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Abstract—The control of dynamic systems that undergo an
impact collision is both theoretically challenging and of practi-
cal importance. An appeal of studying systems that undergo an
impact is that short-duration effects such as high stresses, rapid
dissipation of energy, and fast acceleration and deceleration may
be achieved from low-energy sources. However, colliding systems
present a difficult control challenge because the equations of
motion are different when the system suddenly transitions from
a noncontact state to a contact state. In this paper, an adaptive
nonlinear controller is designed to regulate the states of two
dynamic systems that collide. The academic example of a planar
robot colliding with an unactuated mass–spring system is used to
represent a broader class of such systems. The control objective is
defined as the desire to command a robot to collide with an unac-
tuated system and regulate the mass to a desired compressed state
while compensating for the unknown constant system parameters.
Lyapunov-based methods are used to develop a continuous adap-
tive controller that yields asymptotic regulation of the mass and
robot links. It is interesting to note that one controller is respon-
sible for achieving the control objective when the robot is in free
motion (i.e., decoupled from the mass–spring system), when the
systems collide, and when the system dynamics are coupled.

Index Terms—Adaptive control, backstepping, impact
dynamics.

I. INTRODUCTION

ROBOT motion and force control has been well studied
for several decades (e.g., [1]–[17]). Most of this paper

involves designing a controller to position the end-effector
of a robot manipulator constrained to move along a surface
to a desired point while controlling the force exerted on the
surface. Several techniques to compensate for uncertainty in
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the robot dynamics during contact with the surface have also
been reported (e.g., [5], [6], [11], [13], and [17]). The robot
typically is required to stay in contact with a static surface;
however, techniques have also been developed for the robot to
remain in contact with a moving object (e.g., [7]–[9]). However,
the results from this literature have not addressed the problem
where the robot transitions from a noncontact state to an impact
collision with another dynamic system, with an objective to
then control the coupled dynamic systems.

The control of dynamic systems that undergo an impact
collision is both theoretically challenging and of practical im-
portance. If the impact dynamics are not properly modeled
and controlled, the impact forces could result in poor system
performance and instabilities. One difficulty in controlling
systems subject to impacts is that the dynamics are different
when the system status transitions from a noncontact state
to a contact state. Another difficulty is measuring the impact
force, which can depend on the geometry of the robot, the
geometry of the environment, and the type of impact. As stated
in [18], the appeal of systems with impact conditions is that
short-duration effects such as high stresses, rapid dissipation of
energy, and fast acceleration and deceleration may be achieved
from low-energy sources. Some example current and emerging
applications that motivate this field of research include man-
ufacturing, biped walking robots, manipulation of rigid and
nonrigid bodies, grasping or catching with a robotic hand, and
human–machine interaction applications such as robot-assisted
rehabilitation.

Largely motivated by manufacturing applications, the study
of systems that undergo an impact collision has historically
targeted “hard-on-hard” collisions with an infinitely large and
rigid mass. As a result, the impact collision is modeled as a
discontinuous event, where discontinuous controllers have been
developed to compensate for the instantaneous velocity jump
(e.g., [4] and [19]–[25]). For example, a discontinuous con-
troller was designed in [24] to regulate the impact of a hydraulic
actuator with a static environment. A switching controller was
developed in [25] to eliminate the bouncing phenomena asso-
ciated with a robot impacting a static surface. In [19], a class
of switching controllers was examined for mechanical systems
subject to an algebraic inequality condition and an impact rule
relating the interaction impulse and the velocity. The analysis
in [19] utilized a discrete Lyapunov function that required the
use of the Dini derivative to examine the stability of the sys-
tem. A hybrid bang-bang impedance/time-delay controller was
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developed in [20] that establishes a stable contact and achieves
the desired dynamics for contact or noncontact conditions.

Although discontinuous impact models with impulsive ve-
locity effects may effectively characterize collisions between
rigid objects, these models do not capture the effects when a
rigid body collides with a deformable surface. Existing models
of contact with a deformable surface typically characterize the
deformation as a linear or nonlinear spring with some bounded
stiffness (e.g., [18] and [26]–[35]). A challenge for the develop-
ment of controllers based on these models is that the stiffness
may not be a priori known or may change through repeated
use (e.g., strain hardening). For example, a two-degree-of-
freedom planar manipulator was asymptotically regulated to
contact an infinitely rigid surface with a deformable second link
represented by a massless linear spring in [27], where the robot
controller either required measurement of the interaction force
or the spring stiffness. A reduced-order observer was used in
[26] to control the impact between the end-effectors of two
cooperating manipulators, where the exact knowledge of the
robot dynamics and stiffness of the contact was required. In
[33], a backstepping approach is used to asymptotically regulate
the impact of two systems where the exact system dynamics are
known. In [34], a class of continuous energy-based controllers
was developed that achieves global asymptotic stabilization/
regulation of an underactuated Euler–Lagrange system subject
to an elastic contact with finite stiffness provided that the exact
knowledge of the impact stiffness is known.

This paper considers a rigid robotic system that undergoes an
impact collision with an underactuated deformable mass–spring
system. The robot/mass–spring collision is modeled as a differ-
entiable impact, as in the recent work in [18] and [34]–[36].
The dynamic model for both systems and the impact force are
assumed to have uncertain parameters. This paper is specifically
focused on a planar robot colliding with a mass–spring system
as an academic example of a broader class of such systems.
The control objective is defined as the desire to enable a
robot to collide with an unactuated system and regulate the
resulting coupled mass–spring robot (MSR) system to a desired
compressed state despite parametric uncertainty (i.e., unknown
masses and stiffness) throughout the MSR system.

Based on the aforementioned objective, one control strategy
could be to implement a controller that regulated the robot
to a desired constant set point associated with the desired
mass–spring system. The main drawback of such an approach
is that the dynamics associated with the impact collision would
appear as a disturbance to the controller, requiring the controller
to exploit high-gain or high-frequency feedback to ensure sta-
bility. In contrast to a regulation control strategy, the control
development in this paper uses integrator backstepping [37] to
design a desired robot trajectory as a virtual control input to the
mass–spring system. The desired robot trajectory is designed
based on a Lyapunov analysis that includes the dynamics of the
impact collision and the coupled motion of the MSR system.
A force control input (that can be related to the actual robot
joint torque inputs) is then designed to asymptotically eliminate
the mismatch between the time-varying desired robot trajectory
and the actual trajectory. Unlike some other results in literature,
the continuous force controller does not depend on measuring

Fig. 1. MSR system is an academic example of an impact between two
dynamic systems.

the impact force or the measurement of other acceleration
terms and, due to the adaptive nature, does not depend on the
knowledge of the masses or stiffness, although upper bounds
are assumed known.

