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Repetitive Learning Control: A Lyapunov-Based Approach

W. E. Dixon, E. Zergeroglu, D. M. Dawson, and B. T. Costic

Abstract—In this paper, a learning-based feedforward term is developed
to solve a general control problem in the presence of unknown nonlinear dy-
namics with a known period. Since the learning-based feedforward term is
generated from a straightforward Lyapunov-like stability analysis, the con-
trol designer can utilize other Lyapunov-based design techniques to develop
hybrid control schemes that utilize learning-based feedforward terms to
compensate for periodic dynamics and other Lyapunov-based approaches
(e.g., adaptive-based feedforward terms) to compensate for nonperiodic dy-
namics. To illustrate this point, a hybrid adaptive/learning control scheme
is utilized to achieve global asymptotic link position tracking for a robot
manipulator.

Index Terms—Adaptive control, learning control, repetitive update law,
robot manipulator.

I. INTRODUCTION

Many industrial applications require robots to perform repetitious
tasks (e.g., assembly, manipulation, inspection). Given the myriad of
industrial applications that require a robot to move in repetitive manner,
researchers have been motivated to investigate control methods that ex-
ploit the periodic nature of the robot dynamics, and hence, increase
link position tracking performance. As a result of this work, many
types of learning controllers have been developed to compensate for
periodic disturbances. Some advantages of these controllers over other
approaches include the ability to compensate for disturbances without
high frequency or high gain feedback terms, and the ability to compen-
sate for time-varying disturbances that can include time-varying para-
metric effects.

Some of the initial learning control research targeted the develop-
ment of betterment learning controllers (see [2] and [3]). Unfortunately,
one of the drawbacks of the betterment learning controllers is that the
robot is required to return to the same initial configuration after each
learning trial. Moreover, in [15], Heinzinger et al. provided several ex-
amples that illustrated the lack of robustness of the betterment learning
controllers to variations in the initial conditions of the robot. To address
these robustness issues, Arimoto [1] incorporated a forgetting factor in
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the betterment learning algorithms given in [2] and [3]. Motivated by
the results from the betterment learning research, several researchers
investigated the use of repetitive learning controllers. One of the ad-
vantages of the repetitive learning scheme is that the requirement that
the robot return to the exact same initial condition after each learning
trial is replaced by the less restrictive requirement that the desired tra-
jectory of the robot be periodic. Some of the initial repetitive learning
control research was performed in [14], [28], and [29]; however, the
asymptotic convergence of these basic repetitive control schemes can
only be guaranteed under restrictive conditions on the plant dynamics
that might not be satisfied. To enhance the robustness of these repetitive
control schemes, researchers in [14] and [28] modified the repetitive
update rule to include the so-called Q-filter. Unfortunately, the use of
the Q-filter eliminates the ability of the tracking errors to converge to
zero. In the search for new learning control algorithms, researchers in
[16] and [21] proposed an entirely new scheme that exploited the use
of kernal and influence functions in the repetitive update rule; however,
this class of controllers tends to be fairly complicated in comparison to
the control schemes that utilize a standard repetitive update rule.

In [27] and [30], iterative learning controllers (ILCs) were devel-
oped that do not require differentiation of the update rule, so that the
algorithm can be applied to sampled data without introducing differen-
tiation noise. In [5]–[7] and [31], ILCs were developed to address the
motion and force control problem for constrained robot manipulators.
In [8], Cheah and Wang develop a model-reference learning control
scheme for a class of nonlinear systems in which the performance of
the learning system is specified by a reference model. In [32], Xu and
Qu utilize a Lyapunov-based approach to illustrate how an ILC can be
combined with a variable structure controller to handle a broad class of
nonlinear systems. In [11], Ham et al. utilized Lyapunov-based tech-
niques to develop an ILC that is combined with a robust control design
to achieve global uniformly ultimately bounded link position tracking
for robot manipulators. The applicability of this design was extended
to a broader class of nonlinear systems by Ham et al. in [12]. Recently,
several researchers (see [9], [13], [17], and [18]) have utilized a class
of multiple-step “functional” iterative learning controllers to damp out
steady-state oscillations. As stated in [18], the fundamental difference
between the previous learning controllers and the controllers proposed
in [9], [13], [17], and [18], are that the ILC is not updated continuously
with time, rather, it is switched at iterations triggered by steady-state
oscillations. Han et al. utilized this iterative update procedure in [13]
to damp out steady-state oscillations in the velocity set-point problem
for servo-motors. The work in [13] was extended in [9] to compensate
for friction effects and applied in [17] to VCR servo-motors (see [22]
and [23] for a comprehensive review and tutorial on ILCs).

