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Distributed Repetitive Learning Control for
Cooperative Cadence Tracking in Functional

Electrical Stimulation Cycling
Victor H. Duenas , Christian A. Cousin, Courtney Rouse , Emily J. Fox, and Warren E. Dixon

Abstract—Closed-loop control of functional electrical
stimulation coupled with motorized assistance to induce cycling
is a rehabilitative strategy that can improve the mobility of
people with neurological conditions (NCs). However, robust
control methods, which are currently pervasive in the cycling
literature, have limited effectiveness due to the use of high
stimulation intensity leading to accelerated fatigue during
cycling protocols. This paper examines the design of a dis-
tributed repetitive learning controller (RLC) that commands
an independent learning feedforward term to each of the six
stimulated lower-limb muscle groups and an electric motor
during the tracking of a periodic cadence trajectory. The
switched controller activates lower limb muscles during kine-
matic efficient regions of the crank cycle and provides motorized
assistance only when most needed (i.e., during the portions of
the crank cycle where muscles evoke a low torque output).
The controller exploits the periodicity of the desired cadence
trajectory to learn from previous control inputs for each muscle
group and electric motor. A Lyapunov-based stability analysis
guarantees asymptotic tracking via an invariance-like corollary
for nonsmooth systems. The switched distributed RLC was
evaluated in experiments with seven able-bodied individuals
and five participants with NCs. A mean root-mean-squared
cadence error of 3.58 ± 0.43 revolutions per minute (RPM)
(0.07 ± 7.35% average error) and 4.26 ± 0.84 RPM (0.1 ± 8.99%
average error) was obtained for the healthy and neurologically
impaired populations, respectively.

Index Terms—Distributed control, functional electrical stimu-
lation (FES), FES-cycling, repetitive learning control (RLC).

I. INTRODUCTION

NEUROLOGICAL conditions (NCs) that result in
movement disorders greatly affect a person’s
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independence and mobility. Rehabilitation technologies
aim to improve the motor function using a combination
of robotic devices and artificial control to activate muscles
related to a specific exercise. Functional electrical stimulation
(FES) is a common technology used to elicit muscle con-
tractions to achieve a motor task. Closed-loop FES has been
implemented to assist upper-limb tasks [1]–[3], leg tracking
experiments [4]–[6], human locomotion via exoskeletons and
neuroprostheses [7]–[9], and lower-limb cycling with and
without motorized assistance [10]–[14]. FES applied to lower-
limb muscles has allowed individuals with spinal cord injury
(SCI) to stand and step for short distances, which has improved
their sitting balance and posture [15]. Lower-limb FES control
generates muscle contractions that induce exercise-related
physiological changes and exploit therapeutic benefits com-
pared to pure ambulation with orthoses [15]. Active lower-limb
cycling with FES significantly improved the walking ability
of stroke participants versus active cycling without FES [16].
Additionally, improvements in postural control and muscle
strength after lower-limb FES cycling have been reported for
stroke participants [16]. Thus, FES induced cycling has been
suggested as a rehabilitation strategy for people with NCs to
improve motor skills due to its simplicity, availability, and
low risk of injury (e.g., compared to fall risks in locomotion).

Robotic devices have been used to assist neurologically
impaired individuals in completing repetitive movements and
to quantify kinematic variables to assess the level of motor
recovery during clinical studies [17], [18]. Repetition of a
movement pattern contributes to motor learning and rehabilita-
tion [17]. Adaptive reorganization of the human motor system
after a neurological lesion can be enhanced by activity and
task-specific practice [19]. Furthermore, motor learning is pro-
moted primarily during tasks where robotic assistance is pro-
vided only as needed to encourage active engagement, if possi-
ble, of the user [18], [20]. Hence, the design of a cycling proto-
col that delivers high intensity repetitive exercise and exploits
the benefits of FES is desired. Additionally, motorized assis-
tance can aid in obtaining repeatable exercise by only assisting
the electrically stimulated lower-limb muscles as needed.

Learning control methods, such as iterative learning con-
trol (ILC) and repetitive learning control (RLC),1 improve

1The acronym RLC is used interchangeably in the introduction of this
paper to refer to repetitive learning control (control methodology) and to the
designed distributed repetitive learning controller.
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the tracking performance of repetitive or periodic processes
by utilizing control inputs from previous cycles, iterations,
or periods [21]–[23]. The use of learning control does not
require an explicit mathematical model of the uncertainties in
the system; instead, the control strategy exploits the repeated
or periodic motion to learn the uncertainties. Rehabilitation
tasks such as cycling are repetitive/periodic naturally; hence,
ILC and RLC are attractive methods to adaptively adjust to
the person’s unique attributes. Compared to adaptive control,
ILC/RLC methods do not require the uncertainty in the system
to be linearly parameterizable. This relaxation on the struc-
ture of the uncertainty is beneficial given the lack of an exact
model in applications that involve human–machine interaction,
especially for participants with NCs. ILC and RLC controllers
have been synthesized for finite interval tasks with states reset-
ting after each trial [21], [24] and for continuous operation
in the time horizon without resetting [25], [26], respectively.
In [27], an integral of a kernel multiplied by an influence func-
tion estimates a nonlinear repetitive disturbance function; the
resulting learning algorithm ensures asymptotic convergence.
A saturated learning-based feedforward term was developed
in [25] to leverage the periodic nature of the desired trajec-
tory for the control of robot manipulators. An ILC method was
developed in [28] to learn from nonidentical tracking tasks.
In [26], a fully saturated learning law and an iterative learning
formulation to prove convergence of the states were developed.

ILC and RLC methods have been previously implemented in
rehabilitation settings with FES. In results such as [24], [29],
and [30], the use of ILC with FES has been investigated during
planar and unconstrained upper arm tasks for clinical reha-
bilitation in stroke and multiple sclerosis (MS) populations.
However, most of the developed ILC controllers required pre-
liminary model identification procedures, the dynamics were
linearized, and limited information was given regarding the
switching muscle dynamics. In [31], ILC was implemented for
foot trajectory tracking during swing phase in gait using a drop
foot neuroprosthesis. A brain–computer interface with FES
was developed for upper limb motor rehabilitation using ILC
in [32]. Repetitive control was examined in [33] for tremor
suppression at the wrist by regulating flexor/extensor muscles.

More recently, a distributed or decentralized learning
approach has been developed in the fields of multiagent
systems, network control, and large-scale systems. The pur-
pose of distributed control is to use local feedback to generate
control actions for the subsystems, thus yielding a flexible
framework to obtain a desired global behavior for the over-
all system. In [34], a distributed ILC approach was realized
for trajectory tracking of a group of quadrotors, where each
vehicle learns from its own and its neighbor’s previous inputs
during past repetitions. Consensus-based learning control was
designed to learn periodic uncertainties where an auxiliary
control is designed for each follower agent to track the leader
in [35]. A distributed adaptive iterative learning technique was
implemented for consensus tracking for a class of nonlinear
multiagent systems in [36]. In [37], a multiagent formation
problem is studied with switching topologies utilizing a dis-
tributed algorithm where agents learn to execute a cooperative
task via repetition. This paper leverages the idea of distributed

repetitive learning to investigate FES-cycling since the activa-
tion of multiple individual muscles is required to achieve a
coordinated lower-limb behavior.