II. DYNAMIC MODEL

The subsequent development is motivated by the academic
problem illustrated in Fig. 1. The dynamic model for the two-
link revolute robot depicted in Fig. 1 can be expressed in the
joint space as follows:

M(q)q̈ + C(q, q̇)q̇ + h(q) = τ (1)

where q(t),q̇(t),q̈(t) ∈ R
2 represent the angular position, the

velocity, and the acceleration of the robot links, respectively,
M(q) ∈ R

2×2 represents the uncertain inertia matrix, C(q, q̇) ∈
R

2×2 represents the uncertain centripetal Coriolis effects,

h(q) ∆= [h1(q), h2(q)]T ∈ R
2 represents uncertain conservative

forces (e.g., gravity), and τ(t) ∈ R
2 represents the torque con-

trol inputs. The Euclidean position of the endpoint of the second

robot link is denoted by xr(t)
∆= [xr1(t), xr2(t)]T ∈ R

2, which
can be related to the joint space through the following kinematic
relationship:

ẋr = J(q)q̇ (2)

where J(q) ∈ R
2×2 denotes the manipulator Jacobian. The un-

forced dynamics of the mass–spring system in Fig. 1 is given by

mẍm + ks(xm − x0) = 0 (3)

where xm(t), ẋm(t), ẍm(t) ∈ R represent the displacement,
the velocity, and the acceleration of the unknown mass m ∈ R,
x0 ∈ R represents the initial undisturbed position of the mass,
and ks ∈ R represents the unknown stiffness of the spring.
Assumption 1: We assume that xr1(t) and xm(t) can be

bounded as follows:

ζxr
≤ xr1(t) xm(t) ≤ ζxm

(4)

where ζxr
∈ R is a known constant that is determined by the

minimum coordinate of the robot along the X1-axis, and ζxm
∈

R is a known positive constant. The lower bound assumption
for xr1(t) is based on the geometry of the robot, and the upper
bound assumption for xm(t) is based on the physical fact that
the mass is attached by the spring to some object, and the mass
will not be able to move past that object.
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In the following, the contact model is considered as an elastic
contact with finite stiffness. An impact between the second link
of the robot and the spring–mass system occurs when xr1(t) ≥
xm(t). The impact will yield equal and opposite force reactions
between the robot and the mass–spring system. Specifically, the
impact force acting on the mass, represented by Fm(xr, xm) ∈
R, is assumed to have the following form [18], [36]:

Fm = KIΛ(xr1 − xm) (5)

where KI ∈ R represents an unknown positive stiffness con-
stant, and Λ(xr, xm) ∈ R is defined as

Λ =
{ 1 xr1 ≥ xm

0 xr1 < xm.
(6)

The impact force acting on the robot links produces a torque,
denoted by τd(xr, xm, q) ∈ R

2, as follows:

τd = KIΛ(xr1 − xm)
[
l1 sin(q1) + l2 sin(q2 + q1)

l2 sin(q2 + q1)

]
(7)

where l1, l2 ∈ R denote the robot link lengths. Based on (1),
(3), and (5)–(7), the dynamic model for the MSR system can be
expressed as follows:

M(q)q̈ + C(q, q̇)q̇ + h(q) − τd = τ

mẍm + ks(xm − x0) =Fm. (8)

After premultiplying the robot dynamics by the inverse of the
Jacobian transpose and utilizing (2), the dynamics in (8) can be
rewritten as

M̄(xr)ẍr + C̄(xr, ẋr)ẋr + h̄(xr) +
[
Fm

0

]
= F (9)

mẍm + ks(xm − x0) = Fm (10)

where F (t) ∆= J−T (q)τ(t) ∈ R
2 denotes the manipulator

force. The dynamic model in (9) exhibits the following prop-
erties that will be utilized in the subsequent analysis.
Assumption 2: During the subsequent control development,

we assume that the minimum singular value of J(q) is
greater than a known small positive constant δ > 0, such that
max{‖J−1(q)‖} is known a priori, and hence, all kinematic
singularities are always avoided.
Assumption 3: We assume that the mass of the mass–spring

system can be upper and lower bounded as

ml < m < mu

where ml,mu ∈ R denote known positive bounding constants.
The unknown stiffness constants KI and ks are also assumed
to be bounded as follows:

ζ
K

< KI < ζK ζ
ks

< ks < ζks
(11)

where ζ
K

, ζK , ζ
ks

, ζks
∈ R denote known positive bounding

constants.
Property 1: The inertia matrix M̄(xr) is symmetric, posi-

tive definite, and can be lower and upper bounded as follows
[38], [39]:

a1‖ξ‖2 ≤ ξT M̄ξ ≤ a2‖ξ‖2, ∀ξ ∈ R
2

where a1, a2 ∈ R are positive constants.

Property 2: The following skew-symmetric relationship is
satisfied [38], [39]:

ξT

(
1
2
, ˙̄M(xr) − C̄(xr, ẋr)

)
ξ = 0, ∀ξ ∈ R

2. (12)

Property 3: The robot dynamics given in (9) can be linearly
parameterized as follows [38], [39]:

Y (xr, ẋr, ẍr)θ = M̄(xr)ẍr + C̄(xr, ẋr)ẋr + h̄(xr) +
[
Fm

0

]

where θ ∈ R
p contains the constant unknown system parame-

ters, and Y (xr, ẋr, ẍr) ∈ R
2×p denotes the known regression

matrix.

III. CONTROL DEVELOPMENT

As previously stated, the control objective is defined as the
desire to enable a robot to collide with an unactuated system
and regulate the resulting coupled MSR system to a desired
compressed state despite parametric uncertainty (i.e., unknown
masses and stiffness) throughout the MSR system. To achieve
this objective, the control development is based on integrator
backstepping [37] to design a desired robot trajectory as a
virtual control input to the mass–spring system. The desired
robot trajectory is designed based on a Lyapunov analysis
that includes the dynamics of the impact collision and the
coupled motion of the MSR system. A force control input (that
can be related to the actual robot joint torque inputs) is then
designed to asymptotically eliminate the mismatch between the
time-varying desired robot trajectory and the actual trajectory.
As is typical with integrator backstepping methods, the force
controller depends on the time derivative of the desired robot
trajectory (i.e., the virtual control input to the mass–spring
system). Taking the derivative of the desired trajectory could
lead to unmeasurable higher order terms (i.e., acceleration). The
subsequent development exploits the hyperbolic filter structure
developed in [40] and [41] to overcome the problem of injecting
higher order terms in the controller and to facilitate the de-
velopment of sufficient gain conditions used in the subsequent
stability analysis.

A. Control Objective

The control objective is to regulate the states of an uncertain
dynamic system (i.e., a two-link planar robot) that has an
impact collision with another uncertain dynamic system (i.e.,
a mass–spring). A regulation error, denoted by e(t) ∈ R

3, is
defined to quantify this objective as

e = [ em eT
r ]T

where er(t)
∆= [er1, er2]T ∈ R

2 and em(t) ∈ R denote the reg-
ulation error for the endpoint of the second link of the robot and
mass–spring system (see Fig. 1), respectively, and are defined
as follows:

er = xrd − xr em = xmd − xm. (13)
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In (13), xmd ∈ R denotes the constant known desired position

of the mass, and xrd(t)
∆= [xrd1(t), xrd2]T ∈ R

2 denotes the
desired position of the endpoint of the second link of the robot.
The subsequent development is based on the assumption that
q(t), q̇(t), xm(t), and ẋm(t) are measurable, and that xr(t)
and ẋr(t) can be obtained from q(t) and q̇(t). To facilitate
the subsequent control design and stability analysis, filtered
tracking errors,1 denoted by ηm(t) ∈ R and rr(t) ∈ R

2, are
defined as follows [40], [41]:

ηm = ėm + α1 tanh(em) + α2 tanh(ef )
rr = ėr + αer (14)

where α, α1, α2 ∈ R are positive constant gains, and ef (t) ∈ R

is designed as follows [40], [41]:

ėf = −α3 tanh(ef ) + α2 tanh(em) − k1 cosh2(ef )ηm (15)

where k1 ∈ R is a positive constant control gain, and α3 ∈ R is
a positive constant filter gain. The filtered tracking error rr(t)
is introduced to reduce the terms in the Lyapunov analysis
[i.e., rr(t) can be used in lieu of including er(t) and ėr(t)].
The filtered tracking error ηm(t) and the auxiliary signal ef (t)
are introduced to eliminate dependence on acceleration in the
subsequently designed force controller [42].