Upon examination of some of the aforementioned work, it seems that
many of the recent ILC and repetitive control results exploit a standard
repetitive update rule as the core part of the controller; however, to
ensure that the stability analysis1 validates the proposed results, the
authors utilize many types of additional rules in conjunction with the
standard repetitive update rule. As we demonstrate in this paper, these
additional rules and additional complexity injected into the stability
analysis are not necessary for the development of learning controllers
that utilize the standard repetitive update rule. We also conjecture that a
statement concerning the boundedness of learning controllers made in
[21] may have caused some researchers to attempt a modification of the
standard repetitive update rule with additional rules or abandon the use

1We also note that the proofs of the stability associated with this work tend
be rather complex.
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of the standard repetitive update rule entirely. To clarify the previous
statements, we present the following simple, closed-loop system:

�� � ��� ����� �� ��� (1)

where ���� � �� is a tracking error signal, ���� � �� is an unknown
nonlinear function, and ����� � �� is a learning-based estimate of����.
It is assumed that the unknown nonlinear function���� is periodic with
a known period � (i.e., ����� � � ����). For the system given by (1),
the standard repetitive update rule is given by

����� � ����� � � � �� (2)

With regard to the error system given (1) and (2), Messner et al. [21]
noted that the techniques used in [21] could not be used to show that
����� is bounded if ����� is generated by (2). To address the boundedness
problem associated with the standard repetitive update rule, Sadegh et
al. [26] proposed to saturate the entire right-hand side of (2) as follows:

����� � ��	� ����� � � � �� (3)

and, hence, guarantee that ����� is bounded for all time (the function
��	� � � is the standard linear piecewise bounded saturation function).
Unfortunately, it was not exactly clear from the analysis given in [26]
how the Lyapunov-based stability analysis accommodates the satura-
tion of the standard repetitive update rule (e. g., it is well known how
one can apply a projection algorithm to the adaptive estimates of a
gradient adaptive update law and still accommodate the Lyapunov-
based stability analysis). Further discussion regarding update rules con-
structed in a similar manner as in (3) is provided at the end of Section
II.

In this paper, we attempt to address the above issues via a modifica-
tion of the standard repetitive update rule. That is, as opposed to (3),
we saturate the standard repetitive update rule as follows:

����� � ��	� ����� � �� � �� (4)

We then utilize a Lyapunov-based approach to 1) illustrate how the
stability analysis accommodates the use of the saturation function in
(4); 2) prove that ���� is forced asymptotically to zero; and 3) show
that ����� remains bounded. To illustrate the generality of the learning-
based update law given by (4), we apply the update law to force the
origin of a general error system with an nonlinear disturbance with a
known period to achieve global asymptotic tracking. To illustrate the
fact that other Lyapunov-based techniques can be exploited to com-
pensate for additional disturbances that are not periodic, we design a
hybrid adaptive/repetitive learning scheme to achieve global asymp-
totic link position tracking for a robot manipulator. In comparison with
the previous work of [9], [13], [17], and [18], we note that 1) the pro-
posed learning-based controller utilizes standard Lyapunov-based tech-
niques, and hence, one can easily fuse in other Lyapunov-based tools;
2) the stability analysis is straightforward; 3) the proposed learning-
based controller utilizes a simple modification of the standard repetitive
update rule as opposed to use of a multiple step process or menu; and 4)
the proposed control scheme is updated continuously with time during
the transient response (versus during the steady-state), and hence, an
improved transient response is facilitated.

