for is given as follows:

(29)

IV. WMR DYNAMIC MODEL

Since the proposed control is designed to include the effects
of the dynamic model, we will assume that the task-space dy-
namic model for the WMR can be expressed as follows:

(30)

where denotes the time derivative of defined in
(4), represents the constant, diagonal inertia matrix,

represents the friction effects, repre-
sents the torque input vector, and represents a di-
agonal input matrix that governs torque transmission. To facil-
itate the subsequent control design, we transform the dynamic
model into a form that is consistent with the kinematic trans-
formation given by (18) and (24). Specifically, we premultiply
(30) by , substitute (18) for , and then substitute (24)
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for in the resulting expression to obtain the following con-
venient dynamic model:

(31)

where

and , = . To facilitate the stability analysis,
we note that the dynamic model given by (31) exhibits the fol-
lowing properties [14].

Property 1: The transformed inertia matrix is sym-
metric, positive definite, and satisfies the following inequalities:

(32)

where and are known positive constants, and denotes
the standard Euclidean norm.

Property 2:: A skew-symmetric relationship exists between
the transformed inertia matrix and the auxiliary matrix
as follows:

(33)

where represents the time derivative of the transformed
inertia matrix.

Property 3: The robot dynamics given in (31) can be linearly
parameterized as follows:

(34)

where contains the unknown constant mechanical pa-
rameters (i.e., inertia, mass, and friction effects) and calibra-
tion/camera constants (i.e., , , and ) and ,

denotes the known regression matrix. Furthermore, the
global invertible matrix , defined in (19) is linearly
parameterizable as shown below in the following:

(35)

where , contain the unknown camera
calibration constants, and , ,

denote known regression vectors.
Property 4: To avoid singularities in the subsequent control

law, we now define convex regions, in the same manner as [2]
and [12], for the parameter vectors and defined in (35).
Specifically, based on (13), (17), and (35), we define the space
spanned by the vector functions and as
follows:

(36)

In addition, we define the regions and as

(37)

where , were defined in (13) and (17), respectively, and we
have the following definitions concerning the regions and

and the subsequently designed parameter estimate vectors
and : int( ) is the interior of the

region , is the boundary for the region , is
a unit vector normal to at the point of intersection of the
boundary surface and where the positive direction for

is defined as pointing away from int() [note is only
defined for ], is the component of the vector

that is tangential to at the point of intersection
of the boundary surface and the vector ,

is the component of the vector ,
that is perpendicular to at the point of intersection of the
boundary surface and the vector for .

Remark 1: Note that the subsequent control development re-
lies heavily on the fact that the dynamic model is decoupled.
It is not obvious how the controller can be extended to account
for additional coupling terms that result from the COM of the
WMR not corresponding to the center of the axis of rotation.
Future research will target the development of a controller that
can track a desired camera-space trajectory despite the use of
an uncalibrated vision system and parametric uncertainty in the
WMR dynamic model which includes the additional coupling
effects.

V. DYNAMIC MODEL CONTROL FORMULATION

We now utilize the dynamic model given by (31) to design a
control torque input that regulates the kinematic tracking error
signal defined in (22). Motivated by the structure of (29), the
kinematic tracking control objective can be obtained by regu-
lating the auxiliary tracking signal defined in (27). To this end,
we develop the closed-loop error system for by taking the
time derivative of (27) and multiplying both sides of the re-
sulting expression by to obtain the following expression:

(38)

After substituting (31) for and then adding and subtracting
terms to the right-side of the resulting expression, we arrange
the dynamics in the following advantageous form

(39)

where (27) was utilized, and regression matrix parametrization
is defined according to

(40)

where denotes the known desired regression
matrix, and was defined in (34).
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Based on the subsequent stability proof and the regulation of
, we design the control torque input as follows:

(41)

where is an auxiliary control signal
designed as shown in the following:

(42)

where , are positive constant control gains, and the
parameter update laws for , , and are designed
as follows:

