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Detection and Mitigation of False Data Injection
Attacks in Networked Control Systems
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Abstract—In networked control systems (NCS), agents
participating in a network share their data with others to
work together. When agents share their data, they can nat-
urally expose the NCS to layers of faults and cyber-attacks,
which can contribute to the propagation of error from one
agent/area to another within the system. One common type
of attack in which adversaries corrupt information within a
NCS is called a false data injection (FDI) attack. This article
proposes a control scheme, which enables a NCS to detect
and mitigate FDI attacks and, at the same time, compensate
for measurement noise and process noise. Furthermore,
the developed controller is designed to be robust to un-
known inputs. The algorithm incorporates a Kalman filter
as an observer to estimate agents’ states. We also develop
a neural network (NN) architecture to detect and respond to
any anomalies caused by FDI attacks. The weights of the
NN are updated using an extended Kalman filter, which sig-
nificantly improves the accuracy of FDI detection. A simula-
tion of the results is provided, which illustrates satisfactory
performance of the developed method to accurately detect
and respond to FDI attacks.

Index Terms—Neural network (NN), extended Kalman fil-
ter (EKF), false data injection (FDI) attack, secure control
design, security of networked control systems (NCSs).

NOMENCLATURE

αi,l
k FDI injected to the lth state of the ith agent.
β Frequency bias factor.
ε̂ Estimation of signal ε.
λ EKF gain used in NN.
μ Damping coefficient.
ω Speed-droop coefficient.
π FDI attack function.
Ψ Feedback control signal.
Σ Estimation error covariance.
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σ tanh activation function.
θ Measurement noise.
Θ Covariance matrix of process noise.
Ξ Covariance matrix of measurement noise.
ξ Process noise.
ζ Update parameter of the NN.
d Unknown inputs.
J Generator moment of inertia.
K1 Optimal control gain.
K2 Robust gain for controller.
K3 Robust gain for observer.
L Observer filter gain.
M FDI attacks.
n Total number of states.
Q, P State cost and input cost matrices.
Tg,i Governor time constant of ith power area.
Ttu,i Turbine time constant of ith power area.
U Control inputs.
W , V NN learning weights.
X Aggregate states of the NCS.

I. INTRODUCTION

R ECENT developments in computing and communications
have led to the proliferation of network control systems

(NCS) in domains such as distributed power systems and intel-
ligent transportation networks [1]–[3]. In NCS, agents within a
network work together to operate, and therefore, it is necessary
for them to exchange information. As a network scales, com-
munication between the agents’ increases, and due to techno-
logical and physical constraints, the data may not be transmitted
with proper security protections. Therefore, the interconnection
between the agents causes the network to be vulnerable to
unforeseen breaches in privacy and security. For example, a
distributed power system is heavily reliant on data collected
from different entities in the network. In such a system, the
security of shared data is key for effective decision making and
control. Therefore, it is important to pay meticulous attention to
protecting the security of the transmitted data in these networks.

A major concern in NCS security is false data injection (FDI)
attacks [4]. An FDI attack is when an adversary gains access
to the communication between the components of a NCS and
injects data packets that are intentionally inaccurate. NCS are
inherently not resilient to unforeseen patterns. A successful FDI
attack can cause the state estimation component of a NCS to
generate erroneous values, which may lead to unpredictable and
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unstable responses, disrupting a system’s operation. In recent
years, FDI attacks have been a focus of significant research
studies. This article investigates the detection and mitigation
of such attacks from a control-theoretic perspective.