This paper is organized as follows. In Section II, we present the
error dynamics for a general problem, develop a learning-based algo-
rithm, and utilize a Lyapunov-based stability analysis to prove a global
asymptotic tracking result. In Section III, we develop a hybrid adap-
tive/learning algorithm for robot manipulators that compensates for dy-
namics with periodic and nonperiodic components. In Section IV, we
demonstrate the effectiveness of the learning algorithm through exper-
imental results obtained from a 2-link revolute, direct-drive robot ma-
nipulator. Concluding remarks are given in Section V.

II. GENERAL PROBLEM

To illustrate the generality of the proposed learning control scheme,
we consider the following error dynamics examined in [21]:

�� � ���	 �� �
��	 ��
����� ������ (5)

where ���� � �� is an error vector, ���� � �� is an unknown
nonlinear function, ����� � �� is a subsequently designed learning-
based estimate of ����, and the auxiliary functions ���	 �� � �� and

 ��	 �� � ���� are bounded provided ���� is bounded. In a similar
manner as [21], we assume that (5) satisfies the following assumptions.

Assumption 1: The origin of the error system ���� � � is uniformly
asymptotically stable for

�� � ���	 ��� (6)

Furthermore, there exists a first-order differentiable, positive-definite
function ����	 �� � ��, a positive-definite, symmetric matrix ��� �
����, and a known matrix ���� � ���� such that

��� � ����� �
�
�
� � ���� (7)

Assumption 2: The unknown nonlinear function ���� is periodic
with a known period � ; hence,

���� � � � ����� (8)

Furthermore, we assume that the unknown function ���� is bounded
as follows:

������� � ��	 for � � 	 �	 � � � 	 � (9)

where � � 
�� �� � � � ��� � �� is a vector of known, positive
bounding constants.

A. Control Objective

The control objective for the general problem given in (5) is to design
a learning-based estimate ����� such that

���
���

���� � � (10)

for any bounded initial condition denoted by ����. To quantify the mis-
match between the learning-based estimate and ����, we define an es-
timation error term, denoted by ����� � ��, as follows:

����� � ����� ������ (11)

B. Learning-Based Estimate Formulation

Based on the error system given in (5) and the subsequent stability
analysis, we design the learning-based estimate ����� as follows:

����� � ��	�� ����� � �� � ���
�
� (12)

where �� � �� is a positive constant control gain, and ��	�� � � � ��

is a vector function whose elements are defined as follows:

��	������ �
��	 for���� � ��

���������	 for���� � ��

��� � ��	 � � 	 �	 � � � 	� (13)

where�� represent the elements of� defined in (9), and ���� � � denotes
the standard signum function. From the definition of ��	�� � � given in
(13), we can prove that [10] (see Appendix A)

���� � ����
� � ���	�������� ��	��������

�

������ � ��	 ��� � �
�
	 � � 	 �	 � � � 	�� (14)
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To facilitate the subsequent stability analysis, we substitute (12) into
(11) for �����, to rewrite the expression for ����� as follows:

����� � ��������� � ��� ����� ����� � ��� ���
�
� (15)

where we utilized (8), (9), and the fact that

���� � ���������� � ��������� � ��� (16)

C. Stability Analysis

Theorem 1: The learning-based estimate defined in (12) ensures
that

	
�
���

���� � � (17)

for any bounded initial condition denoted by ����.
Proof: To prove Theorem 1, we define a nonnegative function

����	 �	 ��� � �� as follows:

�� � �� 
�

���

�

���

��������
 ��� ����� ���
����

� ��������
��� ����� ���
����
 (18)

where ����	 �� was described in Assumption 1. After taking the time
derivative of (18), we obtain the following expression:

��� � ��
�
�� �

�
� ����� 

�

���
������������ ����� ��������

� ������������ ����� ��������
�

���
���������� � ��

� ����� ����� � ���� � ���������� � ��

� ����� ����� � ��� (19)

where (7) was utilized. After utilizing (15), we can rewrite (19) as fol-
lows:

��� � ��
�
�� �

�
� ������

�

���
� �����  ���

�
���

� � �����  ���
�
�� 

�

���
�����������

� ����� �������� � ������������ ����� �������� (20)

After performing some simple algebraic operations, we can further
simplify (20) as follows:

��� � ��
�

�
��

�
��

�
��

�

���
� ������ �����

� ������������ ����� ��������

� ������������ ����� ��������� (21)