(43)

if int
if and
if and

(44)

where int for , the auxiliary signals
and are defined as follows:

(45)

and

(46)

and , , are positive defi-
nite gain matrices. If int , the above update law for

and defined in (44) ensures that and
(See the definitions given in Property 4 and the ex-

planations given in [2] and [12]). After utilizing (35), (41), (42),
and the definition of , given in (31) and then per-
forming some algebraic manipulations, we can obtain the fol-
lowing expression for the closed-loop error system for :

(47)

where the parameter error signals, denoted by ,
, , are defined as follows:

(48)

VI. COMPOSITESTABILITY ANALYSIS

Theorem 1: The control torque input given in (28), (41)–(46)
along with the closed-loop error system given in (29) and (47)

ensures global asymptotic position and orientation tracking con-
trol in the sense that

(49)

provided

(50)

where , , and are defined in (22).
Proof: To prove Theorem 1, we define a nonnegative,

scalar function denoted by , , , )
as follows:

(51)

After taking the time derivative of (51) and making the appro-
priate substitutions from (29) and (47), we can conclude that

(52)

where (33) and the fact that

(53)

has been utilized. After cancelling common terms and then uti-
lizing (43)–(46) and Property 4, we obtain the following expres-
sion (see Appendix C for explicit details)

(54)

Hence, utilizing (51) and (54), we can conclude that , ,
, , and that , , .

Since , , , , , we can utilize

(43)–(46) and (48) to conclude that , , , ,

, , , . Furthermore, from the fact
that , , , , , we can utilize Prop-
erty 4 (i.e., , ) along with (27), (28), (41), (42),
and Appendix A to conclude that , , , .
Since , , we can utilize (21), (24), and (25) to ob-
tain the fact that , ; hence, from (18) and (19), it
is straightforward to show that , . From the fact
that , , , , , and that , ,
we can conclude that , (which is a sufficient
condition for and to be uniformly continuous). Based
on the boundedness of the aforementioned signals, we can take
the time derivative of and show that (see
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Appendix B for explicit details). Standard signal chasing argu-
ments can now be used to show that all remaining signals are
bounded.

From the fact that , , and are all uni-
formly continuous, we can now employ a corollary to Barbalat’s
Lemma [22] to conclude that

Next, since , we know that is uniformly con-
tinuous. Since we know that , and is
uniformly continuous, we can use the following equality:

(55)

and Barbalat’s Lemma [22] to conclude that
where is a constant of integration. Based on the fact
that , , , it is straightforward from
the expression for given in (29) to see that

(56)

From (50), and the fact that

(57)

we can now conclude that . The global
asymptotic result given in (49) can now be directly obtained
from the inverse of the relationship given in (21). That is, from

(58)

it is clear that since , , that
, , .

Remark 2: A physical interpretation of the reference trajec-
tory restriction given in (50) is that the reference linear velocity
of the WMR must be non zero in the limit, and hence, the WMR
regulation problem is not solved as a special case of the adap-
tive tracking controller (i.e., the WMR cannot be allowed to
stop indefinitely at a desired position and orientation). This is
a common problem endemic to many tracking controllers pre-
sented in literature; however, we have recently developed con-
trollers that overcome this restriction (see [4]) for WMRs that
do not rely on visual-servoing. Future research will leverage off
of our recent results (see [4]) to address the problem of elimi-
nating the reference trajectory restriction given in (50) for the
visual-servoing problem.

VII. SIMULATION AND EXPERIMENTAL IMPLEMENTATION

In the following section, we provide simulation and experi-
mental results to demonstrate the performance of the adaptive
tracking controller given by (28) and (41)–(46). Due to some
limitations in the experimental testbed, we believe that the ex-
perimental results do not adequately illustrate the performance

of the controller; hence, we elected to include simulation results
to illustrate the theoretical validity of the proposed controller.

