
218 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 3, AUGUST 2002

A MATLAB-Based Control Systems Laboratory
Experience for Undergraduate Students: Toward

Standardization and Shared Resources
Warren E. Dixon, Member, IEEE, Darren M. Dawson, Senior Member, IEEE, B. T. Costic, and

Marcio S. de Queiroz, Member, IEEE

Abstract—This paper seeks to begin a discussion with regard to
developing computer aided control system design (CACSD) tools
to promote undergraduate controls laboratory development. The
advocated CACSD design tools are based on the popular, commer-
cially available MATLAB environment, the Simulink toolbox, and
the Real-Time Workshop toolbox. This paper describes how these
tools can be utilized to address several issues that are confronted
by control systems educators including: standardization, budget
constraints, and limited resources. Specifically, by confronting the
standardization issue, the following advantages will be realized
for laboratory development: 1) the required computer hardware
will be low cost; 2) commercially available plants from different
manufacturers can be supported under the same CACSD environ-
ment with no hardware modifications; 3) both the Windows and
Linux operating systems can be supported via the MATLAB based
Real-Time Windows Target and the Quality Real-Time Systems
(QRTS) based Real-Time Linux Target; and 4) the Simulink block
diagram approach can be utilized to prototype control strategies,
thereby, eliminating the need for low level programming skills.
The advantages related to standardization of the CACSD design
tools will enable educators to confront the additional budget
constraint and limited teaching resources issue by facilitating: 1)
the sharing of laboratory resources within each university (i.e.,
between departments); 2) the development of Internet laboratory
experiences for students (i.e., between universities); and 3) the
initiation of an Internet-based archive of laboratory tutorials and
Simulink files for in-house developed plants and commercially
available plants.

Index Terms—Control systems laboratory, Internet-based con-
trol, real-time control, Simulink.

Manuscript received July 3, 2001; revised January 9, 2002. This work was
supported in part by the Eugene P. Wigner Fellowship Program of the Oak Ridge
National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. De-
partment of Energy (DOE) under Contract DE-AC05-00OR22725 and in part by
the U.S. DOE Environmental Management Sciences Program Project ID 82797
at ORNL, and in part by U.S. National Science Foundation Grant DMI-9457967,
ONR Grant N00014-99-1-0589, a DOC Grant, and an ARO Automotive Center
Grant.

W. E. Dixon is with the Engineering Science and Technology Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6305 USA (e-mail:
dixonwe@ornl.gov).

D. M. Dawson is with the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC 29634 USA (e-mail:
ddawson@ces.clemson.edu).

B. T. Costic is with Boeing Satellite Systems, El Segundo, CA 90009 USA
(Bret.T.Costic@boeing.com).

M. S. de Queiroz is with the Department of Mechanical Engineering,
Louisiana State University, Baton Rouge, LA 70803-6413 USA (e-mail:
dequeiroz@alpha2.eng.lsu.edu).

Publisher Item Identifier S 0018-9359(02)05049-5.

I. INTRODUCTION

BECAUSE of the multidisciplinary nature of the field, a
consensus exists among control systems educators that

laboratory experiences are particularly important with regard
to the teaching of control systems [1]. Unfortunately, recent
studies have revealed a lack of formal experimental control
education in many universities. Specifically, a control systems
report card from industry [1] showed relatively low ratings
for engineering graduates in attributes, such as laboratory
and hands-on experiences. The Accreditation Board for En-
gineering and Technology (ABET) 2000 criteria have also
recognized that a well-developed laboratory component is a
key for preparing a modern technological workforce. In addi-
tion, the recent National Science Foundation (NSF)/Control
Systems Society (CSS) workshop on control education [2]
acknowledged the importance of laboratory experiences with
regard to exposing students to broader design issues that range
from problem specification to hardware implementation and
economic considerations. To be more specific, the NSF/CSS
workshop report [2] forwarded the following statement as one
of its primary recommendations: “Promote control systems
laboratory development… and make experimental projects an
integral part of control education for all students. …” Unfortu-
nately, despite the fact that ABET, NSF, and most faculty agree
that the control laboratory experience is important, a strong
emphasis on laboratory-based education is not commonplace
among academic institutions (as evident by the low ratings of
the hands-on abilities of engineering graduates reported in [1]).

Given the above impetus, control systems educators have
recently been investigating how technological advances can im-
pact laboratory-based education. That is, advances in hardware
and software technologies have generated much discussion
with regard to the nature and development of an undergraduate
control systems laboratory experience [3]–[6] and with regard
to remote access to the control systems laboratory [7]–[10]. In
summary, recent publications regarding control systems educa-
tion point out that because of the advent of high-speed, low-cost,
real-time computing platforms, the development of control
systems laboratory hardware is now becoming cheaper and
more accessible. Moreover, developments in automated code
generation allow users to create real-time code from graphical,
control system simulation software (e.g., MATLAB/Simulink).

0018-9359/02$17.00 © 2002 IEEE

DIXON et al.: A MATLAB-BASED CONTROL SYSTEMS LABORATORY EXPERIENCE FOR UNDERGRADUATE STUDENTS 219

These tools enable educators and students to focus on control
system design, implementation, and evaluation rather than
on time-consuming, low-level programing (i.e., real-time
programing that is required to interface with control plants
is often beyond the scope of undergraduate control courses).
In addition, a variety of educational/research plants are now
commercially available from different vendors that capture the
multidisciplinary nature of the field (e.g., robot manipulator,
inverted pendulum, magnetic levitation, water tank, pH control
rig, helicopter, ball and beam, dc motor). However, despite the
recent interest in incorporating technological advancements
into control systems laboratory courses, a control laboratory
experience for a typical undergraduate is not commonplace.
This fact may be credited to a number of issues; however,
in this paper, the following barriers are addressed: 1) lack of
standardized hardware/software; 2) budget constraints; and
3) limited teaching resources.