Finally, we can utilize (9), (11), and (14) to simplify (21) to

��� � ��
�
��� (22)

Based on (18), (22), and the fact that � is a positive-defi-
nite symmetric matrix, it is clear that ���� � �� � ��. Based
on the fact that ���� � ��, it is clear from (5), (12), (13),
and (15) that �����	 �����	 ��	 ��	 ���	 �� � ��. Given that
�����	 �����	 ��	 ��	 ���	 �� � ��, it is clear from (5) that ����� � ��,
and hence, ���� is uniformly continuous. Since ���� � �� � �� and
uniformly continuous, we can utilize Barbalat’s Lemma [19] to prove
(17).

Remark 2: From the previous stability analysis, it is clear that we
exploit the fact that the learning-based feedforward term given in (12)

is composed of a saturation function. That is, it is easy to from the
structure of (12), that is, ���� � �� then ����� � ��.

Remark 3: To illustrate the advantage of the learning-based
estimate designed in (12) and (13) with the learning-based estimate
designed in [26], we analyze the previous system with the following
learning-based estimate [26]

����� � ����� ����� � �  ���
�
��	 (23)

where ����� � � is given in (13). To analyze the stability of the system,
we utilize the same nonnegative function as given in (18). As in the
previous stability analysis, we can obtain the following expression after
taking the time derivative of (18):

��� � ��
�
�� �

�
� ����� 

�

���
�����������

� ����� �������� � ������������ ����� �������

�
�

���
���������� � ��� ����� ����� � ����

� ���������� � ��� ����� ����� � ��� (24)

where (7) was utilized. To facilitate further analysis, we substitute (23)
into (11) for ����� as follows:

����� � ��������� � ��� ����� ����� � �  ���
�
�� (25)

where we utilized (8), (9), and (16). Provided the learning-based esti-
mate given in (23) does not become saturated, then the same develop-
ment given in Theorem 1 can be utilized to prove the result given in
(17); however, when the learning-based estimate given in (23) reaches
the saturated region, it is not clear how the result given in (17) can be
obtained. For example, after utilizing (25), we can rewrite (24) as fol-
lows:

��� � ��
�
�� �

�
� ����� 

�

���
�����������

� ����� �������� � ������������ ����� �������

�
�

���
� �����  ����� ����� � �  ���

�
��

� ����� ����� � ��� � � � �����  ����� ����� � �

 ���
�
��� ����� ����� � ���� (26)

After expanding the last two lines of (26) and utilizing (14), the fol-
lowing expression is obtained:

��� � ��
�
�� �

�
� ������

�

��
��� ���

� ����� ����� � �  ���
�
�� 

�

��
����� ����� � ���

� � �����  ����� ����� � �  ���
�
���

�
�

���
����� ����� � ��� ����� ����� � ��� (27)

From (27), it seems that based on the fact that the entire learning-based
update rule is saturated as given in (23), no clear approach can be uti-
lized to prove that

��� � �� (28)

Hence, when the entire update rule is saturated as in (23), no clear
approach is available to determine the stability of the closed-loop error
system by a Lyapunov-based approach. Note that the stability analysis
presented in this remark is a slight modification of the analysis given
in [26]; however, the problem illustrated by (27) is a fundamental issue
that is common to both analyzes (although [26] claims to prove (28),
no details are provided that support the claim).
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III. HYBRID ADAPTIVE/CONTROL EXAMPLE

In the previous section, we exploited the fact that the unknown
nonlinear dynamics, denoted by ����, were periodic with a known
period � . Unfortunately, some physical systems may not adhere to
the ideal assumption that all of the unknown nonlinear dynamics
are entirely periodic. Since the learning-based feedforward term,
developed in the previous section, is generated from a straightforward
Lyapunov-like stability analysis, we can utilize other Lyapunov-based
control design techniques to develop hybrid control schemes that
utilize learning-based feedforward terms to compensate for periodic
dynamics and other Lyapunov-based approaches (e.g., adaptive-based
feedforward terms) to compensate for nonperiodic dynamics. To
illustrate this point, we now develop a hybrid adaptive/learning control
scheme for a �-rigid link, revolute, direct-drive robot manipulator in
the following sections.