In general, FDI attack detection methods in NCSs can be
classified into model-based methods [4]–[9] and learning-based
methods [10]–[16]. In FDI detection, model-based methods
implement an observer to estimate the dynamics of a system.
Methods used in this setup include sliding mode observer [5],
Kalman filter [4], [6], [9], weighted least square observer [7],
and principal component analysis (PCA) [8], [17]. The authors
in [5] propose an adaptive sliding mode observer with online
parameter estimation for detection and to respond to attacks on
agents’ states and sensor systems. The work in [9] designs a
Kalman filter estimator, a χ2 detector, and a Euclidean detector
for cyber attacks. The authors in [7] design a least-budget
defense strategy to protect power systems under FDI attacks.
Results such as [8] and [17] incorporate PCA to ensure data
integrity in state estimation of power grids. Despite the po-
tential advantages of model-based methods, including real-time
anomaly detection and low computational complexity, their high
level of dependency on accurate mathematical models makes
them vulnerable to model uncertainties and disturbances.

Learning-based FDI detection methods mainly use techniques
from artificial intelligence literature for observing a system’s
states, including neural networks (NN) [10]–[12] and machine
learning [13]–[16]. Learning-based methods provide a
framework for estimating nonlinear systems that make them
a suitable fit for investigating complex dynamical systems.
However, such methods impose a significant computational
burden on the system, and as a result, they scale poorly. In
addition, the stability analysis of learning-based techniques
is more complex. Furthermore, the system needs to operate
normally during training; otherwise, it will incorporate false
data as part of the normal operation of the system, however, this
is not always possible in practice.

In this article, an anomaly detection algorithm is devel-
oped that leverages model-based observers in combination with
learning-based observers to detect and estimate FDI attacks and,
at the same time, compensate for uncertainties in the system
in real time. The ideas in model-based and learning-based at-
tack detection are combined by incorporating a Kalman filter
as an observer and fusing it with a three-layer feed-forward
NN observer for detection and estimation of FDI attacks in
real time. The proposed algorithm increases the level of se-
curity and robustness of the system to model uncertainties,
unknown inputs, noisy measurements, and FDI attacks. The
learning weights of the NN are updated using an extended
Kalman filter (EKF), which improves the performance of the
NN along with reducing the response time of the system. Perfor-
mance of the designed controller is evaluated through numerical
simulation and is proven mathematically using the Lyapunov
function.

The main contribution of this article rests in designing a
resilient and robust framework for controlling NCSs, which
can detect and appropriately respond to FDI attacks in realtime.
Traditionally, much attention has been focused on the charac-
terization of FDI attacks. However, we focus on investigating

Fig. 1. Illustration of the structure of a CPS in occurrence of FDI
attacks on the network.

the complications of FDI attacks from the perspective of control
theory. In short, the contributions of this article are as follows:

1) detection and compensation of FDI attacks in real time;
2) compensating for uncertainties and unknown inputs;
3) Mitigating the computational burden and complexity

while increasing the accuracy of learning-based algo-
rithms through incorporating model-based methods;

4) simultaneous detection of FDI attacks on multiple com-
ponents of a network in the presence of both process and
measurement noise;

5) providing stability analysis for the developed control
framework.

The rest of this article is organized as follows. The problem
formulation is described in Section II. A new algorithm to detect
and estimate FDI attacks in a NCS is developed in Section III.
In Section IV scheme that is resilient to FDI attacks and robust
to uncertainties is developed. In Section V, we formally analyze
the performance of our developed controller. An application of
a multiagent NCS, namely, a distributed load frequency control
(LFC) for a power system is described in Section VI. Finally,
Section VII evaluates the performance of the proposed FDI
estimation and resilient controller. Section VIII concludes this
article.

II. PROBLEM FORMULATION

A holistic framework of a NCS in form of a cyber-physical
system (CPS) is shown in Fig. 1. As illustrated in Fig. 1, a NCS
consists of a physical layer, an aggregate network layer, and an
application layer where an aggregator collects the data from the
network and utilizes the data to make decisions at the network
level. The FDI attacks which are the focus of this article take
place in the network layer of the NCS, and it is this layer of the
network that should be protected against from such attacks.