The proposed adaptive tracking controller was simulated and
experimentally implemented based on the camera model given
in (6)–(9) as follows:

(59)

and the dynamic model for a modified Pioneer II WMR manu-
factured by ActivMedia given as follows:

sgn
sgn

(60)

where (pixel/m) and (pixel/m) represent camera
parameters originally defined in (8), (rad) represents
the camera orientation originally defined in (9),
(m) denotes the radius of the wheels, (m) denotes
the length of the axis between the wheels, (kg) de-
notes the mass of the robot, and (kg m ) denotes
the inertia of the robot, and (Nm) and (Nm)
denote static friction coefficients. The parameter values given
above were required to simulate the proposed controller. The pa-
rameter values for , , , and were selected based on ap-
proximate measurements or calculations made from the experi-
mental testbed, while parameter values for, , , , and

were selected for simplicity. To experimentally verify the
proposed adaptive tracking controller we only require knowl-
edge of the torque transmission parameters given byand ,
due to the fact that the controller is constructed to adapt for un-
certainty in the remaining camera and WMR parameters.

A. Simulation Results

A path planning algorithm [4] was utilized to generate the si-
nusoidal camera-space reference trajectory illustrated in Fig. 2.
The output of this path planning algorithm were the reference
camera-space velocity signals and given as fol-
lows:

(pixels/s)

(rad/s) (61)

where the initial conditions for the reference Cartesian camera-
space positions and orientation were selected as follows:

(pixels) (pixels)

(rad). (62)

The initial conditions for the actual Cartesian camera-space po-
sitions and orientation were selected as follows:

(pixels) (pixels)

(rad) (63)
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Fig. 2. Desired trajectory.

Fig. 3. Camera-space position and orientation tracking errors.

and the initial task-space orientation was selected as follows:

(64)

The control gains were tuned until the best response was ob-
tained and then recorded as follows:

(65)

diag

(66)

diag (67)

diag (68)

where each element of the estimate vector was initial-
ized to 0.0, and each element of the estimate vectors ,

were initialized to 1.0 to ensure int ,
int (see Property 4 and the discussions in [2] and [12]

for further details). The camera-space position and orientation
tracking errors are shown in Fig. 3 and the associated control
torque inputs are shown in Fig. 4.

B. Experimental Configuration

To illustrate the real-time performance of the proposed adap-
tive tracking controller given in (28) and (42)–(46), an exper-
imental testbed (see Fig. 5) was constructed consisting of the
following components:

1) modified Pioneer II WMR manufactured by ActivMedia,
Inc.;

Fig. 4. Control torque inputs.

Fig. 5. Experimental testbed.

2) Dalsa CAD-6 camera that captures 955 frames/s with
8-bit gray scale at a 260 260 resolution;

3) Road Runner Model 24 video capture board;
4) two Pentium II-based personal computers (PCs) oper-

ating under the real-time operating system QNX.
The WMR modifications include

1) replacement of all the existing computational hard-
ware/software with an off-board Pentium 133 MHz PC;

2) replacement of the pulse-width modulated amplifiers and
power transmission circuitry with linear amplifiers and
the associated circuitry;

3) inclusion of two LEDs (with distinct brightness values)
mounted on the top plate of the WMR (one LED was
mounted at the COM and the other LED was mounted
at the front of the WMR).

The camera was equipped with a 6mm lens and mounted 2.87
m above the robot workspace. The camera was connected to
the image processing PC to capture images of the WMR via
the video capture board and then determine the positions of the
LEDs in the camera-space. The positions of the LEDs were cal-
culated using a threshold based approach that compares bright-
ness values of pixels within a specific range (the brightness of
each LED was adjusted to yield a specific signature so that we
could distinguish each LED) and selects the brightest pixel in
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the two ranges to be the actual locations of the LEDs in the
camera-space. The image processing PC was connected to a
second off-board PC via a dedicated 100 Mb/s network connec-
tion. The second off-board PC was utilized to

1) determine the position, orientation, and linear and angular
velocity of the WMR in the camera-space from the LED
positions;

2) acquire the task-space orientation of the WMR;
3) execute the control algorithm.