Switching across lower-limb muscles is required to achieve
metabolic efficiency and smooth coordination during FES-
cycling. In [10] and [38], an electric motor provides assistance
during regions of the crank cycle where electrical stimulation
is less effective at producing torque. Thus, the assist as needed
paradigm is applied to the control of the electric motor, while
lower-limb muscles are activated via FES. Switching between
muscles and an electric motor makes the overall system a
switched system. The periodic nature of cycling tasks thus
motivates the use of learning control; however, a switched
system stability analysis is required.

In this paper, a switched controller with distributed RLC
(i.e., an independent learning feedforward input is designed
for each actuator) is developed to achieve cadence track-
ing through the cooperation of six lower-limb muscles and
an electric motor mounted to a stationary recumbent cycle.
The distributed feedforward learning terms compensate for
the periodic dynamics based on the desired cadence track-
ing trajectory. The switched controller is designed using a
nonlinear cycle-rider dynamic model, and it is implemented
without the requirement of any identification procedure despite
the parametric uncertainty present in the system. The robust
feedback terms aid in the rejection of disturbances present in
the cycle and in the lower-limbs of the rider (i.e., the non-
periodic dynamics). The motivation in this paper is to design
a feedforward controller to reduce the influence of high-gain
and high-frequency feedback, which leads to accelerated mus-
cle fatigue during muscle stimulation, and better cope with the
time periodicity of the cadence tracking. Due to the construc-
tion of a filtered tracking error, the distributed RLC affects
both cadence and position tracking. Global asymptotic track-
ing is achieved via a Lyapunov-based stability analysis using a
common Lyapunov function that accounts for the periodicity
of the system and by invoking a corollary to the LaSalle–
Yoshizawa theorem for nonsmooth systems [39, Corollary 2].
Experimental results are reported for seven able-bodied indi-
viduals and five participants with different NCs during a 3-min
cycling protocol.

II. NOTATION

Throughout this paper, R
p denotes the p-dimensional

Euclidean space, R denotes the set of real numbers, R>0
denotes the set of strictly positive real numbers, R≥t0

denotes
the set of real numbers greater than or equal to t0, t0 ∈ R is
the initial time, and N denotes the set of all natural num-
bers. The subscript m is employed to denote a property,
constant, signal, or input related to the muscle groups, while
the subscript e denotes a constant, signal, or input related
to the electric motor. The set of crank angles is denoted
as Q ⊆ R. The subsets Qm ⊂ Q and Qe ⊂ Q denote
the sets of crank angles where the muscle groups and the
electric motor are activated, respectively. The muscle set
M �{RQuad, RHam, RGlute, LQuad, LHam, LGlute} con-
tains the right (R) and left (L) quadriceps femoris (Quad),
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hamstrings (Ham), and gluteal (Glute) muscle groups, respec-
tively. The set N �(1, 2, . . . , N} ⊂ N is used to denote the
finite set of all possible switching indices, where N ∈ R>0 is
the total number of subsystems consisting of the activation of
a combination of the muscle groups and the electric motor.
The actuator set A �{M, Motor} contains the muscle groups
and electric motor. Unless otherwise specified, all the math-
ematical quantities are assumed to be time-varying, but the
functional dependencies are omitted throughout, unless they
add clarity.

III. CYCLE-RIDER DYNAMIC MODEL

WITH SWITCHED INPUTS

The stationary cycle-rider system is modeled as a single
degree-of-freedom system with the following dynamics [11]:

M(q)q̈ + V(q, q̇)q̇ + G(q) + P(q, q̇) + cdq̇ + d(t)

= τa(q, q̇, t) + τe(t) (1)

where q : R≥t0 → Q denotes the positive clockwise mea-
surable crank angle; M : Q → R>0 denotes the combined
inertial effects of the rider and the cycle; V : Q × R → R

and G : Q → R denote the centripetal-Coriolis and gravi-
tational effects, respectively; P : Q × R → R denotes the
effects of passive viscoelastic tissue forces in the rider’s joints;
cd ∈ R>0 denotes the viscous damping parameter in the cycle;
and d : R≥t0 → R denotes the disturbances applied by the rider
(e.g., muscle spasms, etc.) and any other unmodeled effects in
the system. The torque applied about the cycle crank axis by
the electric motor τe : R≥t0 → R is denoted as

τe(t) � Beue(t) (2)

where Be ∈ R>0 is a positive torque constant and satisfies
Be ≥ ce, where ce ∈ R>0 is a known constant, and ue : R≥t0 →
R is the motor current control input. The net active torque
produced by the lower-limb muscle contractions denoted by
τa : Q × R × R≥t0 → R is defined as

τa(q, q̇, t) �
∑

m∈M
Bm(q, q̇)um(t) (3)

where Bm : Q×R → R represents the uncertain control effec-
tiveness of the involved muscle groups and um : R≥t0 → R

represents the stimulation intensity applied to each muscle
group. The unknown control effectiveness for each muscle
group is nonzero and depends on the relationship between
the stimulation intensity and the evoked force, and the torque
transfer relationship between a muscle’s resultant torque about
a joint to torque about the crank axis [11].

The stimulation intensity um is applied to each muscle group
in regions of the crank cycle where the torque transfer ratios
are above a predefined threshold. The switching control design
yields an autonomous, state-dependent, and switched control
system. The portion of the crank cycle over which a particular
muscle group is stimulated is denoted by Qm ⊂ Q,∀m ∈
M, where the muscle groups are activated such that QM �

∪
m∈M

Qm [11]. The portion of the crank cycle over which the

electric motor is switched on is denoted as Qe ⊂ Q such
that Qe � Q\QM (i.e., when no muscle group is stimulated,

the electric motor is active). Based on the system’s state, a
piecewise constant switching signal can be developed for each
muscle group, σm ∈ {0, 1}, ∀m ∈ M and for the electric
motor, σe ∈ {0, 1} as

σm(q) �
{

1 if q ∈ Qm

0 if q /∈ Qm
, σe(q) �

{
1 if q ∈ Qe

0 if q /∈ Qe.
(4)

Using (4), the stimulation input to the muscle groups and the
motor input can be defined as

um(t) � kmσm(q)
(
ν(t) + Ŵd,m(t)

)
(5)

ue(t) � keσe(q)
(
ν(t) + Ŵd,e(t)

)
(6)

respectively, where km, ke ∈ R>0, ∀m ∈ M are positive, con-
stant control gains, ν : R≥t0 → R is a subsequently designed
control input, and Ŵd,m, Ŵd,e : R≥t0 → R, ∀m ∈ M are the
RLC laws designed for each muscle and the electric motor,
respectively. Substituting (2), (3), (5), and (6) into (1) and
rearranging terms yield

M(q)q̈ + V(q, q̇)q̇ + G(q) + P(q, q̇) + cdq̇ + d = Bσ

(
ν + Ŵd

)

(7)

where Bσ ∈ R≥0 is a lumped, switched control effectiveness
term defined as

Bσ (q, q̇) �
∑

m∈M
Bm(q, q̇)kmσm(q) + Bekeσe(q) (8)

and Ŵd : R≥t0 → R is the lumped feedforward learning
term. The subscript σ ∈ N indicates the index of Bσ , which
switches according to the crank position. The known sequence
of switching states, which are the limit points of Qm, ∀m ∈ M,
is defined as {qn}, n ∈ {0, 1, 2, . . .}, and the corresponding
sequence of unknown switching times {tn} is defined such that
each tn denotes the instant when q reaches the correspond-
ing switching state qn. The switching signal σ is assumed
to be continuous from the right [i.e., σ(q) = limq→q+

n
σ(q)]

and designed to produce forward pedaling using the state. The
following assumption and properties of the switched system
in (7) will be exploited in the subsequent control design and
stability analysis.