B. Closed-Loop Error System

By taking the time derivative of mηm(t) and utilizing (5),
(10), (13), and (14), the following open-loop error system can
be obtained:

mη̇m = Ydθd − KIΛ(xr1 − xm)
+ α2m cosh−2(ef )ėf + α1m cosh−2(em)ėm. (16)

In (16), Yd(xm) = (xm − xo) and θd = ks. To facilitate the
subsequent analysis, the following notation is introduced [40]:

Ydθd =YdKIK
−1
I θd = Ydkθdk

=KI(xm − xo)
[

ks

KI

]
. (17)

After using (14) and (15), the expression in (16) can be rewrit-
ten as follows:

mη̇m = Ydθd + KI(xrd1 − Λxr1)

+KIΛxm − KIxrd1 + χ − α2mk1ηm (18)

where χ(em, ef , ηm, t) ∈ R is an auxiliary term defined as

χ =α1m cosh−2(em) (ηm − α1 tanh(em))
− α1α2m cosh−2(em) tanh(ef )
+ α2m cosh−2(ef ) (−α3 tanh(ef ))
+ α2m cosh−2(ef ) (α2 tanh(em)) . (19)

The motivation for the introduction of the filter signals ηm(t)
and ef (t) and the selective grouping of the terms in (19) allow

1The term filtered tracking error is used to indicate that the filter input [e.g.,
er(t)] is equal to a low-pass filtered version of the output [e.g., rr(t)].

the development of the following linear inequality (versus a
quadratic inequality):

|χ| ≤ ζ1‖z‖ (20)

where ζ1 ∈ R is a positive bounding constant, and z(t) ∈ R
3 is

defined as follows:

z = [ ηm tanh(em) tanh(ef ) ] . (21)

That is, the use of hyperbolic functions in the development
of ηm(t) and ef (t) allows the linear inequality in (20) to be
developed; without the hyperbolic functions, the bound would
be quadratic. Feedback terms in the controller can be used
to damp out terms that are bounded by a linear function of
the states without restricting the domain of the stability result
as demonstrated in the subsequent stability analysis. If the
hyperbolic terms had not been used in the filter structure, the
bound in (20) would have been quadratic, potentially limiting
the domain of the stability result (i.e., a semiglobal result).

Based on (18) and the subsequent stability analysis, the
desired robot link position is designed as follows:

xrd1 =Ydθ̂dk + xm + k2 tanh(em)
− k1k2 cosh2(ef ) tanh(ef )

xrd2 = ε. (22)

In (22), ε ∈ R is an appropriate positive constant (i.e., ε is
selected, so the robot will impact the mass–spring system in the
vertical direction), k2 ∈ R is a positive constant control gain,
and the control gain k1 ∈ R is defined as

k1 =
1

ml

(
3 + kn1ζ

2
1

)
(23)

where kn1 ∈ R is a positive constant nonlinear damping gain.
The parameter estimate θ̂dk(t) ∈ R in (22) is generated by the
adaptive update law, i.e.,

˙̂
θdk = proj(ΓYdηm). (24)

In (24), Γ ∈ R is a positive constant, and proj(·) denotes a suf-
ficiently smooth projection algorithm [43] utilized to guarantee
that θ̂dk(t) can be bounded as follows:

θdk ≤ θ̂dk ≤ θ̄dk (25)

where θdk, θ̄dk ∈ R denote known constant lower and upper
bounds for θdk(t), respectively.

After substituting (22) into (18), the closed-loop error system
for ηm(t) can be obtained as follows:

mη̇m =KI(xrd1 − Λxr1) + KI(Λxm − xm)
+ KIk1k2 cosh2(ef ) tanh(ef ) + Ydkθ̃dk

− KIk2 tanh(em) + χ − α2mk1ηm. (26)

In (26), the parameter estimation error θ̃dk(t) ∈ R is defined as

θ̃dk = θdk − θ̂dk.

The open-loop robot error system can be obtained by taking
the time derivative of rr(t) and premultiplying by the robot
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inertia matrix as follows:

M̄ ṙr = Yrθr − C̄rr − F (27)

where (9), (13), and (14) were utilized, and

Yrθr = M̄ẍrd + αM̄ėr + h̄ + C̄ẋrd

+ αC̄xrd +
[
KIΛ(xr1 − xm)

0

]
− αC̄xr (28)

where Yr(xr, ẋr, xm, ẋm, ef , ηm, t) ∈ R
2×P denotes a known

regression matrix, and θr ∈ R
P denotes an unknown constant

parameter vector. See Appendix A for a linearly parameter-
izable expression for M̄(xr)ẍrd(t) that does not depend on
acceleration terms. Based on (27) and the subsequent stability
analysis, the robot force control input is designed as follows:

F = Yr θ̂r + er + k3rr (29)

where k3 ∈ R is a positive constant control gain, and θ̂r(t) ∈
R

P is an estimate for θr generated by the following adaptive
update law:

˙̂
θr = proj

(
ΓrY

T
r rr

)
. (30)

In (30), Γr ∈ R
P×P is a positive-definite constant diagonal

adaptation gain matrix, and proj(·) denotes a projection algo-
rithm utilized to guarantee that the ith element of θ̂r(t) can be
bounded as follows:

θri ≤ θ̂ri ≤ θ̄ri

where θri, θ̄ri ∈ R denote known constant lower and upper
bounds for each element of θr(t), respectively.

The closed-loop error system for rr(t) can be obtained after
substituting (29) into (27) as follows:

M̄ ṙr = Yr θ̃r − k3rr − C̄rr − er. (31)

In (31), the parameter estimation error θ̃r(t) ∈ R
P is defined as

θ̃r = θr − θ̂r. (32)

Remark 1: Based on (29), the control torque input can be
expressed as follows:

τ = JT (Yr θ̂r + er + k3rr) (33)

where J(q) denotes the manipulator Jacobian introduced in (2).

IV. STABILITY ANALYSIS

Theorem: The controller given by (22), (24), (29), and (30)
ensures asymptotic regulation of the MSR system in the sense
that the mass–spring system converges to the desired set point,
and the robot links converge to the desired trajectory as follows:

|em(t)| → 0 ‖er(t)‖ → 0, as t → ∞

provided that k1, k2, and kn1 are selected sufficiently large
(see Appendix B), and the following sufficient gain condition

is satisfied:

α2 > max
{

1
α

, (ζxm
+ |ζxr

|)2
}

ζ
2
K

4
(34)

where ζxm
, ζxr

, ζK , and α are defined in (4), (11), and (14),
respectively.