A. FDI Attacks

An adversary initiates an FDI attack by gaining access to the
communication channels among the components of the NCS and
by manipulating them. Although FDI attacks have been explored
extensively in the literature, it still remains a challenge in NCSs.
An adversary’s goal is not only to inject incorrect information
to disrupt stable operation of the system but also to inject false
data such that the system’s controller and detection mechanism
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remain unaware of the issue. Such a hidden attack makes FDI
more effective compared with other type of attack [18].

Moreover, a more intelligent adversary may leverage any
side-information about the structure of a system in their FDI
attacks to make their attacks more destructive. An adversary can
perform particular analyses and techniques to gain knowledge
about the nominal state values of the agents [19]. A small amount
of false data is somewhat detectable and can be filtered using
simple filter designs and therefore, an intelligent adversary can
inject “reasonable” false data (i.e., close to the nominal states
and parameters of the system) into multiple sensors simultane-
ously. Therefore, FDI is difficult to detect, particularly when the
attacker knows the system architecture. In general, an FDI attack
can be modeled with a function π which affects the measured
feedback signals by

π(xi,lk ) := xi,lk + αi,l
k (1)

where αi,l
k is the random false data injected to the lth state of the

ith agent and xi,lk denotes the lth state of the ith agent.

B. NCS Under FDI Attack

Consider a NCS consisting of J agents with the following
dynamic model

{
Ẋ(t) = AX(t) +BU(t) +Dξ(t) + Fd(t)

Z(t) = CX(t) +M(t) + θ(t)
(2)

where X(t) ∈ Rn denotes the aggregate states of the NCS
at time t with n =

∑J
i=1 ni state variables where ni is

number of states for the ith agent, U(t) is the con-
trol input, and Z(t) = [(z1(t))T , (z2(t))T , . . . , (zJ (t))T ]T is
the aggregate state measurements of the system. In (2),
M(t) := [(M 1(t))T , . . . , (MJ (t))T ]T , ξ(t), and θ(t) account
for the effects of FDI attacks, Gaussian process noise, and
measurement noise, respectively, d(t) denotes the unknown
inputs, andA ∈ Rn×n,B ∈ Rn×n, C ∈ Rn×n,D ∈ Rn×1, and
F ∈ Rn×1 are deterministic matrices.

In this article, we introduce the following standard assump-
tions which help facilitate further development.

Assumption 1: Adversaries do not have access to control
signals.

Assumption 2: We assume that X(0) is uncorrelated with
the measurement noise and the process noises in the system
described in (2), i.e., cov[X(0), ξ(t)] = 0 and cov[X(0), θ(t)] =
0 for all t. The cov[X0, ξ(t)] = 0 and cov[X0, θ(t)] = 0 for all
t, which means that X0 is uncorrelated with the measurement
and the process noises in the system.

Assumption 3: The random variables ξ(t) and θ(t) are white
noise with E[ξ(t)] = 0, E[θ(t)] = 0, and cov[ξ(t), θ(t+ l)] = 0
for all t and l.

The covariances of the terms ξ(t) and θ(t) are defined as

{
E[ξ(t)ξ(t+ l)T ] := Ξ(t)δt,l

E[θ(t)θ(t+ l)T ] := Θ(t)δt,l
(3)

whereΘ(t) � 0,Ξ(t) � 0, and the Kronecker delta function δt,l
is defined by

δt,l =

{
1 l = 0

0 l ≥ 0.
(4)

Assumption 4: The state’s initial values are white noise pro-
cesses described as X(0)∼(X̄,Σ(0)), where X̄ denotes the
mean and Σ(0) is the covariance at initial time.

Remark 1: Stochastic delays on communication channels are
small in magnitude and do not have a significant impact on the
system stability and, therefore, are disregarded in [20].

III. FDI DETECTION

In this section, our FFI detection algorithm, consisting of a
Kalman filter observer and a NN architecture, is proposed which
is able to estimate the statesX(t) and outputs Z(t) in real time.
The NN weights are updated using an EKF. The EKF is used to
increase the accuracy and also response time of the algorithm
when the system is under FDI attacks.