Assumption 1: The disturbance term d is bounded as |d| ≤
ξd, where ξd ∈ R>0 is a known constant.

Property 1: cm ≤ M ≤ cM, where cm, cM ∈ R>0 are known
constants [40].

Property 2: |V| ≤ cV |q̇|, where cV ∈ R>0 is a known
constant [40].

Property 3: |G| ≤ cG, where cG ∈ R>0 is a known
constant [40].

Property 4: |P| ≤ cP1 + cP2|q̇|, where cP1, cP2 ∈ R>0 are
known constants [11].

Property 5: (1/2)Ṁ − V = 0 by skew symmetry [40].
Property 6: The lumped switching control effectiveness is

bounded as cb ≤ Bσ ≤ cB, ∀σ ∈ N , where cb, cB ∈ R>0 are
known constants.
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IV. CONTROL DEVELOPMENT

The objective is to design a controller to track a desired
crank cadence. A measurable auxiliary tracking error, denoted
by e1 : R≥t0 → R is defined as2

e1 �
∫ t

t0
(qd(ϕ) − q(ϕ))dϕ (9)

where qd : R≥t0 → R denotes the desired crank position and
its first two time derivatives are bounded such that |q̇d(t)| ≤ ξ1
and |q̈d(t)| ≤ ξ2, where ξ1, ξ2 ∈ R>0 are known positive
constants.

Remark 1: The desired crank trajectory is periodic in the
sense that qd(t) = qd(t − T), q̇d(t) = q̇d(t − T), q̈d(t) =
q̈d(t − T) with known period T .

To facilitate the subsequent control development, filtered
tracking errors e2 : R≥t0 → R and r : R≥t0 → R are defined as

e2 � ė1 + α1e1 (10)

r � ė2 + α2e2 (11)

where α1, α2 ∈ R>0 are positive, constant control gains.
Taking the time derivative of (11) and premultiplying by M,
substituting for (7), using the second time derivative of (10),
and then performing some algebraic manipulation yield

Mṙ = −Vr + Wd + χ + Nd − Bσ

(
ν + Ŵd

)
− e2 (12)

where the auxiliary signals Wd : R≥t0 → R, χ : R≥t0 → R,
and Nd : R≥t0 → R are defined as

Wd �
∑

i∈A
Wd,i (13)

=
∑

i∈A
(Mi(qd)q̈d + Vi(qd, q̇d)q̇d + Gi(qd))

χ � M(q)(q̈d + (α1 + α2)ė2) + V(q, q̇)

×
(

q̇d − α2
1e1 + (α1 + α2)e2

)
+ G(q) + P(q, q̇) + cdq̇

− Wd − Nd + e2 (14)

Nd � cP1 + (cP2 + cd)q̇d + d (15)

for i ∈ A. The auxiliary signal in (15) can be upper bounded as

Nd ≤ 	 (16)

where 	 ∈ R>0 is a known positive constant. By using
Properties 1–5, (10), and (11), the mean value theorem can
be used to develop an upper bound for (14) as

χ ≤ ρ(‖z‖)‖z‖ (17)

where z : R≥t0 → R
3 is a composite vector of error signals

defined as

z � [e1 e2 r]T (18)

and ρ(·) ∈ R is a known positive, radially unbounded,
and nondecreasing function. Based on (13) and the explicit
boundedness of the periodic desired trajectory

‖Wd(t)‖ ≤ βr (19)

2The control objective is quantified using the second time derivative of e1.

where βr ∈ R is a known positive bounding constant. Given
the cadence open-loop error system in (12), the control input
is designed as

ν � k1r +
(

k2 + k3ρ(‖z‖)‖z‖ + k4

∥∥∥Ŵd

∥∥∥
)

sgn(r) (20)

where k1, k2, k3, k4 ∈ R>0 are selectable positive gain con-
stants, sgn(·) : R → [−1, 1] is the signum function, and
Ŵd : R≥t0 → R is the distributed RLC law designed as

Ŵd(t) �
∑

i∈A
Ŵd,i(t) =

∑

m∈M
Ŵd,m + Ŵd,e (21)

Ŵd,m � σm

(
satβm

(
Ŵd,m(t − T)

)
+ kL,mr

)
(22)

Ŵd,e � σe

(
satβe

(
Ŵd,e(t − T)

)
+ kL,er

)
(23)

where kL,i ∈ R>0, ∀i ∈ A are learning control gains, and
satβi(·) is defined as

satβi(�i) �
{

�i for |�i| ≤ βi

sgn(�i)βi for |�i| > βi
, ∀i ∈ A.

The closed-loop error system is obtained by substituting (20)
into (12) which yields

Mṙ = −Vr + χ + Nd + W̃d + Ŵd − e2 − Bσ

×
(

Ŵd + k1r +
(

k2 + k3ρ(‖z‖)‖z‖ + k4‖Ŵd‖
)

sgn(r)
)

(24)

where W̃d ∈ R is the learning estimation error defined as
W̃d = ∑

i∈A W̃d,i �
∑

i∈A(Wd,i − Ŵd,i) = Wd − Ŵd.
Based on the periodicity and boundedness of Wd, Wd(t) =∑

i∈A satβi(Wd,i(t)) = ∑
i∈A satβi(Wd,i(t − T)). Hence, by

exploiting (21), the following expression can be developed
for W̃d:

W̃d =
∑

i∈A
W̃d,i

=
∑

i∈A
satβi

(
Wd,i(t − T)

)

−
∑

m∈M
σm

(
satβm

(
Ŵd,m(t − T)

)
+ kL,mr

)

− σe

(
satβe

(
Ŵd,e(t − T)

)
+ kL,er

)
. (25)

To incorporate the repetitive learning error term in the subse-
quent stability analysis, an auxiliary function Q : R≥t0 → R

is defined as

Q �
∑

i∈A

1

2kL,i

t∫

t−T

(
satβi

(
Wd,i(ϕ)

) − satβi

(
Ŵd,i(ϕ)

))2
dϕ.

(26)

V. STABILITY ANALYSIS

Theorem 1: The controller in (20) with the repetitive learn-
ing law in (21) ensures global asymptotic cadence tracking
provided the control gains are selected to satisfy the following
sufficient conditions:

α1, α2 >
1

2
, k2 >

	

cb
, k3 >

1

cb
, k4 >

1 + cB

cb
. (27)
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Proof: Let V1 : R
4 × R≥t0 → R be a non-negative,

continuously differentiable, function defined as

V1 � 1

2
e2

1 + 1

2
e2

2 + 1

2
Mr2 + Q. (28)

The function in (28) satisfies the following inequalities:

λ1‖y‖2 ≤ V1(y, t) ≤ λ2‖y‖2

where λ1 � min([1/2], [1/2]cm, [1/2kL,i]), λ2 �
max([1/2], [1/2]cM, [1/2kL,i]), ∀i ∈ A and y � [zT √

QL]T

where QL �
∑

i∈A
∫ t

t−T(satβi(Wd,i(ϕ)) − satβi(Ŵd,i(ϕ)))2dϕ.
Let y(t) be a Filippov solution to the differential inclusion
ẏ ∈ K[h](y), where K[ · ] is defined as in [41], and h is
defined by using (10), (11), and (24) as h � [h1 h2 h3 h4],
where h1 � e2 −α1e1, h2 � r −α2e2, h3 � M−1{−Vr +χ +
Nd + W̃d + Ŵd − e2 − Bσ (Ŵd + k1r + (k2 + k3ρ(‖z‖)‖z‖ +
k4‖Ŵd‖)sgn(r)}, h4 � (1/2