This paper describes computer aided control system design
(CACSD) software tools and how they can be applied to over-
come the aforementioned obstacles that impede undergraduate
control systems laboratory experiences. Specifically, the devel-
opment of a set of standardized CACSD software tools are de-
scribed that allow a student to prototype controllers for a va-
riety of manufacturers’ supplied plants using a student-friendly
Simulink/Real-Time Workshop (RTW) front-end. Based on the
advantages of confronting the standardization issue, potential
solutions to the budget constraint and limited teaching resource
issues are provided. Specifically, some future directions are de-
scribed with regard to control system laboratory development
that will improve faculty productivity by fostering cooperation
among various academic departments and institutions, and with
regard to developing new material for control systems educa-
tion. For example, the creation of a future Internet-based archive
of laboratory tutorials and Simulink files for inhouse developed
plants and commercially available plants is discussed. More-
over, some possible technical directions that can be pursued with
regard to Internet laboratory experiences for students who attend
institutions that do not have direct access to control equipment
are also highlighted.

This paper is focused solely on CACSD design tools that
use a Simulink/RTW interface and do not require a digital
signal processing (DSP) board. The reason that this paper
is targeted only at CACSD tools that use a Simulink/RTW
interface is that, based on conversations with leading man-
ufacturers of undergraduate control equipment, it seems
that the future undergraduate laboratory experience will
be MATLAB/Simulink-based. The reason for excluding
DSP-based tools is that a DSP-based architecture cannot be
easily interfaced with current plants (i.e., the CACSD must be
able to interface with commercially available plants without
requiring hardware modifications). Moreover, DSP-based
control architectures tend to be excessively expensive and com-
plicated when compared to a non-DSP, personal computer (PC)
based solution. Hence, based on the refined class of CACSD
tools that are examined in this paper, software environments
such as Advanced Realtime Control Systems, dSPACE, or the
laboratory design discussed in [11] will not be examined. This
paper also excludes the Extended Real-Time Toolbox, since

it does not seem to guarantee some measure of hard real-time
performance. Information regarding the outstanding products
made by Opal-RT has also been omitted, since it is highly
unlikely that an undergraduate laboratory would be constructed
around a sophisticated product that utilizes two separate PCs
as the hardware platform as well as two different operating
systems (i.e., QNX and Win32). This paper is organized as
follows. In Sections II–IV, the issues of standardization, budget
constraints, and limited resources are addressed, respectively.
Concluding remarks are given in Section V.

II. STANDARDIZATION ISSUE

In this section, issues related to the standardization of the
computational platform and the hardware/software interface
are described. As a means to overcome the standardization
issues related to the hardware/software interface, a set of
CACSD tools is advocated. A discussion is provided that
demonstrates how the CACSD tools have been utilized at
Clemson University, Clemson, SC, and comments are provided
regarding the application of the CACSD to inhouse developed
experimental plants (e.g., the pendubot [12]), cost comparisons,
and real-time performance.

A. Computational Platform

One of the first standardization issues to be addressed by
control educators is the computational engine. Fortunately, be-
cause of factors such as cost, ease-of-use, and compatibility, a
consensus is slowly forming among control educators regarding
the use of the PC (excluding a DSP board) as the standard
computational engine. The feasibility of using a PC without
requiring an add-on DSP board for control applications seems
to have occurred sometime around the 1993 timeframe as a
result of the innovative work by Quanser; however, it took
some time for many control engineers to become comfortable
with the concept. In fact, only until around 1997 did the use
of standard PC hardware (i.e., without the requirement for a
DSP), in conjunction with high level software language tools,
become a more widely accepted method for implementing so-
phisticated control strategies in real-time. Although the standard
PC hardware is becoming a standard among control educators,
questions regarding the standardization of a software front-end
and educational plant hardware are still open (this is mainly fu-
eled by educational plant manufacturers who often use custom
software front-ends and unique hardware interfaces as a means
to ensure profit share).

B. Hardware/Software Interface

Since the PC is becoming the standard computational
engine for control systems laboratories, the biggest obstacle
to standardized control systems laboratories is the differences
in various hardware/software interfaces. For example, while
Quanser has been at the forefront of developing a standard
front-end for laboratory experiments based on widely utilized
educational tools such as Simulink, other equipment manufac-
turers have slowly embraced this concept by developing plants
that utilize proprietary hardware/software components. That
is, each laboratory experiment manufacturer typically utilizes
a different software environment, interface hardware, and I/O

220 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 3, AUGUST 2002

board. As a result, undesirable hardware and/or software modi-
fications are often necessary to develop a common laboratory
testbed that can be utilized among experiments developed
by different vendors because of the incompatibility resulting
from the vendor-specific hardware/software interface. To
alleviate this problem, Educational Control Products (ECP) and
Feedback recently started marketing products with common
front-end software environments that exploit the use of
Simulink, Real-Time Windows Target (RTWT) and Real-Time
Linux Target (RTLT), and general I/O boards (to facilitate a
common hardware interface). Recently, Quanser developed the
WinCon software environment to provide a Simulink/RTW
front-end for Win32 operating systems (www.microsoft.com);
unfortunately, WinCon cannot be readily used with plants sold
by other manufacturers (e.g., ECP, Feedback, Mechatronic
Systems) without back-engineering their electronic interfacing
for use with a specific I/O board or writing device drivers for
other I/O boards. This retrofit-based approach often results in a
barrier for many departments because it requires a certain level
of programing and/or electronics expertise that simply may not
exist. In addition, a homegrown retrofit-based approach is often
time consuming and unreliable, often requiring additional staff
to be employed to provide technical assistance. One approach
that some control educators have taken to overcome the afore-
mentioned compatibility issues is to design the control systems
laboratory using plants from only one manufacturer (e.g., [3]).
However, this approach limits the educational experience to the
plants supplied by one manufacturer and does not allow for the
flexibility of rotating between a wide range of experiments by
various manufacturers or the development of inhouse experi-
ments. Moreover, this approach excludes the development of
inhouse testbeds which many educators have developed as a
result of: 1) the incompatibility among the leading educational
control equipment manufacturers, 2) the disillusionment with
some of the commercially available CACSD front-ends, or 3)
the interest in examining a plant that is more challenging from
an educational and/or research point of view.