Proof: See Appendix B.
Remark 2: The sufficient gain condition in (34) indicates

that as KI becomes infinitely large, α2 must also grow infinitely
large. See the classic discussion on this issue given in [44]. In
this result, we only consider contact with surfaces with finite
KI . In the experimental results for this paper, the actual values
for α2 were selected much lower than the sufficient condition in
(34) indicates, as is typical in nonlinear control designs.
Remark 3: As is typical in the literature, the controller de-

veloped in (22), (24), (29), and (30) is based on the underlying
assumption that arbitrarily large (but finite) control authority is
available. A potential disadvantage of the controller is that the
gain conditions developed in Appendix B and in (34) indicate
that kn1, k2, and α2, respectively, should be selected suffi-
ciently large. As demonstrated by the subsequent experimental
results, the gains may be selected much lower in practice (i.e.,
the gain conditions are the result of a conservative Lyapunov
analysis). However, the subsequent experimental section also
illustrates that even when the gain conditions are violated, large
initial conditions and a high stiffness coefficient result in a high-
gain controller that initially saturates the actuators. The control
torque in the experiment was artificially saturated to reduce
the magnitude of the impact to protect a capacitance probe
from contact by excessive bending of the aluminum rod/spring
assembly. Research that can limit the required control torque
for systems that undergo an impact collision seems to be an
interesting open problem.

V. EXPERIMENTAL RESULTS

The results in this section are not intended to represent the
best possible results that can be obtained by the controller.
Different control gains and initial conditions will yield different
results. The motivation for the experimental results in this
section is to demonstrate the capability of the controller to yield
a certain level of performance (see Figs. 4–12).

The test bed depicted in Figs. 2 and 3 was developed for
experimental demonstration of the proposed controller. The
test bed is composed of a mass–spring system and a two-
link robot. The body of the mass–spring system includes a
U-shaped aluminum plate [item (8) in Fig. 2] mounted on an
undercarriage with porous carbon air bearings, which enables
the undercarriage to glide on an air cushion over a glass-covered
aluminum rail. A steel core spring [item (1) in Fig. 2] connects
the undercarriage to an aluminum frame, and a linear variable
displacement transducer [LVDT; item (2) in Fig. 2] is used
to measure the position of the undercarriage assembly. The
impact surface consists of an aluminum plate connected to the
undercarriage assembly through a stiff spring mechanism [item
(7) in Fig. 2]. A capacitance probe [item (3) in Fig. 2] is used
to measure the deflection of the stiff spring mechanism. The
two-link robot [items (4–6) in Fig. 2] is made of two aluminum
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Fig. 2. Top view of the experimental test bed, including (1) spring,
(2) LVDT, (3) capacitance probe, (4) link1, (5) motor1, (6) link2, (7) stiff spring
mechanism, and (8) mass.

Fig. 3. Side view of the experimental test bed.

links, mounted on 240.0 N · m (base link) and 20.0 N · m (sec-
ond link) direct-drive switched reluctance motors. The motors
are controlled through power electronics operating in the torque
control mode. The motor resolvers provide rotor position mea-
surements with a resolution of 614 400 pulses/revolution, and a
standard backward difference algorithm is used to numerically
determine the velocity from the encoder readings. A Pentium
2.8-GHz PC operating under QNX hosts the control algorithm,
which was implemented via a custom graphical user interface
[45] to facilitate real-time graphing, data logging, and the
ability to adjust control gains without recompiling the program.
Data acquisition and control implementation were performed at
a frequency of 2.0 kHz using the ServoToGo I/O board.

The control gains α and k3, defined as scalars in (14) and
(29), were implemented (with nonconsequential implications to
the stability result) as diagonal gain matrices to provide more
flexibility in the experiment. Specifically, the control gains were
selected as follows:

k1 = 0.18
k2 = 0.9
k3 = diag{185, 170}
α1 = 45
α2 = 8
α3 = 0.01
α = diag{60, 90}. (35)

The control gains in (35) were obtained by choosing gains
and then adjusting based on performance. If the response
exhibited a prolonged transient response (compared with the
response obtained with other gains), the proportional gains
were adjusted. If the response exhibited overshoot, derivative
gains were adjusted. Last, to fine-tune the performance, the
adaptive gains were adjusted after the feedback gains were
tuned as described to yield the best performance. As a result
of a conservative stability analysis, the final gains used may not
satisfy the sufficient gain conditions developed in the theorem
proof provided in Appendix B. The subsequent results indicate
that the developed controller can be applied despite the fact that
some gain conditions are not satisfied. In contrast to the above
approach, the control gains could potentially have been adjusted
using more methodical approaches. For example, the nonlinear
system in [46] was linearized at several operating points, and
a linear controller was designed for each point; moreover, the
gains were chosen by interpolating or scheduling the linear
controllers. In [47], a neural network is used to tune the gains of
a PID controller. In [48], a genetic algorithm was used to fine-
tune the gains after an initial guess was made by the controller
designer. Additionally, in [49], the tuning of a PID controller
for robot manipulators is discussed.

The adaptation gains were selected as follows:

Γ = 90
Γr = diag{4.01 × 1012, 1.2 × 107, 0.2, 3.3 × 1012, 6 × 106,

0.1, 2.4 × 1011, 7 × 105, 0.1, 2.35 × 1011}.
(36)

The adaptation gains Γr in (36) are used to enable the adaptive
estimate to sufficiently change relative to the large values of the
uncertain parameters in θr. Smaller adaptation gains could be
used to obtain different results. The initial conditions for the
robot coordinates and the mass–spring position were given by
(in meters)

[ xr1(0) xr2(0) xm(0) ] = [ 0.008 0.481 0.202 ] .

The initial velocities of the robot and the mass–spring were
zero, and the desired mass–spring position was given by (in
meters)

xmd = 0.232.

That is, the tip of the second link of the robot was initially
224 mm from the desired set point and 194 mm from x0 along
the X1-axis (see Fig. 2). Once the initial impact occurs, the
robot is required to depress the spring [item (1) in Fig. 2] to
move the mass 30 mm along the X1-axis.

The mass–spring and robot errors [i.e., e(t)] are shown in
Figs. 4 and 5. The peak steady-state position errors of the
endpoint of the second link of the robot along the X1-axis
[i.e., |er1(t)|] and along the X2-axis [i.e., |er2(t)|] are
0.212 mm and 5.77 µm, respectively. The peak steady-state po-
sition error of the mass [i.e., |em(t)|] is 2.72 µm. The 0.212-mm
maximum steady-state error in |er1(t)| is due to the Ydθ̂dk(t)
term of xrd1(t) in (22), where Yd(xm) is approximately 0.03 m,
and θ̂dk(t) has a maximum steady-state value of 0.007 (N/m)/
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Fig. 4. Mass–spring and robot errors e(t). (a) Position error of the robot tip
along the X1-axis [i.e., er1(t)]. (b) Position error of the robot tip along the
X2-axis [i.e., er2(t)]. (c) Position error of the mass–spring [i.e., em(t)].

Fig. 5. Mass–spring and robot errors e(t) during the initial 2 s.

(N/m), yielding a 0.21-mm error. All of the other terms in er1(t)
are negligible at the steady state.

The input control torques in (33) are shown in Figs. 6 and
7. To constrain the impact force to a level that ensured that
the aluminum plate did not flex to the point of contact with
the capacitance probe, the computed torques are artificially
saturated. Fig. 6 depicts the computed torques, and Fig. 7
depicts the actual torques (solid line) along with the computed
torques (dashed line). The resulting desired trajectory along the
X1-axis [i.e., xrd1(t)] is depicted in Fig. 8, and the desired
trajectory along the X2-axis was chosen as xrd2 = 370 mm.
Fig. 9 depicts the value of θ̂dk(t) ∈ R, and Figs. 10–12 depict
the values of θ̂r(t) ∈ R

10. The order of the curves in the plots
is based on the relative scale of the parameter estimates rather
than the numerical order in θ̂r(t). A video of the experiment is
provided in [50].