√
QL)

∑
i∈A{(satβi(Wd,i(t)) −

satβi(Ŵd,i(t)))2 − (satβi(Wd,i(t − T)) − satβi(Ŵd,i(t − T)))2}.
The control input in (20) includes the signum function
and the discontinuous lumped control effectiveness Bσ ;
hence, the time derivative of (28) exists almost everywhere
(a.e.), i.e., for almost all t. Based on [39, Lemma 1],
the time derivative of (28), V̇1(y(t), t)

a.e.∈ ˙̃V1(y(t), t),
where ˙̃V1 is the generalized time derivative of (28)
along the Filippov trajectories of ẏ = h(y) is defined as˙̃V1 �

⋂
ξ∈∂V1

ξTK[ė1 ė2 ṙ (Q̇L/2
√

QL) 1]T(e1, e2, r, 2
√

QL, t),
where ∂V1(y, t) is the generalized gradient of V1 at
(y, t) defined as ∂V1(y, t) = co{lim∇V1(y, t)|(yi, ti) →
(y, t), (yi, ti) /∈ �V1}, where �V1 is the set of measure zero
where the gradient of V1 is not defined and co denotes the
convex closure [39], [42]. Since V1(y, t) is continuously
differentiable in y, ∂V1 = {∇V1}, thus

˙̃V1
a.e.⊂ [e1, e2, Mr,

∑

i∈A

(
1

2kL,i

)
2
√

QL,
1

2
Ṁr2]K

⎡

⎢⎢⎢⎢⎢⎣

ė1
ė2
ṙ

Q̇L
2
√

QL

1

⎤

⎥⎥⎥⎥⎥⎦
.

Therefore, after substituting for (10), (11), and (24), and using
Property 5, the generalized time derivative of (28) can be
expressed as

˙̃V1
a.e.⊂ e1e2 − α1e2

1 − α2e2
2

+ r
(

W̃d + Ŵd + χ + Nd + K[Bσ ]Ŵd − K[Bσ ]k1r

− K
[
Bσ sgn(r)

](
k2 + k3ρ(‖z‖)‖z‖ + k4

∥∥∥Ŵd

∥∥∥
))

+
∑

i∈A

1

2kL,i

(
satβi

(
Wd,i(t)

) − satβi

(
Ŵd,i(t)

))2

−
∑

i∈A

1

2kL,i

(
satβi

(
Wd,i(t − T)

) − satβi

(
Ŵd,i(t − T)

))2

(29)

where K[sgn(r)] = SGN(r) and K[Bσ ] ⊂ [cb, cB].
Substituting for (16), (17), and (25), and using Property 6

and Young’s inequality, an upper bound for (29) can be
developed as

˙̃V1
a.e.≤ −

(
α1 − 1

2

)
e2

1 −
(

α2 − 1

2

)
e2

2 − k1cbr2

− (k2cb − 	)|r| − (k3cb − 1)ρ(‖z‖)‖z‖|r|
− (k4cb − 1 − cB)

∥∥∥Ŵd

∥∥∥|r|

+
∑

i∈A

1

2kL,i

(
satβi

(
Wd,i(t)

) − satβi

(
Ŵd,i(t)

))2

+ W̃dr −
∑

i∈A

1

2kL,i

(
W̃d,i + kL,ir

)2
. (30)

By employing the following property:

(
Wd,i(t) − Ŵd,i(t)

)2 ≥
(

satβi

(
Wd,i(t)

) − satβi

(
Ŵd,i(t)

))2

as proven in [25, Appendix I], and canceling terms, (30) can
be rewritten as

˙̃V1
a.e.≤ −

(
α1 − 1

2

)
e2

1 −
(

α2 − 1

2

)
e2

2

−
(

k1cb + kL,min

2

)
r2 − (k2cb − 	)|r|

− (k3cbρ(‖z‖)‖z‖ − ρ(‖z‖)‖z‖)|r|
− (k4cb − 1 − cB)‖Ŵd‖|r| (31)

where the minimum learning gain kL,min ∈ R>0 is defined
as kL,min � min{kL,i}, ∀i ∈ A. Provided the gain conditions
in (27) are satisfied, the inequality in (31) can be further upper
bounded as

˙̃V1
a.e.≤ −δ‖z‖2 (32)

where δ ∈ R is defined as

δ � min

{(
α1 − 1

2

)
,

(
α2 − 1

2

)
,

(
k1cb + kL,min

2

)}
.

By invoking [39, Corollary 2], |e1|, |e2|, |r| → 0 as t → ∞.

Since V1 > 0 and V̇1
a.e.≤ 0, V1 ∈ L∞, hence, e1, e2, r, QL ∈

L∞. From (21), Ŵd ∈ L∞, which along with the fact that
Wd ∈ L∞ from (19), implies that W̃d ∈ L∞. Then from (20),
ν ∈ L∞, and from (5) and (6), um, ue ∈ L∞, which implies
τa, τe ∈ L∞. Since e1, e2, r ∈ L∞, then ė1, ė2 ∈ L∞ from (10)
and (11), and hence, q, q̇ ∈ L∞, which implies q̈ ∈ L∞
from (7).

VI. EXPERIMENTS

The cadence controller developed in (20) with the dis-
tributed repetitive learning-based feedforward control in (21)
was implemented in experiments with able-bodied individu-
als and people with NCs. The switched control input was
commanded as stimulation intensities um in (5) to activate the
right and left quadriceps (RQ, LQ), hamstrings (RH, LH), and
gluteal (RG, LG) muscle groups and as current ue in (6) to
the electric motor.
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TABLE I
DEMOGRAPHICS OF PARTICIPANTS WITH AN NC

A. Subjects

Seven able-bodied individuals (five males and two females)
with ages ranging between 22 and 43 years old partic-
ipated in the FES-cycling protocol at the University of
Florida. Participants with NCs (two males and three females)
were either recruited through the UF Health Integrated Data
Repository (UF Consent2Share project) and completed the
FES-cycling protocol at the University of Florida or were
enrolled at Brooks Rehabilitation in Jacksonville, FL, USA.
Demographics of the participants with NCs are listed in
Table I. The participants with NCs were medically stable
and met the inclusion criteria. Prior to participation, writ-
ten informed consent was obtained from all participants, as
approved by the Institutional Review Board at the University
of Florida. The participants with NCs self-reported their motor
function and mobility status. Both able-bodied participants
and people with NCs were instructed to avoid voluntarily
contributing. The able-bodied individuals were not informed
of the cycling objective of the protocol. The neurologically
impaired individuals were informed of the cycling cadence
objective, but no feedback regarding the performance was pro-
vided throughout the experiments. Subject A is a paraplegic
due to SCI (T8-T9 complete) with previous limited experi-
ence with FES technologies. Subject A used a wheelchair
full-time for mobility. Subject B is a participant with Spina
Bifida (SB) (L5-S1 level) and Arnold Chiari malformation.
Subject B used a wheelchair part-time for mobility and a
walker for ambulation at home. Subject C is a participant with
relapsing remitting MS and used a single point cane for ambu-
lation. Subject C presented tremor in her lower extremities
during ambulation. Subject D is a quadriplegic due to an SCI
(C5-C7, and incomplete T12) with previous experience with
upper- and lower-limb cycling and used an electric-powered
wheelchair for mobility. Subject E is a post-hemorrhagic stroke
participant with left side impairment and minor loss of sensory
perception. Subject E used a single point cane for ambulation
and had an ankle foot orthosis.