A. Observer Design

To completely define the proposed methods, first the archi-
tecture of the NN unit is described. In brief, the NN gets the
measured system outputs, Z(t), then it updates the weights via
a learning algorithm, and finally, it provides the system with
appropriate control signals. To reduce the response time of the
NN observer, we have incorporated an EKF algorithm, to be
described in detail below [21]. The estimates of the agents’ states
are given by{

˙̂
X(t) = AX̂(t) +BU(t) + L(Z(t)− Ẑ(t))

Ẑ(t) = CX̂(t) + M̂(t)
(5)

where X̂(t) is the state estimate, Ẑ(t) is the estimated output,
and M̂(t) is the FDI attack estimates. The filter gain L, is given
by

L(t) = Σ(t)CTΘ−1. (6)

The initial value of the system is assumed to be known and is
denoted by X̂(0) = E[X(0)]. The initial value of the covariance
matrix Σ is denoted by Σ(0) := cov(X(0), X(0)). The rate of
change of the covariance matrix of the state estimations, Σ̇(t),
is given by

Σ̇(t) = AΣ(t) + Σ(t)AT − Σ(t)CTΘ−1CΣ(t) +DΞDT .
(7)

Furthermore, the update equation for the NN to estimate FDI
attacks is given by

M̂ i(t) =W i(t)σ
(
V i(t)δi(t)

)
(8)

where M̂(t) := [M̂ 1(t)T , . . . , M̂J (t)T ]T . The vectors W i(t)
and V i(t) := [V i,1(t), . . . , V i,(a+b)(t)] consist the learn-
ing weights of the ith output layer of the NN at
time t, δi(t) := [M̂ i(t−Δt)

T , . . . , M̂ i(t− aΔt)
T , (ei(t−

Δt)
T , . . . , (ei(t− bΔt)

T ]T , where a, b ∈ N are arbitrary posi-
tive scalars which are selected according to the required accuracy
and computational power. The values a and b determine the
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size of the NN. The step size of the NN is denoted by Δt.
We further define the estimation error ei(t) := zi(t)− ẑi(t) and
σ(·) as an activation function.1 Now M̂ i(t) can be reformulated
as M̂ i(t) =W i(t)σ(Γi(t)), where

Γi(t) =

a∑
γ=1

V i,γ(t)M̂ i(t− γΔt)

+

b∑
γ=1

V i,(a+γ)(t)ei(t− (a+ γ)Δt). (9)

The FDI attack M̂(t) is recursively updated using the previ-
ous a observer inputs and b output errors. To achieve a high
level of accuracy and real-time anomaly detection against FDI
attacks, the tuning variables a and b are positive values and
should be selected based on the application and desired level of
accuracy.

B. NN Update Law

The integration of an EKF in updating the weights of the NN
is introduced in this section. The EKF improves the convergence
rate of the detection and estimation algorithm [22]. The variable
k denotes the sampling instance and is defined by t = kΔt,
where Δt is the sampling time. The update parameters for the
ith layer of the NN are defined as

ζik =
[
W i

k, V
i,1
k , . . . , V i,a+b

k

]T
. (10)

These NN parameters, at each sampling time, are updated ac-
cording to

ζik = ζik−1 + ηiλi
k[z

i
k − ẑik]

(11)

where ηi is the constant learning rate, and λi
k is the new Kalman

gain for the NN updating unit and is different from the Kalman
gain designed for the observer unit. The gain can be calculated as

λi
k = ρikH

i
k[(H

i
k)

T ρikH
i
k +Υi

k]
−1

(12)

where Hi
k is the derivative of eik with respect to λi

k. Based on
the observer input in (5), Hi

k can be calculated as

Hi
k =

∂eik
∂λi

k

|ζi=λi
k−1

=

{ σ(zik) ζi =W i

W i
kM̂

i
k−j σ́(z

i
k) ζi = V i,j

W i
ke

i
k−j σ́(z

i
k) ζi = V i,a+j

(13)

where ρik and Υi
k are covariance matrices of the state estimation

error and noise, respectively, and are computed recursively [23]
by

ρik = ρik−1 − λi
k−1(H

i
k−1)

T
ρik−1

Υi
k = Υi

k−1 +
(eik)

T (eik)−Υi
k−1

k
.