C. Standardizing the CACSD

To hurdle the hardware/software standardization obstacles
that impede the development of a control systems testbed that
incorporates experimental plants in a plug-and-play manner,
a software environment is required that provides a low-cost,
standardized interface for commercially available plants and/or
inhouse developed plants. A hierarchical CACSD environment
that meets these requirements is composed of five design tools
including: MATLAB, Simulink, RTW, RTLT, and RTWT. Each
of these software components can be executed on standard PC
hardware running on the Linux (see www.linux.com) or Win32
operating systems. Fig. 1 illustrates the hierarchical structure
of the CACSD environment with interfaces to the user and a
physical plant. Since MATLAB, Simulink, RTW, RTLT, and
RTWT are the components of the CACSD environment, a brief
description of each component is given as follows (see also
[13]).

MATLAB [14] is a software environment that allows prob-
lems and solutions to be expressed in familiar mathematical
notations. Numerous toolboxes and other software packages

Fig. 1. The CACSD environment.

have been developed for MATLAB to facilitate a variety of
engineering and educational tasks such as algorithm devel-
opment, modeling, simulation, data analysis, visualization,
engineering graphics, and application development (including
graphical user interface (GUI) development). Simulink [14] is a
software package that works in conjunction with MATLAB for
modeling, simulating, and analyzing dynamic systems through
an intuitive block diagram-based GUI that utilizes various
block-set libraries to incorporate preconfigured blocks and con-
nectors by simple drag and drop operations. Scopes and other
display blocks allow the user to view the simulation results
while the simulation is still running. RTW [14] is an automatic
C language, code generator for Simulink that generates C code
directly from the Simulink models and automatically constructs
a file that can be executed in real-time in various environments.
The block diagram interface of Simulink coupled to the RTW
code generator allows the user to concentrate on the modeling
and control issues as opposed to programing issues (although
if a faculty wanted to include programing skills in some
laboratory exercises, these skills could be incorporated through
the development of S-function1 blocks).

RTLT [15] is a software package that provides a user with the
ability to implement a Simulink block diagram on a standard PC
in hard real-time (i.e., provide a deterministic response). Specif-
ically, RTLT is a set of source files, device driver libraries, a
template makefile, and a MEX-file [16] interface that uses RTW
to automatically generate and compile C code on a PC running
RT-Linux from a user-defined Simulink block diagram. During
the execution of a Simulink block diagram, RTLT captures sam-
pled data from one or more input channels (e.g., A/D channels,
digital lines, and encoder lines) and then provides the data to the
block diagram model. The Simulink block diagram model then
processes the data accordingly. RTWT [14] is a Win32-based
software package that has similar capabilities as RTLT. Specifi-
cally, RTWT merges the power of Simulink block diagrams and
the C code conversion ability of RTW into one package that
is able to implement a control algorithm on Win32 operating
systems.

1As stated in [14], an S-function is a description of a Simulink block that
is encapsulated in a programming language. For example, S-functions can be
written in MATLAB, C, C++, Ada, or Fortran. S-functions that are not devel-
oped using MATLAB script files can be compiled as MEX-files [16] using the
MEX utility described in the MATLAB Application Program Interface Guide
and are dynamically linked into MATLAB when needed.

DIXON et al.: A MATLAB-BASED CONTROL SYSTEMS LABORATORY EXPERIENCE FOR UNDERGRADUATE STUDENTS 221

To illustrate the advantages of this CACSD software en-
vironment, an example laboratory exercise (stabilization of
an inverted pendulum manufactured by ECP) was performed
utilizing RTLT. Specifically, after some collaborative efforts
with QRTS, a software driver for the ECP I/O board was devel-
oped that facilitates control prototyping with a Simulink/RTW
front-end. A simple Simulink block diagram was then devel-
oped for a proportional derivative controller that forced the
inverted pendulum to track a square wave reference signal. The
Simulink user interface tools were then used to tune the control
gains to achieve the desired response.

The main advantages observed from this process were that
the control experiment was implemented in real-time using
a low-cost standard PC, and the executable was generated
from a Simulink block diagram; hence, low-level programing
skills were not required. Motivated by these advantages, other
experiments were performed on various plants from various
vendors to determine if the CACSD could be used to overcome
the standardization problem. Specifically, new Simulink files
were developed, and similar experiments were performed
using the other plants from ECP (e.g., the Servo Trainer,
Rectilinear, and Torsion experiments). This same process was
repeated with Feedback plants (e.g., the Helicopter, Magnetic
Levitation, Modular Servo, and Pendulum experiments), and
a Quanser plant (e.g., the Inverted Pendulum experiment).
To illustrate that the above solution to the standardization
problem is not limited to the Linux operating system, soft-
ware drivers were developed in collaboration with QRTS to
develop a software interface for RTWT (i.e., a Win32 operating
system solution). This approach allowed all of the previous
Simulink files developed under the Linux operating system
to be reused for controlling the ECP plants, Feedback plants,
and the Quanser plant under a Win32 operating system. That
is, by using the same Simulink block diagrams with the I/O
blocks replaced by appropriate S-function blocks that were
developed in collaboration with QRTS, the same experiments
were implemented on a PC operating under Windows 98 using
RTWT (i.e., the CACSD does not require different operating
modes to be selected; rather, the user simply selects the proper
I/O block from a library for the Simulink block-diagram).
Explicit details regarding the hardware interface procedures,
developed Simulink block-diagrams, and experimental results
were incorporated in various laboratory instruction manuals
that can be freely downloaded from the manuals link of QRTS
(see www.qrts.com).

In addition to illustrating the compatibility of the CACSD
with inhouse developed plants, experiments were also per-
formed with the Mechatronic Systems, Inc. Pendubot. By
leveraging off the previous experiences, a controller was
prototyped for the Pendubot under RTLT with the ServoToGo
I/O board in a few hours. Because of the availability of the
QRTS developed software interface for the ServoToGo I/O
board, it would be a trivial matter to run the same experiment
under RTWT. Since QRTS and Quanser both supplied solutions
for the use of a generic multifunction I/O board for both the
Win32 and Linux operating systems (i.e., QRTS supports both
the MultiQ and ServoToGo I/O boards while Quanser supports
the MultiQ and Keithley–Metrabyte I/O boards), it seems that

the standardization issue has been solved by the advocated
CACSD even for inhouse developed plants (provided a generic
I/O board is utilized).