Since an LED was placed above the COM of the WMR, the
camera-space position of the WMR was directly given. The
camera-space orientation of the WMR was calculated using
simple geometric principles that relate the relative position
of the two LEDs. The time derivative of the camera-space
position and orientation was calculated via a standard backward
difference/filtering algorithm while the linear and angular
velocities were calculated from (5). In order to determine the
task-space orientation of the WMR, we first measured the rotor
position of the wheel motors via encoders with a resolution of
0.176/line (i.e., 2048 lines/rev). Based on the position of the
left and right wheels, denoted by and , respectively,
we obtained the orientation of the WMR through the following
static relationship:

(69)

where denotes the known radius of the wheels, and
denotes the known distance between the wheels. The

data acquisition and control execution was performed at 700 Hz
via the Quanser MultiQ Server Board and in-house designed
interfacing circuitry. The control algorithms were implemented
in C++ and executed using the real-time control environment
Qmotor3.0 [19]. The computed torques were applied to perma-
nent magnet dc motors attached to the left and right wheels via
a 19:1 gear coupling. For simplicity, the electrical dynamics of
the system were ignored. That is, we assume that the computed
torque is statically related to the voltage input of the permanent
magnet dc motors by a constant.

C. Experimental Results

In order to limit the workspace to a reasonable size for the
camera system, we selected the reference linear and angular ve-
locities as follows:

(pixels/s)

(rad/s) (70)

while reference camera-space position/orientation was initial-
ized as follows:

(pixels) (pixels)

(rad) (71)

and the task-space orientation was initialized as follows:

(rad). (72)

Fig. 6. Desired camera-space trajectory.

Note that the task-space position is unknown. The resulting
camera-space reference trajectory is given in Fig. 6. Note
that the “soft start” nature of the reference linear and angular
velocities is illustrated in Fig. 6 by the arrangement of the
polygons which represent the camera-space WMR. The control
gains were tuned until the best response was obtained and then
recorded as follows:

(73)

diag

(74)

diag (75)

diag

(76)

where each element of the estimate vector was initialized
to 0.0, and each element of the estimate vectors ,
were initialized to 15.0 and 25.0, respectively, to ensure

int , int . The camera-space position and ori-
entation tracking errors are shown in Fig. 7 and the associated
control torque inputs are shown in Fig. 8. Note the control torque
inputs plotted in Fig. 8 represent the torques applied after the
gearing mechanism.

D. Discussion of Experimental Results

From the experimental results illustrated in Fig. 7, we
can conclude that the proposed adaptive controller achieves
reasonable position tracking; however, the orientation tracking
performance may not be suitable for many applications. Based
on our experience with the experimental hardware, we judge
that the lack of orientation tracking performance is due to
limitations in the experimental testbed rather than the controller
design. One of the obstacles in implementing the proposed
controller was determining the position and orientation of the
WMR in the camera-space in a simple, efficient manner. To
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Fig. 7. Position and orientation tracking errors.

Fig. 8. Control torque inputs.

address this obstacle, we elected to use a threshold algorithm to
find the position of the LEDs in the camera-space. That is, each
LED appeared as a ring of brightness values (since each LED
had a specific brightness signature, two separate rings were
clearly distinguishable) and the brightest pixel in the region was
selected as the actual location of the LED in the camera-space.
Unfortunately, as the WMR moved in the workspace, the
LEDs may have been positioned so that the brightest pixel in
the image did not correspond to the actual LED location. In
addition, if several pixels have the same brightness value, the
first pixel location that had the highest brightness value was
latched and subsequent pixels with the same brightness value
would be neglected. Hence, it is clear that the lack of a more
sophisticated, high-speed, image processing algorithm resulted
in degraded and noisy LED position measurements. Since the
position of the WMR only required the measurement of the po-
sition of one LED, the proposed controller was able to achieve
reasonable performance. Unfortunately, the measurement of the
position of two LEDs is required to determine the orientation of
the WMR. Since both LED positions were subject to error and

noise, the resulting calculation for the orientation of the WMR
was greatly compromised. In conclusion, we believe that if the
aforementioned measurement obstacles could be eliminated
through a more sophisticated image processing algorithm, the
position/orientation tracking error given in Fig. 7 could be
decreased further.