(14)

1The results in Section VII use a tanh function, without loss of generality.

The weights of the NN observer are updated based on (10)
and the FDI attacks are estimated using (8). The estimated FDI
attack M̂k is then incorporated in our controller design respond
to such attacks in real time.

IV. CONTROLLER DESIGN

In NCSs, there is a tradeoff between model accuracy and
mathematical complexity. Robust control provides a framework
in which system stability under bounded modeling uncertainties
is guaranteed. For simplicity, we approximate the nominal dy-
namics of agents by a linear system and we use robust control
to compensate for model uncertainties. Our robust controller
synthesis, considers the FDI attack as model uncertainties [24]–
[26]. If the attack it is not compensated for, this can naturally
lead to degradation of performance and inefficiently. Therefore,
a resilient control framework [27] is developed to address the
need for attack detection and response. Specifically, we focus on
providing a resilient control framework for detection and miti-
gation of FDI attacks, while we incorporate a robust controller to
deal with other uncertainties in the network, which are not caused
by attacks. Therefore, we develop a “secure control design” to
cover both the robustness and the resiliency aspects [28].

The proposed control system consists of a linear quadratic
state-feedback regulator and a feedback controller. Given the
dynamical system described in (2), the linear quadratic regulator
(LQR) formulation finds the control inputsU(t)which minimize
the cost function

J =

∫ ∞

0

[
X(t)TQX(t) + U(t)RU(t)

]
dt (15)

for all t, where Q � 0 and R � 0 are known matrices.
We consider an LQR problem in steady state and we assume

the pair (A,C) is observable and the pair (A,Ω) is controllable,
where Ξ := ΩΩT . Then, the optimal control gain is calculated
by K1 = R−1BTP , where P is a symmetric positive definite
matrix, and it is the solution to the following algebraic Riccati
equation

PA+AT +Q− PBR−1BTP = 0. (16)

The controller, mitigating the effect of FDI attacks in NCS, is
given by

U(t) = −K1Ψ(t)−K2Ψ(t) (17)

where Ψ(t) := Z(t)− Ôs(t) is the feedback control signal,
Ôs(t) denotes the estimate of the summation of the FDI at-
tack and the measurement noise which is calculated based on
(8), K2 := L2

s

ε2
C−1, and ε2 is a small constant of appropriate

magnitude [29]. We summarize our control implementation in
Algorithm 1.

V. STABILITY ANALYSIS

Consider the system as described in (2) and we define

Os(t) :=M(t) + θ(t) (18)
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to account for the FDI attack M(t) and the measurement noise
θ(t). Next, we state the assumptions that are needed to complete
our stability analyses.

Assumption 5: The control input is upper-bounded by

‖U(t)‖ ≤ Lu.

Assumption 6: The injected FDI attack Os(t) is
upper-bounded by

‖Os(t)‖ ≤ LO.

Note that Assumption 6 is a standard assumption as ad-
versaries tend to inject attacks in the range of state measure-
ments. Therefore, it is reasonable to assume that the attacks are
bounded.

Assumption 7: The norm of the sum of the unknown input
and the process noise denoted by S(t) := Fd(t) +Dξ(t) is
upper-bounded by

‖S(t)‖ ≤ LS .

Moreover, we present the following lemma which is used later
in our stability analyses.