A. Dynamic Model

The dynamic model for a �-rigid link, revolute, direct-drive robot is
assumed to have the following form [19]:

������ � ����� ��� �� �	��� � 
� �� � 
����� ��� 	 � (29)

where ����� ������ ����� � �� denote the link position, velocity, and ac-
celeration vectors, respectively, ���� � ���� represents the link in-
ertia matrix, ����� ��� � ���� represents centripetal-Coriolis matrix,
	��� � �� represents the gravity effects, 
� � ���� is the con-
stant, diagonal, positive-definite, viscous friction coefficient matrix,

� � ���� is a constant, diagonal, positive-definite, matrix composed
of static friction coefficients, and � ��� � �� represents the torque input
vector. With regard to dynamics given by (29), we make that the stan-
dard assumption that all of the terms on the left-hand side of (29) are
bounded if ����� �����, and ����� are bounded.

The dynamic equation of (29) has the following properties [19] that
will be used in the controller development and analysis.

Property 1: The inertia matrix ���� is symmetric, positive-defi-
nite, and satisfies the following inequalities:

����
� � �

�
����� � ����

� �� � �
� (30)

where ��� are known positive constants, and ��� denotes the stan-
dard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis matrices satisfy the
following skew-symmetric relationship

�
� 


�
������ ����� ��� � 	 � �� � �

� (31)

where ����� denotes the time derivative of the inertia matrix.
Property 3: The norm of the centripetal-Coriolis, gravity, and vis-

cous friction terms of (29) can be upper bounded as follows:

������ ������ � ���� ���� �	���� � ��� �
���� � �	� (32)

where ���� ��� �	� � �� denote known positive bounding constants,
and � � ��� denotes the infinity-norm of a matrix.

In addition to the above properties, we will also make the following
assumption with regard the static friction effects that are contained in
(29).

Assumption 3: The static friction terms given in (29) can be linear
parameterized as follows:

��� ����� 	 
����� ��� (33)

where �� � � contains the unknown, constant static friction coeffi-
cients, and the regression matrix ��� ��� � ���� contains known func-
tions of the link velocity ����� � ��.

B. Control Objective

The control objective is to design a global link position tracking con-
troller despite parametric uncertainty in the dynamic model given in
(29). To quantify this objective, we define the link position tracking
error ���� � �� as follows:

� 	 �� � � (34)

where we assume that ����� � �� and its first two time derivatives
are assumed to be bounded, periodic functions of time with a known
period � such that

����� 	 ����� � � ������ 	 ������ � � ������ 	 ������ � �� (35)

In addition, we define the difference between the actual parameter
vector and the estimated parameter vector as follows

�� 	 �� � ��� (36)

where ����� � �� represents a parameter estimation error vector and
������ � �� denotes a subsequently designed estimate of ��.

C. Control Formulation

To facilitate the subsequent control development and stability anal-
ysis, we reduce the order of the dynamic expression given in (29) by
defining a filtered tracking error-like variable ���� � �� as follows:

� 	 ��� �� (37)

where � � �� is a positive constant control gain. After taking the time
derivative of (37), premultiplying the resulting expression by ����,
utilizing (29) and (34), and then performing some algebraic manipula-
tion, we obtain the following expression:

� �� 	 ���� � �
 � �� ���� � � (38)

where the auxiliary expressions �
���� ���� � �� are defined as fol-
lows:

�
 	 �������� � ������ ���� ��� �	���� � 
� ��� (39)

� 	 �������� � � ��� � ����� ���� ��� � ��� �	��� � 
� �� � �
�

(40)

By exploiting Properties 1 and 3 of the robot dynamics, and then using
(34) and (37), we can utilize the results given in [25] to prove that

��� � ��������� (41)

where the auxiliary signal ���� � ��� is defined as

���� 	 ��� ��� �
� ����� (42)

and �� � � � �� is a known, positive bounding function. Furthermore,
based on the expression given in (39) and the boundedness assumptions
with regard to the robot dynamics and the desired trajectory, it is clear
that

��
����� � �
� for � 	 
� �� � � � � � (43)

where �
 	 ��
�� � � � � �
�� � �� is a vector of known, positive
bounding constants.