VIII. C ONCLUSIONS

In this paper, we have presented a global asymptotic posi-
tion/orientation tracking controller for a WMR that adapts for
parametric uncertainty associated with the camera calibration
(e.g., magnification factors, focal length, and initial orientation)
in addition to the uncertainty associated with the mechanical
parameters of the WMR dynamic model (e.g., mass, inertia,
friction). The torque input adaptive controller achieves global
asymptotic tracking and eliminates the need for integrating the
nonlinear kinematic model to obtain the WMR Cartesian posi-
tion for use in the closed-loop control strategy; hence, we be-
lieve the vision-based control approach for WMRs holds the
potential for higher performance. In addition, since the trajec-
tory generator is calculated in the camera-space, the proposed
approach has the potential for incorporating other desirable fea-
tures such as avoiding moving objects. Experimental and simu-
lation results were presented to illustrate the performance of the
proposed adaptive controller.

APPENDIX A

In order to show that , we utilize (10) to conclude
that

(77)

where we have used the assumption that the camera system
can distinguish between a forward and a reverse motion of the
WMR. Upon utilization of (10), we can now formulate a rela-
tionship between the actual linear velocity of the WMR and the
camera-space linear velocity of the WMR by rewriting (77) as
follows:

(78)

From (5) and (10), we can obtain the following expressions for

(79)

Hence, after substituting (78) for in (79), we can solve for
as follows:

(80)

By utilizing similar arguments, we can obtain the following ex-
pression for :

(81)
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Finally, we can substitute (80) and (81) into (13) to conclude
that

(82)

where and are positive scaling factors defined in (8).

APPENDIX B

In order to show that , we take the time derivative
of to obtain the following expression:

(83)

Based on the facts that

(84)

and that , , , , , , it is
straightforward that .

APPENDIX C

In order to show that the expression given in (52) reduces to
the expression in given in (54), we substitute for the update law
given in (43) and cancel common terms to obtain the following
expression:

(85)

Now, if we substitute for the adaptation laws given in (44)–(46),
then we must evaluate (85) for each of the three cases given in
(44). In addition to showing (52) reduces to the expression given
in (54), we will describe how the parameter update laws given in
(44)–(46) ensure that if int for then
never leaves the region, .

Case 1: int
When the estimate for the parameter vectors lies in the

interior of the convex region , described in Property 4, (86)

can be expressed as

(86)

thus, for Case 1, we can conclude that (52) reduces to the ex-
pression in given in (54). In addition, the direction in which the
estimate is updated for Case 1 is irrelevant, since the worse
case scenario is that will move toward the boundary of the
convex region denoted by .

Case 2: and
When the estimate for the parameter vectors lies on the

boundary of the convex region described in Property 4 and
, then (85) can be expressed as (86); thus, for Case 2,

we can conclude that (52) reduces to the expression in given in
(54). In addition, the vector has a zero or nonzero component
perpendicular to the boundary at that points in the
direction toward the int . Geometrically, this means that is
updated such that it either moves toward the int or remains
on the boundary; hence, never leaves .

Case 3: and When the esti-
mate for the parameter vectors lies on the boundary of the
convex region described in Property 4 and , then
(85) can be expressed as

(87)

where (45) and (46) were utilized. Based on (87), we can utilize
Property 4 to conclude that

(88)

Because , and must lie either on the boundary or in
the interior of , then the convexity of implies that de-
fined in (48) will either point tangent to or toward int
at . That is, will have a component in the direction of

that is either zero or negative. In addition, since ,
points away from int , we have that ;

thus, (88) reduces to (54). Furthermore, since ,
we are ensured that is updated such that it moves tangent
to ; hence, never leaves .
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