Lemma 1: The symmetric and positive-definite matrix PL is
bounded by

λmin(PL)In ≤ PL ≤ λmax(PL)In,

where λmin and λmax denote the minimum and maximum eigen-
values of the matrix PL, respectively.

The matrix PL is the solution to the following Lyapunov
equation

(A− LC)TPL + PL(A− LC) = −QL, (19)

where QL is a symmetric positive-definite matrix.
Consider the following observer equation

˙̂
X(t) = AX̂(t) +BU(t) + L(Z − Ẑ) +K3

(
ψ(t)− CX̂(t)

)
Ẑ = CX̂(t) + Ôs(t), (20)

where K3 := L2
s

ε3
C−1, L is the Kalman filter observer gain, and

ψ(t) := Z(t)− Ôs(t)− CX̂(t) is the observer’s feedback sig-
nal. Subtracting (20) from (2), the estimate of the error system,
denoted by x̃(t), is written as

˙̃X(t) = Ẋ(t)− ˙̂
X(t)

= (A− LC)X̃(t) + S(t) + L
(
Os(t)− Ôs(t)

)
−K2

(
ψ(t)− X̂(t)

)
. (21)

To streamline further analysis, we introduce the following
lemma concerning an upper-bound on FDI attack estimates.

Lemma 2: The error in estimation of FDI attack and the
measurement noise of the system in (2) can be bounded by

‖
(
Os(t)− Ôs(t)

)
‖ ≤ La‖X̃(t)‖, (22)

where La is finite positive constant.
Proof: See [22]. �
Theorem 3: The state trajectories of the system defined in (2)

under Assumptions (1–7), with the state observer defined by (5–
14), and the controller in (17) are globally uniformly ultimately
bounded (GUUB) in the sense that

‖Π(t)‖ ≤
√
γ2

γ1
Π2(t0)e

− 1
γ2

(t−t0) + γ2ε1(1 − e
− 1

γ2
(t−t0)),

(23)
where Π := [X̃TXT ]T ∈ R2n, and provided

− λmin(QL) + 2Laλmax(PL(L−K3))

− λmin(B(K1 +K2)) < ε4 < 0, (24)

and

−λmin(B(K1 +K2)) + 2λmax(A−BK1 C) < ε5 < 0,
(25)

where λ(Ω) denotes the eigenvalues of matrix Ω.
Proof: Consider the following continuously differentiable,

positive definite, and radially unbounded Lyapunov function
candidate

V (X̃,X) = X̃(t)TPLX̃(t) +X(t)TX(t), (26)

where we have

γ1‖Π(t)‖2 ≤ V (X̃,X) ≤ γ2‖Π(t)‖2, (27)

and where γ1 and γ2 are defined as γ1 := min(λmin({PL}, 1)
and γ2 := max(λmax({PL}, 1), respectively. Taking the deriva-

tive of (26) and substituting ˙̃X and Ẋ from (21) and (2), yields

V̇ (X̃,X) =
[
AX̃ − LCX̃ + S + L(Os − Ôs)

−K3

(
Ψ− CX̂

) ]T
PLX̃ + X̃TPL

× [AX̃ − LCX̃ + S + L(Os − Ôs)

−K3

(
Ψ− CX̂

) ]
+XT

[
AX +BU + S

]
+
[
AX +BU + S

]T
X. (28)
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Using (17)–(19), (28), can be reformulated to get

V̇ (X̃,X) = −X̃TQLX̃

+ 2
(
(Os − Ôs)

T (L−K3)
T
)
PLX̃ + 2STPLX̃

− 2X̃T (K3 C)
TPLX̃ + 2XT (A−BK1 C)X

− 2XT
(
B(K1 +K2)(Os − Ôs)

)
+ 2XTS − 2XT (BK2 C)X. (29)