B. Experimental Setup

Testing was performed using a recumbent tricycle
(TerraTrike Rover) mounted on an indoor trainer and adapted
with orthotic boots. A brushed 24 VDC electric motor was
coupled to the drive chain. An optical encoder (U.S. Digital)
measured the crank position. The FES-cycling testbed is illus-
trated in Fig. 1. The controller was implemented using a
personal computer (Windows 10 OS) running a real-time tar-
get (QUARC 2.5, Quanser) via MATLAB/Simulink 2015b
(MathWorks, Inc.) with a sample rate of 500 Hz. The Quanser
Q8-USB data acquisition board was used to read the encoder

Fig. 1. Motorized FES-cycling test bed. A) Current-controlled electrical
stimulator. B) Surface electrodes. C) DC motor. D) Cycle crank fitted with
sensors.

and to interface with an analog motor driver and a filter
card (Advanced Motion Controls)3 that commanded the cur-
rent control to the electric motor. The filter card provided
additional inductance to the motor and reduced the electromag-
netic interference. A current-controlled 8-channel stimulator
(RehaStim, Hasomed GmbH) delivered biphasic, symmetric,
and rectangular pulses to the participant’s muscle groups. Self-
adhesive PALS electrodes (3” by 5”)4 were placed on each
muscle group in both extremities according to the electrode’s
manufacturer manual. For some participants, electrodes (2”
by 4”) were placed on the gluteal muscle groups based on
personal preferences. The stimulation current amplitude was
fixed at 90 mA for the quadriceps, 80 mA for the hamstrings,
and 70 mA for the gluteal muscle groups. The stimulation
frequency was fixed at 60 Hz, and the pulsewidth was com-
puted by um in (5) and (20)–(22) and commanded to the
stimulator via serial port communication. Anatomical lengths
of the participant’s lower extremities were recorded utilizing
visible landmarks as in [11]. These measurements were used to
determine the stimulation pattern (i.e., the crank angles where
the muscle groups were electrically stimulated).

Cadence trials with only the motor being activated were
implemented to familiarize the participants with NCs with
different operating speeds. Afterward, open-loop stimulation
pulse trains were delivered to the participants with NCs to
determine the minimum threshold that elicits visible mus-
cle contractions. The experiment duration td was 3 min. The
desired cadence trajectory q̇d smoothly approached a steady
state value of 50 revolutions per minute (RPM) during the
time interval, t ∈ [0, t1], t1 = 16 s, during which, only the
motor was activated (i.e., σe = 1, q ∈ Qe for the whole crank
cycle). The cadence trajectory remained constant at 50 RPM
for a transition time interval of 10 s, t ∈ [t1, t1+10], where the
regions of the crank cycle for which electrical stimulation was
delivered (i.e., q ∈ Qm) increased until it reached a steady state
value. After the transition interval, the desired cadence began
its periodic trajectory and the stimulation regions remained
constant until the end of the experiment (i.e., t ∈ [t1 +10, td]).

The periodic crank velocity tracked by the learning con-
troller in (21) had an amplitude of 50 ± 5 RPM and a period

3The servo drive and filter card were provided in part by the sponsorship
of Advanced Motion Controls.

4Surface electrodes for the study were provided compliments of Axelgaard
Manufacturing Company, Ltd.
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TABLE II
TRACKING RESULTS FOR HEALTHY PARTICIPANTS: AVERAGE CADENCE

TRACKING ERROR ë1, AVERAGE POSITION TRACKING ERROR ė1,
CADENCE RMS ERROR (MOVING WINDOW OF 12 s), AND

CADENCE PERCENT ERROR REPORTED AS MEAN

VALUE ± STANDARD DEVIATION

TABLE III
TRACKING RESULTS FOR PARTICIPANTS WITH NCS: AVERAGE CADENCE

TRACKING ERROR ë1, AVERAGE POSITION TRACKING ERROR ė1,
CADENCE RMS ERROR (MOVING WINDOW OF 12 s), AND CADENCE

PERCENT ERROR REPORTED AS MEAN VALUE ±
STANDARD DEVIATION

of T = 12 s and was commanded for t ∈ [t1 + 10, td]. To
facilitate the selection of gains in (5), (6), (20), (22), and (23),
separate gains were selected for each muscle group and the
electric motor, without loss of generality. The control gains
introduced in (5), (6), (10), (11), (20), (22), and (23) were
selected as follows5: km ∈ [0.45, 0.5], ke � 10, α1 ∈ [0.625,

0.75], α2 ∈ [1.5, 1.75], k1,m ∈ [65, 520], k2,m ∈ [5, 28],
k3,m ∈ [0.01, 0.08], k4,m ∈ [0.5, 1.5], k1,e � 1, k2,e � 0.3,
k3,e � 0.001, k4,e � 0.001, kL,m = [kL,RQ, kL,LQ, kL,RH,

kL,LH, kL,RG, kL,LG] ∈ [[15, 90], [15, 90], [12, 80], [16, 80],
[12, 75], [14, 75]], and kL,e ∈ [0.15, 0.18]. The muscle control
gains were selected based on the performance obtained during
a brief pretrial. The gain tuning was motivated to yield consis-
tent performance for all the participants despite the differences
in the physical characteristics of the individuals.

C. Results

The FES-cycling experiments were successfully completed
by all the enrolled participants. Table II summarizes the aver-
age cadence tracking error ë1, the average position tracking
error ė1, the cadence root-mean-squared (RMS) error, and the
cadence percent error (% error) during t ∈ [t1, td] seconds for
the healthy individuals (S1–S7). Table III reports the results for
the participants with NCs (A–E). The cadence RMS error was
calculated over a moving time interval window corresponding
to the period of the desired trajectory, i.e., 12 s. Fig. 2 shows
the switching of the stimulation intensities um, the muscle

5The control gains for the experiments were tuned using empirical methods.
In contrast to this approach, the control gains could have been adjusted using
more methodical approaches to find optimal gains as described in various
survey papers on the topic [43], [44].

(a)

(b)

(c)

(d)

Fig. 2. FES stimulation intensities um (solid lines) and muscle learning
feedforward terms Ŵd,m (dashed lines) delivered to the (a) right (R) and left
(L) quadriceps, (b) hamstrings, and (c) gluteal muscle groups, and (d) motor
current input ue (solid line) and motor learning feedforward term Ŵd,e (dashed
line) delivered to the electric motor over one crank cycle for Subject S4. This
figure illustrates the switching of the control inputs designed in (5) and (6).

Fig. 3. Tracking performance for Subject A quantified by the cadence RMS
error with a moving time interval window of 12 s (the same as the period
T of q̇d for t ∈ [t1 + 10, td]) (top), the average cadence tracking error ë1
(middle), and the average position error ė1 (bottom).

learning feedforward inputs Ŵd,m, the motor current input ue,
and the electric motor learning feedforward input Ŵd,e over a
single crank cycle for Subject S4 after 2 min of cadence track-
ing. Fig. 3 shows the cadence tracking performance quantified
by the cadence RMS error (top), the cadence tracking error ë1
(middle), and the position tracking error ė1 (bottom) of Subject
A. Fig. 4 illustrates the stimulation intensities delivered to the
muscle groups um and the electric motor current input ue for
the entire experiment duration for Subject A.