To interface with the various plants from the different equip-
ment manufacturers and on different operating systems, collab-
orative efforts were pursued with QRTS, Quanser, Mechatronic
Systems, ECP, and Feedback to develop various device drivers.
Since the detailed results from these efforts would require an
extensive and narrowly focused discussion, these details have
been omitted; however, these efforts have resulted in product
changes by QRTS, Mechatronic Systems, ECP, and Feedback,
to facilitate the standard CACSD environment so that other ed-
ucators do not have to pursue similar efforts. These product
changes include: 1) incorporation of the device drivers in the
source code (e.g., QRTS now incorporates the device drivers
in the RTLT product, provides S-functions for interfacing with
various I/O boards for RTWT, and provides laboratory man-
uals for examples of how to use the products based on the col-
laborative efforts), 2) new front-end environments (e.g., ECP
and Feedback), and 3) new hardware interface capabilities (e.g.,
Mechatronic Systems). These product changes were the result
of CACSD software manufacturers and manufacturers of edu-
cational products that realize the benefits of standardization for
the educator and for the manufacturer (i.e., with a common soft-
ware interface, the competition between manufacturers reduces
to the quality and innovation of the physical plant and the asso-
ciated documentation regarding the use of the product).

Some of the main advantages and disadvantages (with regard
to the standardization issue) that were experienced when using
the CACSD are summarized below:

1) Standardization of the software interface via Simulink.

a) Advantages: The advantages of having a stan-
dardized software interface include: 1)reduced
development time—the authors did not have
to develop their own custom GUI, learn how
to use the custom software interface that was
supplied by the various plant manufacturers, or
be familiar with low-level real-time programing
skills; 2) improved student familiarity —all of
the students that were involved in testing the
CACSD with different plants were either familiar
with the Simulink interface or quickly became
familiar because of the intuitive block-diagram
structure; 3)improved software flexibility —new
experiments (e.g., adaptive nonlinear model-based
experiments) could be quickly and easily proto-
typed (proprietary interfaces are often inflexible
and restrictive to customization); 4)improved
operating system support—the transition from
Linux to Windows 98 was seamless; and 5)im-
proved plant selection—the choices regarding
different educational plants was reduced to which
manufacturer developed the best physical plant
since the software interface was common.

b) Disadvantage: The user may be limited by the capa-
bilities of Simulink (e.g., the data plotting features)
unless time and expertise is available to develop

222 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 3, AUGUST 2002

custom “replacement” blocks (e.g., a user could
write code to develop a new data plotting block).

2) Standardization of the hardware interface.

a) Advantages: The advantages of having a standard-
ized hardware interface include: 1)reduced devel-
opment time—a general multipurpose I/O board
(e.g., the MultiQ or the ServoToGo) was used to in-
terface with the various manufacturer and inhouse
plants; 2) improved hardware flexibility —the
authors were not constrained to use a specific
company’s hardware interface (i.e., the manufac-
turer’s I/O board was replaced with an existing I/O
board); and 3)improved plant flexibility —plants
developed inhouse and by multiple manufacturers
were easily controlled using a general multipur-
pose I/O board.

b) Disadvantage—If a user wants to use the I/O board
that the educational plant manufacturer provides,
device drivers may have to be written or purchased
to interface with RTW in the desired operating
system; however, as described previously, this dis-
advantage has recently been mitigated by changes
made by various companies.

D. Cost Comparison

For comparison purposes, the cost of the WinCon solution
for Win32 operating systems is approximately $1277 US per
seat, while the cost of the RTWT solution is approximately
$150 US per seat. (All of the price quotes in this paper
are calculated based on a classroom kit pricing structure for
less than 25 copies and are subject to change.) The cost
of a fully supported SimuLinux solution is approximately
$527 US per seat, while the cost of a fully supported RTLT
solution is approximately $682 US per seat. Based on the
above pricing structure, it seems that RTWT may become
the real-time computation engine of choice for undergraduate
laboratory instruction. That is, while WinCon, SimuLinux, and
RTLT have some advantages over RTWT (e.g., RTWT has
no guaranteed measure of real-time performance), the pricing
scheme may outweigh the disadvantages for undergraduate
laboratory instruction. In addition, since MathWorks provides
software interfaces for many generic I/O boards that can be
used with inhouse developed plants, and several vendors of
commercially available plants (e.g., Feedback and ECP) are
providing RTWT software interfaces for their equipment, it
seems inevitable that RTWT will become the standard real-time
engine for undergraduate control laboratories.

E. Real-Time Performance

There is a consensus skepticism about the real-time capa-
bilities of RTWT since no information has been published that
ensures some measure of real-time performance of RTWT
under Win32 operating systems. To examine the real-time
performance of RTWT from a practical point of view, some
relatively sophisticated, trajectory tracking, control exper-
iments were recently completed with RTWT. Specifically,

the same control experiments were performed using both
RTLT and RTWT for a six degree-of-freedom PUMA 560
robot manipulator. After comparing the link position tracking
performance for both RTLT and RTWT, no distinguishing
differences could be determined. Since RTLT ensures real-time
performance by using a hard real-time extension of Linux,
it seems that the real-time performance of RTWT may not
be a practical issue (especially given the pricing structure as
described in the previous section). Perhaps, WinCon (with
the appropriate extensions), SimuLinux, and RTLT with their
guaranteed hard real-time performance and other advantages
will remain attractive alternatives for the control researcher or
industrial user who demands hard real-time performance as
well as a Simulink/RTW front-end.

III. B UDGET CONSTRAINT ISSUE

In this section, the use of shared laboratories between various
departments and various universities is described with regard to
easing the issue of the budget constraint. Included in this dis-
cussion is a description of the advantages and disadvantages of
a shared laboratory. Finally, a discussion is provided regarding
how the advocated CACSD environment can be utilized to over-
come some of the obstacles associated with an Internet-based
shared laboratory.