Using Lemma 2, we can write

V̇ (X̃,X) ≤ −λmin(QL)‖X̃‖2 + 2Laλmax

× ((L−K3)
TPL

) ‖X̃‖2

+ 2λmax(A−BK1 C)‖X‖2

+ 2Ls‖X̃‖
(

1 − Ls

ε3
‖X̃‖

)

+ 2Ls‖X‖
(

1 − λmin(B
Ls

ε2
)‖X‖

)

− λmin(B(K1 +K2))‖X̃‖2

− λmin(B(K1 +K2))‖X‖2. (30)

Noting that 2Ls‖X̃‖(1 − Ls

ε ‖X̃‖) + 2Ls‖X‖(1 − λmin(B
Ls

ε2
)

‖X‖) ≤ ε1, we update (30) to get

V̇ (X̃,X) ≤ [− λmin(QL) + 2Laλmax(PL(L−K3))

− λmin(B(K1 +K2))
]‖X̃(t)‖2

+
[− λmin(B(K1 +K2))

+ 2λmax(A−BK1 C)
]‖X(t)‖2

+ ε1. (31)

The terms K1, K2, and K3 are design variables and we choose
them accordingly to obtain

V̇ (X̃,X) ≤ −ε4‖X̃(t)‖2 − ε5‖X(t)‖2 + ε1

≤ −min(ε4, ε5)(‖X̃(t)‖2 + ‖X(t)‖2) + ε1

≤ −1
γ2
V (X̂,X) + ε1. (32)

Based on (27), the differential inequality in (32) can be solved
to yield

V ≤ V0 exp

(
− 1
γ2

(t− t0)

)
+ γ2ε1

(
1 − exp

(−1
γ2

(t− t0)

))
.

(33)
�

It should be noted that the proposed control design and
anomaly detection technique is general and can be applied to
any NCS setup with the dynamic model described as in (2).
In the next section, a distributed power system is selected as a
particular NCS to investigate the effectiveness of the proposed
detection and mitigation framework.

VI. CASE STUDY: LFC FOR MULTIAREA

INTERCONNECTED POWER SYSTEM

Smart grids are modeled as NCSs and they allow for both
the utility companies and consumers to monitor and control the
power system. The performance of power systems can be dis-
rupted in presence of cyber attacks. FDI attack is a common type
of cyber attack that targets data integrity in smart grids [30]–[33].
The dearth of an effective algorithm which is able to alleviate
the impacts of FDI attacks can result in system failure [34],
which can endanger the providers and consumers [1], [35]. A
major cyber attack on interconnected power systems can be as
devastating as the Northeast blackout in 2003 [34]. In this article,
the effects of FDI attacks on LFC of multiarea interconnected
power systems are investigated. The main role of LFC is to
maintain short-term load-interchange-generation balance in a
smart grid [36]–[38].

A. LFC Model

The mathematical model of LFC system is briefly described
here. Consider the dynamic model of the ith power area to be{

ẋi(t) = Aix
i(t) +Biu

i(t) + FiΔPl(t)

yi(t) = Cix
i(t)

(34)

where ui(t) and ΔPl(t) are the control input and power de-
viation due to load variation in the ith power area, respec-
tively. The states of the ith power area are the frequency de-
viation Δf i, generator power deviation ΔP i

g , turbine valve
position ΔP i

tu, tie-line power flow ΔP i
pf , and the control error

ei(t) =
∫ t

0 (β
iΔf i +ΔP i

pf )dt, respectively. The deterministic
and known matrices Ai, Bi, Fi, and Ci are defined as

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μi

Ji

1
Ji

0
−1
Ji

0

0
−1
Ttu,i

1
Ttu,i

0 0

−1
ωiTg,i

0
−1
Tg,i

0 0∑2
i=j,j=1 2πTi,j 0 0 0 0

βi 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

Bi =

[
0 0

1
Tg,i

0 0
]T

(36)

Fi =

[−1
Ji

0 0 0 0

]T
(37)

where βi, Ji, ωi, μi, Tg,i, and Ttu,i are the frequency bias factor,
generator moment of inertia, speed-droop coefficient, damping
coefficient, governor time constant, and turbine time constant
for the ith power area, respectively. The parameter Ti,j denotes
the stiffness constant between the ith and jth power area. The
matrix Ci is an identity matrix of appropriate dimension.