To assess the effect of the distributed feedforward RLC
component, two trials with different learning gains were per-
formed for Subject S5 (selected randomly from the healthy
individuals). Fig. 5 depicts the distributed muscle and electric
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Fig. 4. Stimulation intensity delivered to each muscle group um (top) and
the electric motor current input ue (bottom) for Subject A.

motor learning feedforward terms (i.e., Ŵd,m and Ŵd,e) for the
two trials. Fig. 5(a)–(d) illustrates the first trial where the mus-
cle learning gains were set to kL,m = [20; 20; 18; 18; 15; 15]
and k1,m = 85. Fig. 5(e)–(h) depicts the second trial where the
muscle learning gains were doubled compared to the first trial
and k1,m = 65. For both trials, the electric motor learning gain
was set to kL,e = 0.18. Fig. 6 shows the corresponding track-
ing performance of the two trials quantified by the cadence
RMS error and the position tracking error ė1. Fig. 6(a) and
(b) corresponds to the first trial and Fig. 6(c) and (d) for the
second trial.

Fig. 7 illustrates the muscle and electric motor learning
feedforward terms Ŵd,m and Ŵd,e for Subject A (a)–(d) and
Subject S3 (e)–(h). The differences in amplitude, symmetry,
and duration of the learning feedforward inputs can be con-
trasted for a participant with a movement disorder (Subject A)
and an able-bodied individual (Subject S3).

D. Discussion

The experimental results conducted in healthy individuals
and participants with NCs demonstrate the feasibility of the
controllers developed in (5) and (6) with distributed repetitive
learning inputs designed in (22) and (23) to cooperatively track
a desired cadence trajectory. The average cadence tracking
error ë1 is 0.03±3.61 RPM for seven able-bodied individuals
and 0.03±4.36 RPM for five participants with NCs. The aver-
age position tracking error ė1 is 0.15±8.43◦ for able-bodied
individuals and 0.21±17.24◦ for the participants with NCs
(see Tables II and III).

The average cadence and position tracking errors are sim-
ilar to the results reported in the FES-cycling literature such
as [10], [11], [38], and [45]. The cadence tracking performance
for both healthy and neurologically impaired individuals in
this paper is consistent with the cadence performance reported
in [10], where a robust approach was employed, and with [45],
where an RISE-based approach was implemented, exploit-
ing the stimulation of antagonistic biarticular muscles. The
cycling experiments performed in [10] included healthy indi-
viduals only and in [45] several able-bodied participants and
one subject with Parkinson’s disease. The implementation of

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 5. Effect of modifying muscle learning gains kL,m on Ŵd,m and Ŵd,e
during two different trials for Subject S5. For the first and second trials,
the muscle learning feedforward terms Ŵd,m are shown for the (a) and (e)
right (R) and left (L) quadriceps, (b) and (f) hamstrings, and (c) and (g)
gluteal muscle groups, and the (d) and (h) electric motor learning feedforward
term Ŵd,e.

the distributed RLC adds a feedforward term to each of the
lower-limb muscle group stimulation intensities and electric
motor current based on its past inputs. By the construction of
r in (11), the muscle and electric motor learning feedforward
terms have a proportional–integral–derivative form and affect
both cadence and position tracking.

The feedforward RLC term has a significant effect in the
tracking performance as depicted in the two trials (using differ-
ent muscle learning gains kL,m) for Subject S5 in Fig. 6. The
cadence RMS error and position error in Fig. 6(a) and (b),
respectively, depict the tracking performance of the first trial.
After 100 s, oscillations of both the cadence RMS error
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(a) (b)

(c) (d)

Fig. 6. Tracking performance for Subject S5 during two trials with different muscle learning gains kL,m. The cadence RMS error is depicted in (a) first trial
and (c) second trial. The position tracking error ė1 is depicted in (b) first trial and (d) second trial.

[Fig. 6(a)] and position tracking error [Fig. 6(b)] occur due to
the high robust gain k1,m which results in higher stimulation
intensities. The muscle learning feedforward terms Ŵd,m in
Fig. 5(a)–(c) grew consistently reaching a maximum of 250 μs
at the end of the first trial. The first trial resulted in increased
stimulation intensities um that induced discomfort, which may
potentially result in early experiment termination particularly
for participants with greater sensitivity to the stimulation.
Also, it is well known that higher stimulation intensities result
in increased muscle fatigue which inherently limits the exper-
iment duration due to the rapid decay of muscle force. The
cadence tracking percent error during the first trial shown in
Fig. 6(a) is 0.03±7.52%. Alternatively, the cadence RMS error
and position tracking error in Fig. 6(c) and (d), respectively,
illustrate a steady tracking performance during the second trial.
In the second trial, the muscle learning gains kL,m were dou-
bled and the gain k1,m was reduced compared to the first trial.
The cadence RMS error in Fig. 6(c) drops below 3 RPM inter-
mittently and never crosses 4 RPM. The position tracking error
ė1 in Fig. 6(d) decreases in amplitude from period to period.
Consistently, the muscle learning feedforward terms Ŵd,m in
Fig. 5(e)–(g) illustrate steady learning inputs across all muscle
groups reaching maxima of 90 μs for the quadriceps, 80 μs
for the hamstrings, and 100 μs for the gluteal muscle groups
during the second trial. The cadence tracking percent error
during the second trial shown in Fig. 6(c) is 0.12±6.52%.
As depicted in the second trial, steady stimulation inputs
result in smoother cadence tracking and prevents over-
stimulation of the muscles, potentially enabling longer cycling
sessions.

The distributed RLC is able to adapt for participants with
NCs. In Fig. 7(a) and (c), the quadriceps and gluteal learning
feedforward terms Ŵd,m illustrate high amplitude and asym-
metric profiles. These learning inputs may be representative of
the lack of neurological motor control and muscle weakness of
Subject A (SCI participant). The learning feedforward terms
for the right quadriceps (Ŵd,RQ) and glutes (Ŵd,RG) had higher
magnitudes with mean values of 82 and 89 μs than their left
counterparts. In Fig. 7 (e)–(h), the muscle and electric motor
learning feedforward terms Ŵd,m and Ŵd,e denote steady and
more symmetric profiles for Subject S3 (able-bodied partic-
ipant) with mean magnitudes for all muscle groups between
40 and 50 μs. These learning inputs may be representative of
the symmetry between the legs and the high muscle strength
of the healthy participant.

The percentage of time during which the participants with
NCs were actively stimulated suggests an adequate balance
between the FES and motorized contributions to maintain
the desired cadence. Moreover, stimulation times have a high
impact in the rate of muscle fatigue, which affects cycling
duration and thus the amount of dose of rehabilitative stim-
ulation. For the SCI participants, Subjects A (paraplegic)
and D (quadriplegic), the lack of muscle mass and strength,
intermittent spasms, and the lack of neurological motor con-
trol resulted in increased stimulation intensities with a mean
value across all muscle groups of 105 and 135 μs, respec-
tively. The percentage of time during which Subjects A and
D were actively stimulated was 34% and 31%, respectively,
to achieve a balance between the muscle’s contributions and
the motorized assistance. Subject B, a participant with SB,
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Muscle learning feedforward terms Ŵd,m for the (a) and (e) right (R) and left (L) quadriceps, (b) and (f) hamstrings, and (c) and (g) gluteal muscle
groups, and (d) and (h) electric motor learning feedforward term Ŵd,e for Subject A (impaired), (left column) and Subject S3 (able-bodied individual), (right
column).

evoked visible active contractions with 30% of the stimulation
intensities required for the SCI participants. The percentage
of time during which Subject B was actively stimulated was
32%. Subject C, a participant with MS, needed 25% of the
stimulation intensities required for the SCI subjects. Subject
C was actively stimulated 45% of the time. Subject E, a
post-stroke participant, had residual motor control on her left
affected side and full neurological motor control in her con-
tralateral side; however, the subject was asked to not contribute
voluntarily during the cadence experiments. Subject E was
actively stimulated for 46% of the time with 20% of the stim-
ulation intensities delivered to the SCI participants. Future
experiments in a longitudinal study can help to elucidate the
clinical significance of longer stimulation times in people with
different conditions.