A. Shared Laboratories Within a University

Currently, it is quite common for engineering departments
(e.g., electrical, mechanical, aerospace, chemical) to simul-
taneously offer undergraduate control system courses. These
courses, although sharing some common theoretical content,
are properly adapted to the technical needs of their respec-
tive engineering fields [6]. Because of the multidisciplinary
nature of control, it seems natural to develop educational
control labs that are shared among engineering departments.
In addition, the existing paradigm of individual departmental
laboratories seems difficult to sustain as a result of the high
cost of laboratory equipment (i.e., the plants, oscilloscopes,
voltmeters, actuators, sensors, computers, I/O boards, etc.)
and the increasing demands on faculty time [6]. That is, funds
can be saved because the field of control systems is multi-
disciplinary in nature. As noted in the NSF/CSS workshop
[2], shared laboratories have several financial and pedagogical
advantages. For example, shared laboratories: 1) avoid the
duplication of equipment, and hence, enable the more efficient
use of resources; 2) increase the exposure of students to
the multidisciplinary nature of the field; and 3) encourage
interaction of faculty and students across disciplines. One
recent implementation of the shared laboratory concept that
can serve as a model for other universities is the experience
instituted in the College of Engineering, University of Illinois
at Urbana-Champaign. Specifically, an integrated network of
laboratories was designed to service all controls-related courses
in the College of Engineering. A detailed description of this
experience can be found in [6]. Other educators who have
investigated the development of synergistic multidisciplinary
“mechatronic” laboratories can be found in [17]–[23].

DIXON et al.: A MATLAB-BASED CONTROL SYSTEMS LABORATORY EXPERIENCE FOR UNDERGRADUATE STUDENTS 223

B. Internet Laboratory Concept

Taking the shared laboratory paradigm a step further, the
controls community is also starting to witness a trend toward
the development of Internet-based labs [7]–[10]. The idea is
to develop laboratory experiments that can be accessed and
controlled remotely over the Internet. The primary motivating
factor of the Internet laboratory concept is to enhance the
accessibility of laboratory facilities for instructors and students.
An Internet laboratory experience can be used to accom-
modate students whose schedules may not conform to the
traditional laboratory model or students who require more time
to complete laboratory work. The Internet laboratory concept
also provides an experimental experience for instructors and
students at universities that may lack the inhouse resources.
Typical components of an Internet laboratory include [7]: 1) a
physical plant to be controlled; 2) a control server computer that
computes the control algorithm and handles actuator/sensor
signals to/from the plant and all communication with the remote
user; 3) a controlling client computer that allows a remote user
to operate the plant; 4) an Internet connection to link the client
computer to the server computer (e.g., TCP/IP protocol); and
5) audio, video, and/or animation to give the remote user a
sense of telepresence in the laboratory.

C. Obstacles Associated With the Internet Laboratory Concept

Although the use of the Internet may save funds with regard to
providing a controls laboratory experience for undergraduates,
there are some obstacles that impede the development of an
Internet-based lab. As described previously, the operation of
Internet laboratories requires that the remote user connect to
the server computer via a client computer and an Internet
connection. Once connected, most of the recently developed
remote labs only allow users to send set point commands
to the physical plant and perhaps alter the control gain (i.e.,
the controller structure remains fixed). This arrangement is
very restrictive since the student cannot design and test his/her
own controller. Ideally, an Internet laboratory should allow the
student to design his/her own controller (e.g., allow a student
at one university to implement a linear lead-lag controller,
while allowing a student at another university to implement
a nonlinear controller), upload it to the server computer, and
test it on the actual plant. In this scenario, three issues need to
be carefully addressed. First, the server computer should have
the ability to detect and avoid problems (e.g., mistakes when a
user uploads an “unsafe” controller that results in an unstable
system or saturated amplifiers). One potential solution of this
problem is to incorporate a “simulate first” criterion, where
the student’s controller must pass a simulation test before
the controller is implemented on the actual plant. This option
will also free the plant resource for other remote students.
Faulty controllers will not occupy the plant, allowing more
access for students who have designed successful controllers.
Second, the Internet laboratory system should only allow the
experiment to run for a preset (by the host) duration. This
requirement is necessary because some students may want to run
an experiment for excessive periods of continuous time (because
of excitement over success, waiting for a lab teaching assistant to

check that the experiment is successful, etc.), blocking other
remote students from accessing the plant. Potentially, if a
host experiment becomes excessively popular among remote
institutions, a scheduling procedure (potentially at a cost to
the remote institution) may have to be incorporated. Third,
to the greatest extent possible, the Internet laboratory system
should avoid requiring the installation of special software on
the client computer since compatibility problems may arise
and discourage the student from making the effort necessary
to get the experiment working. Some Internet-based robotic
systems work using a web browser as the human interface
for the remote computer system [8]. Although this solution
eliminates the need for downloading specialized software, it
limits the prototyping of new control strategies. Another aspect
requiring further investigation is that, because of Internet traffic
and bandwidth, one must take care in developing a system
to provide telepresence features that augment the Internet
laboratory experience. Previous Internet-based robots (e.g.,
[24]) have only given visual feedback through a web browser
of the robot’s status which is updated every 5–10 s. This slow
visual update detaches the end user from a feeling of “being
there.” That is, it seems that the present speed of the Internet
requires some sort of hybrid approach that provides a limited
“low-resolution” live video of the experiment followed by a
“high-resolution” downloadable version of the video.

D. Internet Capabilities of the CACSD

As explained previously, RTLT and RTWT are components of
the advocated CACSD software environment that allow the user
to implement a Simulink block diagram in real-time on stan-
dard PC hardware, using the RT Linux/Win32 operating sys-
tems. Presently, RTLT provides Internet-based control capabil-
ities out of the box. Specifically, RTLT’s Internet capability is
achieved through the use of the X Window system, which im-
plements a protocol for network-based windowing. Specifically,
the user can log into a RTLT PC, using telnet or rlogin, and dis-
play an xterm (an X Windows client) at the user’s workstation.
MATLAB can then be started in the xterm, thereby, allowing the
user to: 1) create/edit a Simulink block diagram; 2) compile the
Simulink block diagram using RTW; and 3) execute the com-
piled code in real-time. The user may monitor data signals at
the remote PC or workstation using the Simulink scope.