Fig. 6. Computed control torques JT (q)F (t) for (a) base motor and
(b) second-link motor.

Fig. 7. Applied control torques JT (q)F (t) (solid line) versus computed
control torques (dashed line) for (a) base motor and (b) second-link motor.

Fig. 8. Computed desired robot trajectory, xrd1(t).
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Fig. 9. Unitless parameter estimate θ̂dk(t) introduced in (22).

Fig. 10. Estimate for the unknown constant parameter vector θ̂r(t).
(a) θ̂r10(t) = KI , (b) θ̂r4(t) = KIms/m, (c) θ̂r1(t) = KIm1/m, and
(d) θ̂r7(t) = KIm2/m, where m1, m2 ∈ R denotes the mass of the first and
second links of the robot, respectively, ms ∈ R denotes the mass of the motor
connected to the second link of the robot, and m ∈ R denotes the mass of the
mass–spring system.

VI. CONCLUSION

An adaptive nonlinear controller is proven to regulate
the states of a planar robot colliding with an unactuated
mass–spring system. The continuous controller yields asymp-
totic regulation of the spring–mass and robot links. New con-
trol design, error system development, and stability analysis
techniques were required to compensate for the fact that the
dynamics changed from an uncoupled state to a coupled state.
Experimental results are provided to illustrate the successful
performance of the controller. Sufficient conditions developed
in the stability analysis indicate that the control gains should
be selected large enough to minimize the closed-loop steady-
state error; however, high gains could result in large torques
for large initial errors. The high-gain problem is exacerbated in
the developed result because of the presence of the estimated

Fig. 11. Estimate for the unknown constant parameter vector θ̂r(t).
(a) θ̂r5(t) = ksms/m. (b) θ̂r2(t) = ksm1/m. (c) θ̂r8(t) = ksm2/m.

Fig. 12. Estimate for the unknown constant parameter vector θ̂r(t).
(a) θ̂r6(t) = ms. (b) θ̂r3(t) = m1. (c) θ̂r9(t) = m2.

impact stiffness coefficient. The experimental results were ob-
tained by artificially saturating the torque to prevent damage to
the capacitance probe. These issues point to a need to develop
controllers that account for limited actuation.

APPENDIX A
EXPRESSION FOR ẍrd(t)

Since xrd2 is a constant, the subsequent development is only
focused on determining ẍrd1(t). After using (13), (15), (22),
and (24), the first time derivative of xrd1(t) can be determined
as follows:

ẋrd1 =Yd (proj(ΓYdηm))+
(
θ̂dk+1−k2 cosh−2(em)

)
ẋm

−k1k2

(
sinh2(ef ) + cosh2(ef )

)
×

(
−α3 tanh(ef ) + α2 tanh(em)−k1 cosh2(ef )ηm

)
.

(37)
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Based on the fact that the projection algorithm for ˙̂
θdk(t) is

designed to be sufficiently smooth [43], the expressions in (24)
and (37) can be used to determine the second time derivative of
xrd1(t) as follows:

ẍrd1 =Yd
∂ (proj(ΓYdηm))

∂ηm
η̇m

+
(

Yd
∂ (proj(ΓYdηm))

∂xm
+ 2proj(ΓYdηm)

)
ẋm

− 2k2 cosh−3(em) sinh(em)ẋ2
m

+
(
θ̂dk + 1 − k2 cosh−2(em)

)
ẍm

− 4k1k2 (sinh(ef ) cosh(ef )) ė2
f

− k1k2

(
sinh2(ef ) + cosh2(ef )

)
×

(
−α3 cosh−2(ef ) − 2k1 cosh(ef ) sinh(ef )ηm

)
ėf

+ k1k2

(
sinh2(ef ) + cosh2(ef )

)
×

(
−α2 cosh−2(em)ėm + k1 cosh2(ef )η̇m

)
. (38)

After substituting (15) and (16) into (38) for ėf (t) and η̇m(t),
respectively, and substituting (5) and (8) into (38) for ẍm(t),
the expression for M̄(xr)ẍrd(t) in the linear parameteriza-
tion in (28) can be determined without requiring acceleration
measurements.

APPENDIX B
THEOREM PROOF

In the following proof, a Lyapunov function and its deriv-
ative are provided. The analysis is then separated into two
cases—contact and noncontact. For the noncontact case, the
stability analysis indicates that the controller and error signals
are bounded and converge to an arbitrarily small region. Ad-
ditional analysis indicates that within this region, contact must
occur. When contact occurs, a Lyapunov analysis is provided
that illustrates that the MSR system asymptotically converges
to the desired set point.
Proof: Let V (rr, er, em, ef , ηm, θ̃r, θ̃dk, t) ∈ R denote the

following nonnegative radially unbounded function (i.e., a
Lyapunov function candidate):

V =
1
2
rT
r M̄rr +

1
2
θ̃T

r Γ−1
r θ̃r +

1
2
θ̃T

dkKIΓ−1θ̃dk + k2KI

× [ln (cosh(em)) + ln (cosh(ef ))] +
1
2
eT
r er +

1
2
mη2

m.

(39)

The time derivative of (39) can be determined as follows:

V̇ = rT
r M̄ ṙr +

1
2
rT
r

˙̄Mrr + θ̃T
r Γ−1

r
˙̃
θr

+ k2KI [tanh(em)ėm + tanh(ef )ėf ]

+ θ̃T
dkKIΓ−1 ˙̃

θdk + eT
r ėr + ηmmη̇m. (40)

After using (12), (14), (15), (23), (24), (26), and (30)–(32), the
expression in (40) can be rewritten as

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em) − 3α2η

2
m

− k2KIα3 tanh2(ef ) − kn1ζ
2
1α2η

2
m − αeT

r er + ηm

× [KI(xrd1 − Λxr1) + KI(Λxm − xm) + χ] . (41)

The expression in (41) will now be examined under two differ-
ent scenarios.

Case 1: Noncontact

For this case, the systems are not in contact (Λ = 0), and (41)
can be rewritten as follows:

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em) − k2KIα3 tanh2(ef )

− 3α2η
2
m − kn1ζ

2
1α2η

2
m − αeT

r er

+ ηm[KIxrd1 − KIxm + χ].

Rewriting xrd1(t) and substituting for χ(em, ef , ηm, t) yield

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em) − k2KIα3 tanh2(ef )

− 2α2η
2
m −

[
α‖er‖2 − ζK |ηm|‖er‖

]
−

[
kn1α2ζ

2
1η2

m − ζ1‖z‖|ηm|
]

−
[
α2η

2
m − ζK |ηm||xm − xr1|

]
. (42)

Completing the squares on the bracketed terms yields

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em) − k2KIα3 tanh2(ef )

− 2α2η
2
m −

[
α

(
‖er‖ +

ζK |ηm|
2

)2
]

+
ζ
2
K |ηm|2

4α

−
[
kn1α2ζ

2
1

(
ηm +

‖z‖
2kn1α2ζ1

)2
]

+
‖z‖2

4αkn1

−
[
α2

(
ηm +

ζK |xm − xr1|
2α2

)2
]

+
ζ
2
K |xm − xr1|2

4α2
.