The stability analysis ensures asymptotic tracking; how-
ever there are factors during experiments such as muscle
fatigue, disturbances in the cycle, and electromechanical delay,
which degrade the tracking performance. Nevertheless, the
results show that by switching the control effort between
the stimulation intensities delivered to the six muscle groups
and the electric motor, desirable cadence and position track-
ing was achieved. Clinical trials with a larger population of
participants with NCs are required to investigate the long-
term impact of the control methodology developed in this
paper. In [46], an FES-cycling study with 25 SCI participants
found important gains in neurological, motor, and sensory
function and increased muscle volume and strength during

29.1 months. A cycling protocol that adopts the distributed
repetitive learning approach for power tracking to monitor the
torque contribution of the muscles may lead to a more suitable
rehabilitation approach like in strength training.

VII. CONCLUSION

A nonlinear controller that switches among lower-limb mus-
cles and an electric motor with distributed learning feedfor-
ward inputs was designed to yield global asymptotic cadence
tracking. The switched muscle and electric motor distributed
learning compensates for the periodic dynamics of the desired
cadence trajectory. The robust feedback terms in the switched
controller aid in rejecting disturbances present in the motor-
ized cycle-rider system. The controller is implemented using
a nonlinear model with parametric uncertainties and without
the need to perform any identification procedures despite the
heterogeneity of conditions across participants. Global asymp-
totic tracking was achieved with the aid of a corollary to the
LaSalle–Yoshizawa theorem for nonsmooth systems.

The distributed repetitive learning switched controller was
tested in experiments with seven able-bodied individuals and
five participants with NCs, such as SCI, SB, MS, and post-
stroke. For the healthy control group and for the neurologically
impaired population, a mean RMS (computed over a time
window equal to the period T = 12 s) cadence error of
3.58±0.43 RPM (0.06±7.35% average error) and 4.26±0.84
RPM (0.1±8.99% average error) was obtained, respectively.
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The results obtained in people with NCs demonstrate the abil-
ity of the switched controller to yield consistent repetitive
cadence despite lower-limb asymmetries, muscle spasticity,
muscle atrophy, tremor, muscle weakness, hypersensitivity,
and absence of neurological motor control.

Long-term clinical trials with a larger and broader popu-
lation, including people with Parkinson’s disease, traumatic
brain injury, and cerebral palsy are needed to expand the
findings of this paper. For future extensions, the distributed
learning control technique can be applied for different track-
ing objectives in FES-based exercises such as power control
(i.e., track a desired torque output), which may be more suit-
able for intense strength training for certain participants with
NCs. Furthermore, a cycling protocol where participants with
residual neurological motor control can voluntarily contribute
to the pedaling may be desirable to test the distributed learning
method.

REFERENCES

[1] C. A. Rouse, V. H. Duenas, C. Cousin, A. Parikh, and W. E. Dixon, “A
switched systems approach based on changing muscle geometry of the
biceps brachii during functional electrical stimulation,” IEEE Control
Syst. Lett., vol. 2, no. 1, pp. 73–78, Jan. 2018.

[2] B. Lew, N. Alavi, B. K. Randhawa, and C. Menon, “An exploratory
investigation on the use of closed-loop electrical stimulation to assist
individuals with stroke to perform fine movements with their hemiparetic
arm,” Front. Bioeng. Biotechnol., vol. 4, p. 20, Mar. 2016.

[3] J. McCabe, M. Monkiewicz, J. Holcomb, S. Pundik, and J. J. Daly,
“Comparison of robotics, functional electrical stimulation, and motor
learning methods for treatment of persistent upper extremity dysfunc-
tion after stroke: A randomized controlled trial,” Archives Phys. Med.
Rehabil., vol. 96, no. 6, pp. 981–990, 2015.

[4] R. J. Downey, T.-H. Cheng, M. J. Bellman, and W. E. Dixon, “Switched
tracking control of the lower limb during asynchronous neuromuscular
electrical stimulation: Theory and experiments,” IEEE Trans. Cybern.,
vol. 47, no. 5, pp. 1251–1262, May 2017.

[5] T.-H. Cheng et al., “Identification-based closed-loop NMES limb track-
ing with amplitude-modulated control input,” IEEE Trans. Cybern.,
vol. 46, no. 7, pp. 1679–1690, Jul. 2016.

[6] Q. Wang, N. Sharma, M. Johnson, C. M. Gregory, and W. E. Dixon,
“Adaptive inverse optimal neuromuscular electrical stimulation,” IEEE
Trans. Cybern., vol. 43, no. 6, pp. 1710–1718, Dec. 2013.

[7] K. H. Ha, S. A. Murray, and M. Goldfarb, “An approach for the coop-
erative control of FES with a powered exoskeleton during level walking
for persons with paraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 24, no. 4, pp. 455–466, Apr. 2016.

[8] N. A. Alibeji, N. A. Kirsch, and N. Sharma, “A muscle synergy-inspired
adaptive control scheme for a hybrid walking neuroprosthesis,” Front.
Bioeng. Biotechnol., vol. 3, no. 203, pp. 1–13, Dec. 2015.

[9] N. Alibeji, N. Kirsch, and N. Sharma, “An adaptive low-dimensional
control to compensate for actuator redundancy and FES-induced mus-
cle fatigue in a hybrid neuroprosthesis,” Control Eng. Pract., vol. 59,
pp. 204–219, Feb. 2017.

[10] M. J. Bellman, R. J. Downey, A. Parikh, and W. E. Dixon, “Automatic
control of cycling induced by functional electrical stimulation with elec-
tric motor assistance,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2,
pp. 1225–1234, Apr. 2017.

[11] M. J. Bellman, T. H. Cheng, R. J. Downey, C. J. Hass, and W. E. Dixon,
“Switched control of cadence during stationary cycling induced by func-
tional electrical stimulation,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 24, no. 12, pp. 1373–1383, Dec. 2016.

[12] M. J. Bellman, T.-H. Cheng, R. J. Downey, and W. E. Dixon, “Stationary
cycling induced by switched functional electrical stimulation control,”
in Proc. Amer. Control Conf., 2014, pp. 4802–4809.

[13] M. J. Bellman, T.-H. Cheng, R. J. Downey, and W. E. Dixon, “Cadence
control of stationary cycling induced by switched functional electri-
cal stimulation control,” in Proc. IEEE Conf. Decis. Control, 2014,
pp. 6260–6265.

[14] C.-S. Kim et al., “Stimulation pattern-free control of FES cycling:
Simulation study,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 38, no. 1, pp. 125–134, Jan. 2008.

[15] K. T. Ragnarsson, “Functional electrical stimulation after spinal cord
injury: Current use, therapeutic effects and future directions,” Spinal
Cord, vol. 46, no. 4, pp. 255–274, 2008.

[16] P. Bauer, C. Krewer, S. Golaszewski, E. Koenig, and F. Müller,
“Functional electrical stimulation–assisted active cycling—Therapeutic
effects in patients with hemiparesis from 7 days to 6 months after stroke:
A randomized controlled pilot study,” Archives Phys. Med. Rehabil.,
vol. 96, no. 2, pp. 188–196, 2015.