The performance of the current Internet capability of RTLT is
acceptable on a local area network; however, because of network
traffic, this solution is not practical for use over the Internet. The
use of X Windows to remotely display a real-time plot, such
as the Simulink scope, consumes much more bandwidth than
simply sending decimated log data to the remote user work-
station. In addition, the Internet experience (see Fig. 2) will be
more realistic to the user if: 1) live streaming video of the experi-
ment is provided as the experiment is operating; 2) a high quality
30 fps version is provided when the experiment is over; and 3) a
live virtual reality (VR) model is animated as the experiment is
operated (i.e., this animation would be directly connected to the
actual plant outputs). The VR animation would allow the student
to examine the system from any viewpoint, something not pos-
sible with a simple fixed camera video. In addition, the ability
to synchronize the video and VR playback with plots of signals

224 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 3, AUGUST 2002

logged during the control would be very useful, since this capa-
bility would allow the experimenter to correlate the behavior of
the physical plant with the variables being controlled. Note that
this scheme is in contrast to simply having a student perform a
local closed-loop computer simulation, because the student can
see and hear the experiment execute and, despite the simplicity
or complexity of the experiment, the student can make a connec-
tion that a real system exists and not just a computer simulation.
The VR playback is simply a means to allow a more detailed
view of the experiment (which is more interesting once the stu-
dent makes the connection that he/she is really in control of a
physical system). Although Win32 operating systems do not in-
herently allow remote access, as does Linux, similar function-
ality can be achieved on a Win32 platform running RTWT by
installing additional software. One possible option is the use of
free Internet resources such as Virtual Network Computing (see
www.uk.research.att.com/vnc/).

In essence, the use of remote operation has the advantage of:
1) reducing costs by sharing laboratory equipment; 2) allowing
users to have greater oversight of the control implementation;
and 3) allowing access to facilities 24 h/day. Although the ben-
efits of remote operation are monumental, there are also draw-
backs to such activity. Any type of computer system that allows
free access is vulnerable to hacking. To maximize security, users
can be forced to use local copies of Simulink to create models,
which should then be uploaded to the Internet Laboratory PC.
All interactions between the Internet Laboratory PC and the
user’s workstation can then be implemented through commu-
nication protocols. (This method limits what users are able to
do on the Internet Laboratory PC.) In addition to security con-
cerns, there is no guarantee that the user’s code is error free. For
example, the user’s code may contain syntax errors, undefined
variables, or calculation errors that may result in an unstable
closed-loop system (i.e., excessive voltage may be commanded
and/or violent oscillations may occur). To address these issues,
the community needs to investigate using a switching control
strategy that detects situations in which the user’s controller is
determined to be “unsafe.” If an unsafe control situation is de-
tected, the safe controller is switched on, and the user is notified
that his/her controller has failed; hence, system robustness is as-
sured while allowing maximum flexibility for the user. One also
needs to ensure that all Internet experiments are self-resetting,
so that the system will be able to reboot itself and resume oper-
ation without local human intervention.

Remark 1: The use of remote laboratory technology is
meant to provide students with laboratory experience on sys-
tems that would otherwise be inaccessible, to facilitate student
enrollment by individuals with schedules that do not conform to
the typical laboratory schedule, and to enable rapid prototyping
of control designs without time-consuming hardware/software
development and interfacing. Although remote technology can
compliment a student’s laboratory experience, it is important to
stress that it should not be used as a substitute for “hands-on”
experience. That is, traditional “hands-on” hardware/software
development and interfacing experiences of a traditional
curriculum should not be completely replaced with a remote
laboratory experience and should still remain as a component
of a control systems laboratory.

Fig. 2. Internet control laboratory setup.

IV. L IMITED TEACHING RESOURCEISSUE

One of the possible reasons that engineering graduates
showed relatively low ratings in laboratory skills in the recent
control systems report card from industry [1] could be that
either control systems laboratories are not commonplace or
that the control systems laboratory experience is limited by:
1) outdated and/or uninteresting material; 2) complicated inter-
faces that inhibit proficiency among the laboratory assistants
and students; and 3) no quality laboratory manuals to clearly
connect the classroom theory to the experimental exercises.
One reason for these possible shortcomings is the time that
an educator would be required to invest. In this section, some
specific time consuming tasks that are required to develop or
update a control systems laboratory are examined. Then, based
on some of the advantages of standardizing the CACSD, some
potential mechanisms for reducing the investment of teaching
resources are presented.

A. Currently Required Resource Investments

The development of a new laboratory is often time con-
suming for faculty because: 1) educational plants must be built
or purchased; 2) the appropriate software/hardware require-
ments for each plant must be satisfied; 3) the hardware must be
set up and tested; 4) the dynamic model of the plant must be
developed; 5) the control law must be designed and tested; and
6) a manual must be written or purchased that instructs the stu-
dent on how to construct and implement the controller. While
purchasing educational plants from commercial companies can
eliminate some of the above obstacles, educators are often not
satisfied with the instructional material that is purchased with
these “canned” plants. From an instructional perspective, the
main problem is the lack of sufficient modeling and control
design details. For example, most physical plants have a non-
linear dynamic behavior. Thus, it is common to linearize the
nonlinear plant dynamics about certain operating conditions to
enable the design and testing of the linear controllers that are
often taught in class. However, in many manuals, the nonlinear
dynamics are not provided and/or the linearization procedure is
not carefully explained. In addition, more sophisticated control
techniques, such as sliding mode control and adaptive control,
are rarely discussed. Therefore, faculty must spend valuable

DIXON et al.: A MATLAB-BASED CONTROL SYSTEMS LABORATORY EXPERIENCE FOR UNDERGRADUATE STUDENTS 225

time, money, and potentially extra support staff to overcome
the aforementioned shortcomings.