542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

Given the open-loop error system in (38), we design the following
control input:

� � �� � ���
������� � �� ��� � ���	� (44)

where �
 �� � �� are positive constant control gains, �� � �was defined
in (41), ������ � �� is generated on-line according to the following
learning-based algorithm:

������ � ���� � ������  �� � ��� (45)

�� � �� is a positive, constant control gain, ������ � � is defined in the
same manner as in (13), and the parameter estimate vector �	���� � ��

is generated on-line according to the following gradient-based adapta-
tion algorithm:

	�	���� � 
��
�
� � (46)

where 
� � ���� is a constant, diagonal, positive-definite, adaptation
gain matrix.

To develop the closed-loop error system for ����, we substitute (44)
into (38) to obtain the following expression:

� 	� � ���� � �� � �� ���	� � ��� � �� ���
������� (47)

where �	���� was defined in (36), and ������ is a learning estimation
error signal defined as follows:

��� � �� � ���� (48)

After substituting (45) into (48) for ������, utilizing the fact that �����
is periodic, and then utilizing (43) to construct the following equality:

����� � ������������ � �����������  ��
 (49)

we can rewrite (48) in the following form:

��� � �����������  ��� ���� � ������  ��� ���� (50)

D. Stability Analysis

Theorem 4: Given the robot dynamics of (29), the proposed hybrid
adaptive/learning controller given in (44)–(46), ensures global asymp-
totic link position tracking in the sense that

��
���

���� � � (51)

where the control gains �
 �
 ��, and �� introduced in (37), (44), and
(45) must be selected to satisfy the following sufficient condition:

�� �
 � �
��

�
�

�

���
� (52)

Proof: To prove Theorem 4, we define a nonnegative function
����� � �� as follows:
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After taking the time derivative of (53), we obtain the following ex-
pression:

	�� � �
� �� � ��� � �
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� � �������������� ������ ��������
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�

���
������������  ��� ������ ������  ����

� ������������  ��� ������ ������  ��� (54)

where (31), (37), (46), and (47) were utilized. After utilizing (41), (43),
(50), and then simplifying the resulting expression, we can rewrite (54)
as follows:

	�� � ���� �� ��
�
� � �

� ��� � �������������

� ���
������������

�

���
� ��� � ����

�

� � ��� � ���� �
�

���
�������������� ������ ��������

�

� �������������� ������ ��������� (55)

After expanding the second line of (55) and then cancelling common
terms, we obtain the following expression:

	�� � ���� �� � �
��

�
�
�
� � �������������

� ���
������������

�

���
���
� ��� � �������������

� ������ ��������
� � �������������� ������ �������� � (56)

By exploiting the property given in (14), completing the square on the
bracketed term with respect to ���� in the first line of (56) (or simply
utilizing the nonlinear damping tool [20]), and then utilizing the def-
inition of ���� given in (42), we can simplify the expression given in
(56) to obatin

	�� � � �� �
 � �
��

�
�

�

���
����� (57)

Based on (42), (52), (53), and (57), it is clear that ����
 ���� � �� �
��. Based on the fact that ���� � ��, it is clear from (37), (45),
and (50) that ������
 ������
 	���� � ��, and hence, ���� is uniformly
continuous. Since ���� � �� � �� and uniformly continuous, we can
utilize Barbalat’s Lemma [19] to prove (51).

Remark 5: From the previous stability analysis, it is again clear that
we exploit the fact that the learning-based feedforward term given in
(45) is composed of a saturation function. That is, it is easy to see from
the structure of (45), that if ���� � �� then ������ � ��.

Remark 6: One of the advantages of the novel saturated
learning-based feedforward term is that it is developed through
Lyapunov-based techniques. By utilizing Lyapunov-based design and
analysis techniques, the boundedness of the feedforward term can be
proven in a straightforward manner, and the ability to utilize additional
Lyapunov-based techniques to augment the control design (as in the
example of the hybrid adaptive/learning controller) is facilitated.
These traits are in contrast to learning-based designs such as those
provided in [4], in which additional analysis is required to examine
the boundedness of the feedforward terms and the structure is less
amenable to the incorporation of additional control elements (e.g., an
adaptive control component).
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Fig. 1. Desired trajectory.