(43)

After upper bounding V̇ (t) by eliminating the three bracketed
negative terms in (43), the following inequality is obtained:

V̇ ≤− k3r
T
r rr−α1k2KI tanh2(em)−k2KIα3 tanh2(ef )

− α2η
2
m−

(
α2−

ζ
2
K

4α

)
η2

m+
‖z‖2

4α2kn1
+

ζ
2
K(xm−xr1)2

4α2
.

(44)

Provided that kn1 is selected according to the sufficient
condition

kn1 >
1

4α2 min{α1k2ζK
, k2ζK

α3, α2}

the expression in (44) can be further reduced as follows:

V̇ ≤ −λ1‖z‖2 − k3‖rr‖2 −
(

α2 −
ζ
2
K

4α

)

× η2
m +

ζ
2
K(xm − xr1)2

4α2
(45)

where λ1 ∈ R is defined as

λ1 = min{α1k2ζK
, k2ζK

α3, α2} −
1

4α2kn1
.
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Based on (4) in Assumption 1, for the noncontact case

ζxr
≤ xr1 ≤ xm ≤ ζxm

. (46)

Hence, the expression in (45) can be upper bounded as follows:

V̇ ≤ −λ‖y‖2 + εx (47)

where λ ∈ R is defined as

λ = min

{
λ1, k3,

(
α2 −

ζ
2
K

4α

)}

and y(t) ∈ R
5 and εx ∈ R are defined as

y = [ zT rT
r ]T εx =

ζ
2
K (ζxm

+ |ζxr
|)2

4α2
(48)

where εx can be made arbitrarily small by making α2 large.
Based on (39) and (47), either λ‖y‖2 ≤ εx or λ‖y‖2 > εx.
If λ‖y‖2 > εx, then Barbalat’s lemma [51] can be used to
conclude that V̇ (t) → 0 since V (t) is lower bounded, V̇ (t) is
negative semidefinite, and V̇ (t) can be shown to be uniformly
continuous. As V̇ (t) → 0, eventually, λ‖y‖2 ≤ εx. Provided
that the sufficient gain condition in (34) is satisfied (i.e., εx <
1), then (21), (48), and the facts that θ̃r(t) and θ̃dk(t) ∈ L∞
from the use of a projection algorithm can be used to con-
clude that V (·) ∈ L∞; hence, ‖y(t)‖, ‖z(t)‖, ‖rr(t)‖, ‖er(t)‖,
ηm(t), ef (t), and em(t) ∈ L∞. Signal chasing arguments can
be used to prove that the remaining closed-loop signals are also
bounded during the noncontact case. The previous development
can be used to conclude that for the noncontact case

‖y(t)‖→
√

εx

λ
and, hence, ‖rr(t)‖→

√
εx

λ
as t→∞. (49)

Based on (49), linear analysis methods (see Lemma A.19 in
[42]) can be applied to (14) to prove that

‖er(t)‖→‖er(0)‖ exp(−αt)+
1
α

√
εx

λ
(1−exp(−αt)) (50)

as t → ∞ for the noncontact case.
Further analysis is required to prove that the manipulator

makes contact with the mass–spring system and to achieve
the control objective. Contact between the manipulator and
the mass–spring system occurs when xr1(t) ≥ xm(t). Based
on (50), a sufficient condition for contact can be developed as
follows:

xrd1 ≥ xm +
1
α

√
εx

λ
. (51)

After using (22), the sufficient condition in (51) can be ex-
pressed as

Ydθ̂dk + k2 tanh(em) − k1k2 cosh2(ef ) tanh(ef ) ≥ 1
α

√
εx

λ
.

(52)

By using (13) and (17) and performing some algebraic manip-
ulation, the inequality in (52) can be expressed as

k2 tanh(em) − k1k2 cosh2(ef ) ≥ 1
α

×
√

εx

λ
− xmdθdk + (em + x0)θdk (53)

where θdk(t) and θdk(t) are defined in (25). From Assumption
1, em(t) can be upper bounded as follows:

em ≤ εm (54)

where εm ∈ R denotes a known positive constant. If em(t) ≤ 0,
then the sufficient condition in (53) may not be satisfied. The
condition that em(t) ≤ 0 will only occur if an impact colli-
sion occurs causes the mass to overshoot the desired position.
However, even if an impact occurs, and the mass overshoots the
desired position, the dynamics will force the mass position error
to return to the initial condition. That is, em(t) → xmd − x0 >
εm, where εm ∈ R denotes a known positive constant. Based on
(54) and the fact that em(t) will eventually be lower bounded
by εm in a noncontact condition, the inequality in (53) can be
simplified as follows:

k2

(
tanh(εm) − k1 cosh2(ef )

)
≥ 1

α

×
√

εx

λ
− xmdθdk + (εm + x0)θdk. (55)

To further simplify the inequality in (55), an upper bound can
be determined for ef (t). The inequality in (49) along with
(21) and (48) can be used to conclude that as the manipulator
approaches the mass, ef (t) will eventually be upper bounded as
follows:

ef ≤ tanh−1

(
1
α

√
εx

λ

)
≤ εf (56)

where εf ∈ R is a known positive constant. Based on (49) and
(56), the control parameter k2 can be selected according to the
following sufficient condition to ensure that the robot and the
mass–spring system make contact:

k2 ≥
1
α

√
εx

λ − xmdθdk + (εm + x0)θdk

tanh(εm) − k1 cosh2(εf )
(57)

where k1 is chosen as follows:

k1 <
tanh(εm)
cosh2(εf )

.

Case 2: Contact

Provided that the sufficient condition in (57) is satisfied,
the robot will eventually make contact with the mass. For the
case when the dynamic systems collide (Λ = 1), and the two
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dynamic systems become coupled,2 then (41) can be rewritten
as follows:

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em) − 3α2η

2
m

− k2KIα3 tanh2(ef ) −
[
α‖er‖2 − ζK |ηm|‖er‖

]
−

[
kn1ζ

2
1α2η

2
m − ζ1‖z‖|ηm|

]
where (20) was substituted for χ(em, ef , ηm, t). Completing
the squares on the last two lines yields

V̇ ≤ − k3r
T
r rr − α1k2KI tanh2(em)

− 3α2η
2
m − k2KIα3 tanh2(ef )

−
[
α

(
‖er‖ +

ζK |ηm|
2

)2
]

+
ζ
2
K |ηm|2

4α

−
[
kn1α2ζ

2
1

(
ηm +

‖z‖
2kn1α2ζ1

)2
]

+
‖z‖2

4αkn1
.

Eliminating the negative bracketed terms in the last two lines
yields

V̇ ≤ −k3r
T
r rr − α1k2ζK

tanh2(em) − α3k2ζK
tanh2(ef )

−3α2η
2
m +

ζ
2
Kη2

m

4α
+

‖z‖2

4α2kn1
. (58)

A final bound can be placed on (58) as follows:

V̇ ≤ −min{α1k2ζK
, α3k2ζK

, α2}‖z‖2

+
‖z‖2

4α2kn1
−

(
2α2 −

ζ
2
K

4α

)
η2

m − k3r
T
r rr.