B. Reducing Resource Investments

By standardizing the CACSD environment, educators
will be able to use common resources to address the lim-
ited teaching resource issue and to improve the quantity
and quality of teaching material for undergraduate control
systems laboratory development. For example, based on a
common Simulink front-end for the CACSD, an Internet-based
repository can be proposed that would serve as an archive
for tutorials and Simulink files developed by educators for
commercially available and inhouse-developed plants. Faculty
who desire to incorporate new experiments in an existing
laboratory, or for faculty that are just beginning to establish a
new control systems laboratory, the repository will be an aid
that can be used to reduce the teaching resources that would
typically be required. Some resources already exist for this
purpose; however, their scope has been limited by the lack of
a common CACSD. Specifically, there are currently several
excellent archives of laboratory instructional material, such
as the NEEDS database originated by the Synthesis Coalition
(www.needs.org), and several university archives and control
education tools, including the University of Michigan, the Uni-
versity of Tennessee at Chattanooga, John Hopkins University,
University of Texas at Dallas, and the California Institute of
Technology. (Links for each of the university sites are provided
at www.qrts.com/relatedsites/controlrelated.shtml.)

As indicated by the number of archives and web-based tools
listed previously, the concept of a web-based repository as a
means to offset teaching resources and enhance the educational
process is not new; however, the characteristics of a repository
facilitated by a common CACSD are quite unique and possibly
better suited to some faculty and student needs. Specifically, this
new repository could provide a tutorial introduction to a broad
class of multidisciplinary experiments, detailed descriptions of
the system dynamics, descriptions of the different types of con-
trol strategies that can be utilized, descriptions of the mechan-
ical and electrical hardware components and interfacing, and a
library of controllers in the form of Simulink files. From a re-
view of literature and Internet resources, it does not seem that
a repository of educational resources seems to be this compre-
hensive, especially to the extent of downloading actual Simulink
files to perform the experiment (e.g., after searching the NEEDS
database for Simulink files, none could be found). The potential
advantages of a new Internet-based repository made possible by
the advocated CACSD are that: 1) the time and effort that in-
dividual faculty must devote to design a new control systems
laboratory is greatly reduced by the shared resources previously
described; 2) shared ideas from a collection of world-wide ed-
ucators will result in an influx of innovative tutorials; and 3)
greater insight will be provided with respect to the modeling
and control of various plants.

To facilitate the development of an Internet-based repos-
itory, the development of prototype tutorials is in progress
at Louisiana State University for several plants including:
1) the Feedback magnetic levitation experiment; 2) an ECP

ball-and-beam experiment; 3) a Quanser rotary inverted pen-
dulum; and 4) a Quanser flexible-link robot. The Internet-based
tutorials for the plants listed above will concentrate on modeling
the plant using principles of mechanics and electromagnetics
and then using linear and nonlinear techniques to control the
system. Many of the resources that were created through col-
laboration with QRTS are available now through the previously
mentionedmanualslink from www.qrts.com.

Remark 2: Some educators may be concerned that too much
information could be provided to the student (especially since
the actual Simulink files can be obtained) and that programing,
even at the level of Simulink block-diagram construction, is
a necessary skill that students should develop through lab-
oratory exercises. Although a valid concern, the philosophy
behind the proposed repository is that by providing the student
and the laboratory instructor with better information regarding
the nonlinear dynamics, linearization techniques, and several
example Simulink block-diagrams, the student is enabled to ex-
plore more advanced control concepts, using the base Simulink
block-diagram as an example that can be appropriately mod-
ified. Moreover, the Simulink block-diagrams are constructed
using MATLAB functions where the source “C” code is in-
accessible by the user. Hence, the potential to include the
development of device drivers for I/O interfaces as part of
the educational experience is not eliminated by the extensive
nature of the repository.

V. CONCLUSION

In this paper, the standardization of CACSD software tools
is discussed for undergraduate control laboratory develop-
ment. Specifically, the proposed CACSD advocates the use of
MATLAB compatible products to standardize the execution of
controllers in real-time, using standard, low-cost PC hardware.
To illustrate the standardization concept, details were given
on how the Simulink/RTW CACSD was utilized for a specific
example undergraduate control experiment. A description of
how the CACSD was applied to a variety of other educational
plants on various operating systems was provided.

Based on the standardization of the CACSD, a discussion
illustrated how the budget constraint issues and the limited
teaching resource issues could be addressed. Specifically, to
address the issue of reducing the cost associated with control
systems laboratory development, some comments were pro-
vided with regard to using an Internet-based system, including
several advantages, disadvantages, and possible new avenues
to overcome several obstacles to an Internet-based experience.
In view of the limited teaching resources, the advantages of
a standardized CACSD were described in terms of a new
Internet-based repository containing laboratory tutorials and
Simulink block diagrams that might be used to prevent faculty
from spending valuable time on repeating work that has already
been done by other faculty. Future efforts will target imple-
menting an Internet-based repository and remote laboratory
experience. Based on these efforts, the authors will examine the
effects of communication bandwidth, changes in the quality of
education from the instructor and student perspective, course
content, and course management issues.

226 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 3, AUGUST 2002

REFERENCES

[1] N. A. Kheir, K. J. Astrom, D. Auslander, K. C. Cheok, G. F. Franklin,
M. Masten, and M. Rabins, “Control systems engineering education,”
Automatica, vol. 32, no. 2, pp. 147–166, Feb. 1996.

[2] P. Antsaklis, T. Basar, R. DeCarlo, N. H. McClamroch, M. Spong, and
S. Yurkovich, “Report on the NSF/CSS workshop on new directions in
control engineering education,”IEEE Control Syst. Mag., vol. 19, pp.
53–58, Oct. 1999.

[3] V. Kapila, M. S. de Queiroz, and A. Tzes, “A multidisciplinary under-
graduate real-time experimental control laboratory,” inProc. Amer. Con-
trol Conf., June 2000, pp. 3980–3984.

[4] S. K. Agrawal, “Undergraduate control education: An ME perspective,”
in Proc. Amer. Control Conf., June 1999, pp. 983–986.

[5] J. Apkarian and A. Dawes, “Interactive control education with virtual
presence on the Web,” inProc. Amer. Control Conf., June 2000, pp.
3985–3990.

[6] M. W. Spong, “Control education crossing department boundaries,” in
Proc. Amer. Control Conf., June 1999, pp. 992–996.