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed learning-based con-
troller, the following controller2 was implemented on a two-link direct
drive, planar robot manipulator manufactured by Integrated Motion,
Inc. [24]:

� � �� � ��� (58)

where ���� was defined in (37) and ������ is generated according to
(45). The two-link robot is directly actuated by switched-reluctance
motors. A Pentium 266-MHz PC running RT-Linux (real-time exten-
sion of Linux OS) hosted the control algorithm. The Matlab/Simulink
environment with Real-Time Linux Target [33] for RT-Linux was used
to implement the controller. The Servo-To-Go I/O board provided
for data transfer between the computer subsystem and the robot. The
two-link IMI robot has the following dynamic model [24]:
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(59)

where �� � ��� [kg-m�], �� � 	��� [kg-m�], �� � 	����
[kg-m�], 
�� � �� [Nm�s], 
�� � ��� [Nm�s], 
�� � ���� [Nm],

�� � ��� [Nm], 
��� � � denotes the standard signum function,

��
�

� ��
����, and 	�
�

� 
������. The experiment was performed using
the periodic desired position trajectory shown in (60) at the bottom
of the page (see Fig. 1), where the exponential term was included to
provide a “smooth-start” to the system.

2During experimental trials, we determined that the proposed learning-based
controller did not require the nonlinear damping term and the adaptive feedfor-
ward term utilized in (44) to provide good link position tracking performance.

Fig. 2. Link position tracking error.

Fig. 3. Control torque input.

The experiment was performed at a control frequency of 1 kHz. After
a tuning process, the control gains were selected as follows:

� � ������	� ����  � ������	����� �� � �����	��	�
(61)

where ����� � � denotes the diagonal elements of a matrix. Note that in
previous sections the control gains �� , and �� are defined as scalars
for simplicity, whereas in (61) the control gains are selected as diagonal
matrices to facilitate the “tuning” process. The link position tracking
errors are depicted in Fig. 2. Note that the tracking error reduces after
each period of the desired trajectory. The control torque input for each
link motor is shown in Fig. 3 where the learning component of the
controller is given in Fig. 4.

Remark 7: The motivation for presenting the experimental results
is to demonstrate that the proposed learning-based controller can be

������

������
�
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���	����� 
���	�� 
���	�������� ��� �	���� �

�	�� � 	�� 
���	����� 
���	�� 
���	�������� �����	������
[rad] (60)
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Fig. 4. Learning-based feedforward component of the control input.

utilized to compensate for periodic disturbances (i.e., it is merely in-
tended as an experimental proof-of-principle). The performance of the
proposed controller (e.g., transient response, steady-state error) will be
similar to other repetitive learning-based controllers that update with
each period from the initial time instant. The proposed controller will
yield improved transient response when compared to learning-based
controllers that are required to wait until the system is in steady-state
before the learning-based estimate is applied, as in [9], [13], [17], and
[18].

V. CONCLUSION

In this paper, we illustrate how a learning-based estimate can be used
to achieve asymptotic tracking in the presence of a nonlinear distur-
bance. Based on the fact that the learning-based controller estimate is
generated from a Lyapunov-based stability analysis, we also demon-
strated how additional Lyapunov-based design techniques can be uti-
lized to reject components of the unknown dynamics which are not pe-
riodic. Specifically, we designed a hybrid adaptive/learning controller
for the robot manipulator dynamics. Experimental results illustrated
that the link tracking performance of a two-link robot manipulator im-
proved at each period of the desired trajectory due to the mitigating
action of the learning estimate.

APPENDIX I
INEQUALITY PROOF

To prove the inequality given in (14), we divide the proof into three
possible cases as follows.

Case 1: ����� � ��� ����� � ��

From the definition of ���� ��� given in (13), we can see that for this
case

���� ����� � ��� ���� ����� � ���� (62)

After substituting (62) into (14), we obtain the following expression:

���� � ����
� � ����� ������ ���� ������

� (63)

for ����� � ��� ����� � ��, hence, the inequality given in (14) is true
for Case 1.