Because (39) is nonnegative, and its derivative is negative
semidefinite, rr(t), θ̃r(t), θ̃dk(t), er(t), em(t), ef (t), and
ηm(t) ∈ L∞. Due to the fact that em(t), ef (t), and ηm(t) ∈
L∞, the expression in (14) can be used to conclude that ėm(t) ∈
L∞ (and, hence, em(t) is uniformly continuous). Due to the fact
that em(t) ∈ L∞, (13) can be used to conclude that xm(t) ∈
L∞. Previous facts can be used to prove that xrd(t) ∈ L∞, and,
since er(t) ∈ L∞, then xr(t) ∈ L∞. Due to the fact that ef (t),
em(t), and ηm(t) ∈ L∞, (15) can be used to conclude that
ėf (t) ∈ L∞. The expression in (16) can be used to conclude
that η̇m(t) ∈ L∞ (and, hence, ηm(t) is uniformly continuous).
Given that rr(t), em(t), ef (t), and ηm(t) ∈ L∞, Yr(·) ∈ L∞.
Since θ̃r(t) ∈ L∞, (32) can be used to prove that θ̂r(t) ∈ L∞.
The expression in (29) can then be used to prove that F (t) ∈
L∞. The expression in (31) can be used to conclude that ṙr(t) ∈
L∞ (and, hence, rr(t) is uniformly continuous). Due to the fact
that em(t), rr(t), and ηm(t) ∈ L2 and uniformly continuous,
Barbalat’s lemma can be used to conclude that |em(t)|, ‖rr(t)‖,
|ηm(t)| → 0 as t → ∞. Based on the fact that ‖rr(t)‖ → 0 as

2The dynamic systems can separate after an impact; however, this case can
still be analyzed under the noncontact section of the stability analysis.

t → ∞, standard linear analysis methods (see Lemma A.15 in
[42]) can then be used to prove that ‖er(t)‖ → 0 as t → ∞.

REFERENCES

[1] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE J. Robot. Autom.,
vol. RA-3, no. 1, pp. 43–53, Feb. 1987.

[2] S. Eppinger and W. Seering, “Three dynamic problems in robot force
control,” in Proc. IEEE Int. Conf. Robot. Autom., May 14–19, 1989, vol. 1,
pp. 392–397.

[3] R. Anderson and M. Spong, “Hybrid impedance control of robotic ma-
nipulators,” in Proc. IEEE Int. Conf. Robot. Autom., Mar. 1987, vol. 4,
pp. 1073–1080.

[4] R. Volpe and P. Khosla, “A theoretical and experimental investigation
of explicit force control strategies for manipulators,” Int. J. Rob. Res.,
vol. 12, no. 4, pp. 670–683, Nov. 1994.

[5] D. M. Dawson, F. L. Lewis, and J. F. Dorsey, “Robust force control
of a robot manipulator,” Int. J. Rob. Res., vol. 11, no. 4, pp. 312–319,
Aug. 1992.

[6] M. De Queiroz, J. Hu, D. Dawson, T. Burg, and S. Donepudi, “Adaptive
position/force control of robot manipulators without velocity measure-
ments: Theory and experimentation,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 27, no. 5, pp. 796–809, Oct. 1997.

[7] S. Hayati, “Hybrid position/force control of multi-arm cooper-
ating robots,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1986, vol. 3,
pp. 82–89.

[8] O. Khatib and J. Burdick, “Motion and force control of robot manip-
ulators,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1986, vol. 3,
pp. 1381–1386.

[9] T. Yoshikawa, “Dynamic hybrid position/force control of robot manipula-
tors description of hand constraints and calculation of joint driving force,”
in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1986, vol. 3, pp. 1393–1398.

[10] Y.-H. Chen and S. Pandey, “Uncertainty bound-based hybrid control for
robot manipulators,” IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 303–
311, Jun. 1990.

[11] W. Gueaieb, F. Karray, and S. Al-Sharhan, “A robust hybrid intelligent
position/force control scheme for cooperative manipulators,” IEEE/ASME
Trans. Mechatron., vol. 12, no. 2, pp. 109–125, Apr. 2007.

[12] D. Wang and N. McClamroch, “Position and force control for constrained
manipulator motion: Lyapunov’s direct method,” IEEE Trans. Robot.
Autom., vol. 9, no. 3, pp. 308–313, Jun. 1993.

[13] L. Whitcomb, S. Arimoto, T. Naniwa, and F. Ozaki, “Experiments in
adaptive model-based force control,” IEEE Control Syst. Mag., vol. 16,
no. 1, pp. 49–57, Feb. 1996.

[14] T. Stepien, L. Sweet, M. Good, and M. Tomizuka, “Control of
tool/workpiece contact force with application to robotic deburring,” IEEE
J. Robot. Autom., vol. RA-3, no. 1, pp. 7–18, Feb. 1987.

[15] Y. Xu, J. Hollerbach, and D. Ma, “A nonlinear PD controller for force
and contact transient control,” IEEE Control Syst. Mag., vol. 15, no. 1,
pp. 15–21, Feb. 1995.

[16] R. Featherstone, “Modeling and control of contact between constrained
rigid bodies,” IEEE Trans. Robot. Autom., vol. 20, no. 1, pp. 82–92,
Feb. 2004.

[17] J. Roy and L. Whitcomb, “Adaptive force control of position/velocity
controlled robots: Theory and experiment,” IEEE Trans. Robot. Autom.,
vol. 18, no. 2, pp. 121–137, Apr. 2002.

[18] A. Tornambe, “Modeling and control of impact in mechanical systems:
Theory and experimental results,” IEEE Trans. Autom. Control, vol. 44,
no. 2, pp. 294–309, Feb. 1999.

[19] B. Brogliato, S.-I. Niculescu, and P. Orhant, “On the control of finite-
dimensional mechanical systems with unilateral constraints,” IEEE Trans.
Autom. Control, vol. 42, no. 2, pp. 200–215, Feb. 1997.

[20] E. Lee, J. Park, K. Loparo, C. Schrader, and P. H. Chang, “Bang-bang
impact control using hybrid impedance/time-delay control,” IEEE/ASME
Trans. Mechatron., vol. 8, no. 2, pp. 272–277, Jun. 2003.

[21] D. Chiu and S. Lee, “Robust jump impact controller for manipulators,” in
Proc. IEEE/RSJ Int. Conf. Human Robot Interaction Cooperative Robots,
Aug. 1995, pp. 299–304.

[22] P. R. Pagilla and B. Yu, “A stable transition controller for constrained
robots,” IEEE/ASME Trans. Mechatron., vol. 6, no. 1, pp. 65–74,
Mar. 2001.

[23] P. R. Pagilla and B. Yu, “An experimental study of planar impact of a robot
manipulator,” IEEE/ASME Trans. Mechatron., vol. 9, no. 1, pp. 123–128,
Mar. 2004.



DUPREE et al.: ADAPTIVE LYAPUNOV-BASED CONTROL OF A ROBOT 1061

[24] P. Sekhavat, Q. Wu, and N. Sepehri, “Impact control in hydraulic actuators
with friction: Theory and experiments,” in Proc. IEEE Amer. Controls
Conf., Jul. 2004, pp. 4432–4437.

[25] Y. Wu, T.-J. Tarn, N. Xi, and A. Isidori, “On robust impact control via
positive acceleration feedback for robot manipulators,” in Proc. IEEE Int.
Conf. Robot. Autom., Apr. 1996, pp. 1891–1896.

[26] M. Indri and A. Tornambe, “Impact model and control of two multi-DOF
cooperating manipulators,” IEEE Trans. Autom. Control, vol. 44, no. 6,
pp. 1297–1303, Jun. 1999.