[7] H. H. Hahn and M. W. Spong, “Remote laboratories for control educa-
tion,” in IEEE Conf. on Decision and Control, Dec. 2000, pp. 895–900.

[8] H. Hirukawa and I. Hara, “Web-top robotics,”IEEE Robot. Automat.
Mag., pp. 40–45, June 2000.

[9] J. Overstreet and A. Tzes, “An Internet-based real-time control engi-
neering laboratory,”IEEE Control Syst. Mag., vol. 9, pp. 19–34, Oct.
1999.

[10] M. Shor, “Remote-access engineering educational laboratories: Who,
what, when, where, why, and how?,” inProc. Amer. Control Conf., June
2000, pp. 2949–2950.

[11] Y.-C. Chen and J. Naughton, “An undergraduate laboratory platform for
control system design, simulation, and implementation,”IEEE Control
Syst. Mag., vol. 20, pp. 12–20, June 2000.

[12] M. W. Spong and D. J. Block, “The Pendubot: A mechatronic system for
control research and education,” inIEEE Conf. on Decision and Control,
Dec. 1995, pp. 555–556.

[13] W. E. Dixon, D. M. Dawson, B. T. Costic, and M. S. de Queiroz, “Toward
the standardization of a MATLAB-based control systems laboratory ex-
perience for undergraduate students,” inProc. 2001 Amer. Control Conf.,
Arlington, VA, June 2001, pp. 1161–1166.

[14] The Mathworks Inc.. [Online]. Available: www.mathworks.com.
[15] Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real-Time

Linux Target: A MATLAB-based graphical control environment,” in
IEEE Conf. on Control Applications, Sept. 2000, pp. 173–178.

[16] D. C. Hanselman and B. Littlefield,Mastering MATLAB 6: A Compre-
hensive Tutorial and Reference. Englewood Cliffs, NJ: Prentice-Hall,
2001.

[17] K. Craig, “Is anything really new in mechatronics education,”IEEE
Robot. Automat. Mag., pp. 12–19, June 2001.

[18] J. Wikander, M. Torngren, and M. Hanson, “The science and education
of mechatronics engineering,”IEEE Robot. Automat. Mag., pp. 20–26,
June 2001.

[19] R. Siegwart, “Grasping the interdisciplinarity of mechatronics,”IEEE
Robot. Automat. Mag., pp. 27–34, June 2001.

[20] D. G. Alciatore and M. B. Histand, “Integrating mechatronics into a
mechanical engineering curriculum,”IEEE Robot. Automat. Mag., pp.
35–38, June 2001.

[21] K. Nagai, “Learning while doing: Practical robotics education,”IEEE
Robot. Automat. Mag., pp. 39–43, June 2001.

[22] R. R. Murphy, “Competing’ for robotics education,”IEEE Robot. Au-
tomat. Mag., pp. 44–55, June 2001.

[23] J. J. Zhu, “Discussion of ‘undergraduate control education: A ME per-
spective’,” inProc. Amer. Control Conf., June 2001, pp. 987–991.

[24] R. Simmons, J. L. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan,
“Lessons learned from Xavier,”IEEE Robot. Automat. Mag., pp. 33–39,
June 2000.

Warren E. Dixon (S’94–M’00) received the B.S. de-
gree from the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC, the
M.E. degree from the Department of Electrical and
Computer Engineering, the University of South Car-
olina, Columbia, and the Ph.D. degree from Clemson
University, in 1994, 1997, and 2000, respectively.

After completing his doctoral studies, he was se-
lected as an Oak Ridge National Laboratory Eugene
P. Wigner Fellow, where he currently works in the
Robotics Group of the Engineering Science and

Technology Division. His main research interest has been the development and
application of Lyapunov-based control techniques for mechatronic systems. He
has authored recent articles in areas including: mobile robots, visual servoing,
fault detection, adaptive/robust/learning control, amplitude limited control,
output feedback control, underactuated systems, and nonholonomic systems.

Darren M. Dawson (S’89–M’90–SM’94) received
the B.S. and Ph.D. degrees, both in electrical engi-
neering, from the Georgia Institute of Technology,
Atlanta, in 1984 and 1990, respectively.

From 1985 to 1987, he was a control engineer
with Westinghouse, Pittsburgh, PA. In July 1990,
he joined the Electrical and Computer Engineering
Department, Georgia Institute of Technology,
where he currently holds the position of Centennial
Professor. His research interests include nonlinear
control techniques for mechatronic applications

such as electric machinery, robotic systems, aerospace systems, acoustic
noise, underactuated systems, magnetic bearings, mechanical friction, paper
handling/textile machines, flexible beams/robots/rotors, cable structures, and
vision-based systems. He also focuses on the development of realtime hardware
and software systems for control implementation.

B. T. Costic received the B.S., M.S., and Ph.D.
degrees from the Department of Electrical and Com-
puter Engineering, Clemson University, Clemson,
SC.

He is currently an Attitude Controls Engineer with
Boeing Satellite Systems, El Segundo, CA. His re-
search interests include the development and applica-
tion of Lyapunov-based control techniques for space-
based systems, attitude control for spacecraft, mag-
netic bearings, and adaptive autobalancing.

Marcio S. de Queiroz (S’94–M’98) received the
B.S. degree in electrical engineering from the
Federal University of Rio de Janeiro, Brazil, the
M.S. degree in mechanical engineering from the
Pontifical Catholic University of Rio de Janeiro,
Brazil, and the Ph.D. degree in electrical engineering
from Clemson University, Clemson, SC, in 1990,
1993, and 1997, respectively.

From August 1997 to August 1998, he was a Post-
Doctoral Researcher in the Rotating Machinery and
Controls Laboratories, University of Virginia, Char-

lottesville. From September 1998 to May 2000, he was a Visiting Assistant
Professor with the Department of Mechanical Engineering, Polytechnic Uni-
versity, Brooklyn, NY. In June 2000, he joined the Department of Mechanical
Engineering, Louisiana State University, Baton Rouge, where he is currently an
Assistant Professor. His research interests include nonlinear control of electro-
mechanical, mechanical, and aerospace systems, and the control of distributed
parameter systems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