[17] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, “Robotics, motor
learning, and neurologic recovery,” Annu. Rev. Biomed. Eng., vol. 6,
no. 1, pp. 497–525, 2004.

[18] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strate-
gies for robotic movement training after neurologic injury,” J. Neuroeng.
Rehabil., vol. 6, no. 1, p. 20, 2009.

[19] O. Raineteau and M. E. Schwab, “Plasticity of motor systems after
incomplete spinal cord injury,” Nat. Rev. Neurosci., vol. 2, no. 4,
pp. 263–273, 2001.

[20] L. L. Cai et al., “Implications of assist-as-needed robotic step train-
ing after a complete spinal cord injury on intrinsic strategies of motor
learning,” J. Neurosci., vol. 26, no. 41, pp. 10564–10568, 2006.

[21] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control: A learning-based method for high-performance track-
ing control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114,
Jun. 2006.

[22] H.-S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief
survey and categorization,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 37, no. 6, pp. 1099–1121, Nov. 2007.

[23] Y. Wang, F. Gao, and F. J. Doyle, “Survey on iterative learning control,
repetitive control, and run-to-run control,” J. Process Control, vol. 19,
no. 10, pp. 1589–1600, Dec. 2009.

[24] C. T. Freeman, E. Rogers, J. H. Burridge, A.-M. Hughes, and
K. L. Meadmore, Iterative Learning Control for Electrical Stimulation
and Stroke Rehabilitation (Control, Automation and Robotics),
1st ed. London, U.K.: Springer-Verlag, 2015. [Online]. Available:
https://www.springer.com/us/book/9781447167259

[25] W. E. Dixon, E. Zergeroglu, D. M. Dawson, and B. T. Costic,
“Repetitive learning control: A Lyapunov-based approach,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 4, pp. 538–545,
Aug. 2002.

[26] M. Sun, S. S. Ge, and I. M. Y. Mareels, “Adaptive repetitive learn-
ing control of robotic manipulators without the requirement for ini-
tial repositioning,” IEEE Trans. Robot., vol. 22, no. 3, pp. 563–568,
Jun. 2006.

[27] W. Messner, R. Horowitz, W.-W. Kao, and M. Boals, “A new adaptive
learning rule,” IEEE Trans. Autom. Control, vol. 36, no. 2, pp. 188–197,
Feb. 1991.

[28] J.-X. Xu and J. Xu, “On iterative learning from different track-
ing tasks in the presence of time-varying uncertainties,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 589–597,
Feb. 2004.

[29] C. T. Freeman, E. Rogers, A.-M. Hughes, J. H. Burridge, and
K. L. Meadmore, “Iterative learning control in health care: Electrical
stimulation and robotic-assisted upper-limb stroke rehabilitation,” IEEE
Control Syst. Mag., vol. 32, no. 1, pp. 18–43, Feb. 2012.

[30] P. Sampson et al., “Using functional electrical stimulation mediated by
iterative learning control and robotics to improve arm movement for
people with multiple sclerosis,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 24, no. 2, pp. 235–248, Feb. 2016.

[31] T. Seel, C. Werner, J. Raisch, and T. Schauer, “Iterative learning control
of a drop foot neuroprosthesis—Generating physiological foot motion in
paretic gait by automatic feedback control,” Control Eng. Pract., vol. 48,
pp. 87–97, Mar. 2016.

[32] X. Zhao, Y. Chu, J. Han, and Z. Zhang, “SSVEP-based brain–computer
interface controlled functional electrical stimulation system for upper
extremity rehabilitation,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 7, pp. 947–956, Jul. 2016.

[33] E. H. Copur, C. T. Freeman, B. Chu, and D. S. Laila,
“Repetitive control of electrical stimulation for tremor suppres-
sion,” IEEE Trans. Control Syst. Technol., to be published.
[Online]. Available: https://ieeexplore.ieee.org/document/8119729,
doi: 10.1109/TCST.2017.2771327.

[34] A. Hock and A. P. Schoellig, “Distributed iterative learning control for
a team of quadrotors,” in Proc. IEEE Conf. Decis. Control, Dec. 2016,
pp. 4640–4646.

http://dx.doi.org/10.1109/TCST.2017.2771327


DUENAS et al.: DISTRIBUTED RLC FOR COOPERATIVE CADENCE TRACKING IN FES CYCLING 1095

[35] J. Li, D. W. C. Ho, and J. Li, “Distributed adaptive repetitive consensus
control framework for uncertain nonlinear leader–follower multi-agent
systems,” J. Frankl. Inst., vol. 352, no. 11, pp. 5342–5360, Nov. 2015.

[36] X. Bu, Q. Yu, Z. Hou, and W. Qian, “Model free adap-
tive iterative learning consensus tracking control for a class of
nonlinear multiagent systems,” IEEE Trans. Syst., Man, Cybern.,
Syst., to be published. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8016381, doi: 10.1109/TSMC.2017.2734799.

[37] D. Meng and K. L. Moore, “Learning to cooperate: Networks of
formation agents with switching topologies,” Automatica, vol. 64,
pp. 278–293, Feb. 2016.

[38] K. J. Hunt et al., “Control strategies for integration of electric motor
assist and functional electrical stimulation in paraplegic cycling: Utility
for exercise testing and mobile cycling,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 12, no. 1, pp. 89–101, Mar. 2004.

[39] N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle–Yoshizawa
corollaries for nonsmooth systems,” IEEE Trans. Autom. Control,
vol. 58, no. 9, pp. 2333–2338, Sep. 2013.

[40] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Nonlinear
Control of Engineering Systems: A Lyapunov-Based Approach. Boston,
MA, USA: Birkhäuser, 2003.

[41] A. F. Filippov, “Differential equations with discontinuous right-
hand side,” in Fifteen Papers on Differential Equations (American
Mathematical Society Translations), vol. 42. Providence, RI, USA:
Amer. Math. Soc., 1964, pp. 199–231.

[42] F. H. Clarke, Optimization and Nonsmooth Analysis. Reading, MA,
USA: Addison-Wesley, 1983.

[43] N. J. Killingsworth and M. Krstic, “PID tuning using extremum seeking:
Online, model-free performance optimization,” IEEE Control Syst. Mag.,
vol. 26, no. 1, pp. 70–79, Feb. 2006.

[44] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic tun-
ing and adaptation for PID controllers—A survey,” Control Eng. Pract.,
vol. 1, no. 4, pp. 669–714, 1993.

[45] H. Kawai, M. J. Bellman, R. J. Downey, and W. E. Dixon,
“Closed-loop position and cadence tracking control for FES-
cycling exploiting pedal force direction with antagonistic biarticular
muscles,” IEEE Trans. Control Syst. Technol., to be published,
[Online]. Available: https://ieeexplore.ieee.org/document/8168400,
doi: 10.1109/TCST.2017.2771727.

[46] C. L. Sadowsky et al., “Lower extremity functional electrical stimulation
cycling promotes physical and functional recovery in chronic spinal cord
injury,” J. Spinal Cord Med., vol. 36, no. 6, pp. 623–631, 2013.

Victor H. Duenas, photograph and biography not available at the time of
publication.

Christian A. Cousin, photograph and biography not available at the time of
publication.

Courtney Rouse, photograph and biography not available at the time of
publication.

Emily J. Fox, photograph and biography not available at the time of
publication.

Warren E. Dixon, photograph and biography not available at the time of
publication.

http://dx.doi.org/10.1109/TSMC.2017.2734799
http://dx.doi.org/10.1109/TCST.2017.2771727


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