[27] A. Tornambe, “Global regulation of a planar robot arm striking a surface,”
IEEE Trans. Autom. Control, vol. 41, no. 10, pp. 1517–1521, Oct. 1996.

[28] S. P. DiMaio and S. E. Salcudean, “Needle insertion modeling and
simulation,” IEEE Trans. Robot. Autom., vol. 19, no. 5, pp. 864–875,
Oct. 2003.

[29] A. M. Okamura, C. Simone, and M. D. O’Leary, “Force modeling for
needle insertion into soft tissue,” IEEE Trans. Biomed. Eng., vol. 51,
no. 10, pp. 1707–1716, Oct. 2004.

[30] M. P. Ottensmeyer and J. K. Salisbury, “In vivo data acquisition instru-
ments for solid organ mechanical property measurement,” in Proc. Int.
Conf. Med. Image Comput. Comput.-Assisted Intervention, Oct. 2001,
pp. 975–982.

[31] F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A finite element model
of the breast for predicting mechanical deformations during biopsy pro-
cedures,” in Proc. IEEE Workshop Math. Methods Biomed. Image Anal.,
Jun. 2000, pp. 38–45.

[32] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue, 2nd
ed. New York: Springer-Verlag, 1993.

[33] K. Dupree, C. Liang, G. Hu, and W. E. Dixon, “Global adaptive
Lyapunov-based control of a robot and mass–spring system undergoing
an impact collision,” in Proc. IEEE Conf. Decision Control, Dec. 2006,
pp. 2039–2044.

[34] G. Hu, W. E. Dixon, and C. Makkar, “Energy-based nonlinear control of
underactuated Euler–Lagrange systems subject to impacts,” in Proc. IEEE
Conf. Decision Control, Dec. 2005, pp. 6859–6864.

[35] G. Hu, W. E. Dixon, and C. Makkar, “Energy-based nonlinear control of
underactuated Euler–Lagrange systems subject to impacts,” IEEE Trans.
Autom. Control, vol. 52, no. 9, pp. 1742–1748, Sep. 2007.

[36] M. Indri and A. Tornambe, “Control of under-actuated mechanical sys-
tems subject to smooth impacts,” in Proc. IEEE Conf. Decision Control,
Dec. 2004, pp. 1228–1233.

[37] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and
Adaptive Control Design. New York: Wiley, 1995.

[38] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot
Manipulators, J. Griffin, Ed. New York: Macmillan, 1993.

[39] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. Hoboken, NJ: Wiley, 2006.

[40] W. E. Dixon, E. Zergeroglu, D. M. Dawson, and M. W. Hannan, “Global
adaptive partial state feedback tracking control of rigid-link flexible-joint
robots,” in Proc. IEEE/ASME Int. Conf. Advanced Intell. Mechatronics,
Sep. 1999, pp. 281–286.

[41] F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. E. Dixon, “Global
adaptive output feedback tracking control of robot manipulators,” IEEE
Trans. Autom. Control, vol. 45, no. 6, pp. 1203–1208, Jun. 2000.

[42] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Nonlinear
Control of Engineering Systems: A Lyapunov-Based Approach. Boston,
MA: Birkhäuser, 2003.

[43] Z. Cai, M. S. de Queiroz, and D. M. Dawson, “A sufficiently smooth
projection operator,” IEEE Trans. Autom. Control, vol. 51, no. 1, pp. 135–
139, Jan. 2006.

[44] B. Brogliato and P. Orhant, “Contact stability analysis of a one degree-of-
freedom robot,” Dyn. Control, vol. 8, no. 1, pp. 37–53, Jan. 1998.

[45] M. S. Loffler, N. P. Costescu, and D. M. Dawson, “QMotor 3.0 and the
QMotor robotic toolkit: A PC-based control platform,” IEEE Control Syst.
Mag., vol. 22, no. 3, pp. 12–26, Jun. 2002.

[46] N. Stefanovic, M. Ding, and L. Pavel, “An application of L2 nonlinear
control and gain scheduling to erbium doped fiber amplifiers,” Control
Eng. Pract., vol. 15, no. 9, pp. 1107–1117, Sep. 2007.

[47] T. Fujinaka, Y. Kishida, M. Yoshioka, and S. Omatu, “Stabilization
of double inverted pendulum with self-tuning neuro-PID,” in Proc.
IEEE/INNS/ENNS Int. Conf. Neural Netw., Jul. 24–27, 2000, vol. 4,
pp. 345–348.

[48] F. Nagata, K. Kuribayashi, K. Kiguchi, and K. Watanabe, “Simulation
of fine gain tuning using genetic algorithms for model-based robotic
servo controllers,” in Proc. Int. Symp. Comput. Intell. Robot. Autom.,
Jun. 20–23, 2007, pp. 196–201.

[49] R. Kelly, V. Santibanez, and A. Loria, Control of Robot Manipulators in
Joint Space. New York: Springer-Verlag, 2005.

[50] [Online]. Available: http://ncr.mae.ufl.edu/projects/robman/
adaptiveimpact.htm

[51] J. J. Slotine and W. Le, Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

Keith Dupree (S’06) received the B.S. degree in
aerospace engineering and the M.S. degree in me-
chanical engineering from the University of Florida,
Gainesville, in 2005 and 2007, respectively. He is
currently working toward the Ph.D. degree at the De-
partment of Mechanical and Aerospace Engineering,
University of Florida.

He is a member of the Nonlinear Controls and
Robotics Group, Department of Mechanical and
Aerospace Engineering, University of Florida. His
research interests include optimal control, nonlinear

control, and visual servo control.

Chien-Hao Liang (S’06) received the B.S. degree in
ocean engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 2001 and the M.S.
degree in mechanical engineering from the Univer-
sity of Florida, Gainesville, in 2007. His master’s
thesis focused on impact control strategies using
Lyapunov-based control methods.

His research interests include robot motion con-
trol, man–machine interaction control, and robot ma-
nipulator control.

Guoqiang Hu (S’05–M’08) received the B.Eng. de-
gree from the University of Science and Technology
of China, Hefei, China, in 2002, the M.Phil. degree
from the Chinese University of Hong Kong, Shatin,
Hong Kong, in 2004, and the Ph.D. degree from the
University of Florida, Gainesville, in 2007.

After finishing his postdoctoral research at the
University of Florida, he joined the Department of
Mechanical and Nuclear Engineering, Kansas State
University, Manhattan, as an Assistant Professor. His
main research interests include vision-based control

and state estimation, and nonlinear and adaptive control of dynamic systems.

Warren E. Dixon (S’94–M’00–SM’05) received the
Ph.D. degree from Clemson University, Clemson,
SC, in 2000.

After completing his doctoral studies, he was se-
lected as a Eugene P. Wigner Fellow at Oak Ridge
National Laboratory, Oak Ridge, TN. In 2004, he
joined the faculty of the Department of Mechanical
and Aerospace Engineering, University of Florida,
Gainesville. He has published two books and over
150 journal and conference papers on the devel-
opment and application of Lyapunov-based control

methods.
Dr. Dixon is a member of numerous conference program committees,

technical committees, organizing committees, and conference editorial boards.
He is an appointed member of the IEEE Control Systems Society Board of
Governors and is currently an Associate Editor for the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS: PART B CYBERNETICS. His efforts
in this area have been acknowledged through awards such as a National Science
Foundation CAREER award and the IEEE Robotics and Automation Society
Early Academic Career Award.