Case 2a: ����� � ��� ��� � ��

From the definition of ���� ��� given in (13), it is clear for this case
that

���� � ��� � ���� for ����� � ��� ��� � ��� (64)

After multiplying both sides of (64) by �������� and then simplifying
the left-hand side of the inequality, we can rewrite (64) as follows:
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�� � �
�

� � ����� � ������ (65)

where we have utilized the fact that ��� � �� � 	 for this case. After
adding the term ���� to both sides of (65) and then rearranging the re-
sulting expression, we obtain the following expression:
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�

�� � ������ � �
�

� � (66)

Based on the expression given in (66), we can utilize the facts that

���� ����� � ��� ���� ����� � �� (67)

to prove that

���� � ����
� � ����� ������ ���� ������

� (68)

for ����� � ��� ��� � ��

Case 2b: ����� � ��� ��� � ���
From the definition of ���� ��� given in (13), it is clear for this case

that

���� � ��� � ���� for ����� � ��� ��� � ���� (69)

After multiplying both sides of (69) by �������� and then simplifying
the left-hand side of the inequality, we can rewrite (69) as follows:

�
�

�� � �
�

� � ����� � ������ (70)

where we have utilized the fact that ��� � �� � 	 for this case. After
adding the term ���� to both sides of (70) and then rearranging the re-
sulting expression, we obtain the following expression:

�
�

�� � ������� � �
�

�� � �
�

�� � ������ � �
�

� � (71)

Based on the expression given in (71), we can utilize the facts that

���� ����� � ��� ���� ����� � ��� (72)

to prove that

���� � ����
� � ����� ������ ���� ������

� (73)

for ����� � ��� ��� � ���; hence, we have proven that (14) is true for
all possible cases.
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Multi-Input Square Iterative Learning Control With Input
Rate Limits and Bounds

Brian J. Driessen and Nader Sadegh

Abstract—We present a simple modification of the iterative learning con-
trol algorithm of Arimoto et al. for the case where the inputs are bounded
and time-rate-limited. The Jacobian error condition for monotonicity of
input-error, rather than output-error, norms, is specified, the latter being
insufficient to assure convergence, as proved herein. To the best of our
knowledge, these facts have not been previously pointed out in the iterative
learning control literature. We present a new proof that the modified con-
troller produces monotonically decreasing input error norms, with a norm
that covers the entire time interval of a learning trial.

Index Terms—Convergence theory, input bounds/limits, iterative
learning control, multi-input.

I. INTRODUCTION

Learning control is a method of control that feeds the system inputs
for a specific task repetitively and uses the actual online measured re-
sponse of the system to evaluate the quality or goodness of the input.
The actual responses are used in a feedback loop in which the inputs are
adjusted to reduce measured errors in the output. Example applications
include robotics and manufacturing where a certain output tracking task
is to be performed repeatedly. Usually the output is the position or ve-
locity history of the robot’s joints although sometimes it also includes
measured forces at the end effector (see Cheah and Wang [4]).

Learning control has a history dating back to 1984 (see [1]) when it
was first applied to robot motion control. Horowitz [12] gives a nice
history of the development and usage of learning controllers for (rigid)
robot manipulators. He compares and contrasts different learning al-
gorithms and also provides an experimental demonstration of a robot
that learns to make its end effector track a circular trajectory. He in-
sightfully points out that an open area of research is in finding methods
for robust optimal (e.g., minimum energy, minimum vibration, or min-
imum time) trajectory learning, as opposed to only finding a control
history that meets output requirements. Examples of work that have
empirically investigated approaches to this problem include [9], [10],
and [11], who considered the use of the Levenberg-Marquardt opti-
mization method for least squares, and [14] who considered the use of
gradient-based algorithms for constrained optimization.

Cheng and Peng [5] consider learning control with input bounds and
modeling error. However, the methodology and convergence theory
was restricted to single-input/single-output systems.

The present paper utilizes a key result in [2] to extend the existing
learning control approach initiated by Arimoto et al. [1] to the case
where the inputs are both bounded and rate-limited. The present work
is an extension of the work by Driessen et al. [8] which considered
input bounds but not input rate limits, and a new proof of the mono-
tonicity of an input error norm defined over the entire time window of
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