B. Multiarea Interconnected LFC Model

The mathematical model of a multiarea interconnected power
systems is briefly described in this section. The detailed
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Fig. 2. Schematic diagram of LFC under noise and FDI attacks.

description of the model can be found in [31]. Each power area
transmits sensor measurements to a centralized LFC to generate
appropriate control signals. Expanding the model described in
section A, the dynamic model of a multiarea interconnected
power system can be written as{

Ẋ(t) = AcX(t) +BcU(t) + FΔPl(t)

Y (t) = CcX(t)
(38)

where X(t) = [XT
1 XT

2 · · ·XT
N ]T are internal states of a N -

area interconnected power system and Ac, Bc, Cc, and Dc are
known and deterministic matrices defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2 · · · A1,N

A2,1 A2 · · · A2,N

...
...

...
...

AN,1 AN,2 · · · AN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(39)

B = diag

{[
BT

1 BT
2 · · · BT

N

]T}
(40)

where Ai,j for i, j ∈ {1, 2, . . . , N}, is given by

Ai,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−2πTi,j 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

and Cc is an identity matrix of appropriate dimension.

C. LFC Model Under FDI Attacks

FDI attacks occur when the configuration of a smart grid is
exploited to inject false data into certain state measurements. The
design of a resilient LFC under FDI attacks requires accurate
and real-time information on the location and magnitude of
false data injected maliciously to degrade information sharing
within components of a network [9], [30]. The article assumes
that the authentication credentials can be stolen or the identity
of a legitimate component can be used to send unchanged
(identity spoofing) or manipulated (content spoofing) messages
to other components in a smart grid. Fig. 2 shows a multiarea
interconnected power system with automatic gain control under
FDI attacks and uncertainties in the communication channels
and sensors. Assuming false data can be injected to the com-
munication channels of the system, the model of a multiarea
interconnected power system under FDI attacks, measurement
noise, and process noise can be defined similar to the system
described in (2). In the following section, we consider several
scenarios, where FDI attacks are injected to our LFC model
and we demonstrate the performance of the proposed estimation
algorithm and controller.

VII. SIMULATION RESULTS AND DISCUSSION

The speed and accuracy of the proposed detection al-
gorithm under uncertainties and FDI attacks are evaluated
with a two-area interconnected power system with parame-
ters defined in Table I of [31]. For simulation purposes, the
discrete-time response of a multiarea power system at sam-
pling intervals 0,Δt, 2Δt, · · · can be defined as X(k + 1) =
eAcΔtX(k) + (

∫Δt

0 eAαdα)BcU(k), where X(k + 1) is X(t)
at t = (k + 1)Δt and α := (k + 1)Δt− τ . The discrete-time
model of a multiarea interconnected power system can be
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TABLE I
RMSE FOR DETECTING FDI ATTACKS

∗Sum of the errors in detection of FDI attacks on the third and
eighth states of the LFC system.

defined as{
Xk+1 = AdXk +BdUk +Dξk + F (ΔPl)k

Zk = CdXk +Mk + θk
(42)

where Ad := eAcΔt and Bd := (
∫Δt

0 eAcαdα)Bc.
The power deviation due to load variation in both power areas

is simulated using the method discussed in [39]. The simulation
time and sampling time are specified to be 10 s and 10 ms,
respectively. The designed LQR controller can direct the system
toward a stable equilibrium, close to 0 in steady-state error,
within a short period of time. Therefore, 10 s of simulation run
time is reasonable.

We use root-mean-square error (RMSE) as a measure to eval-
uate the accuracy of the proposed anomaly detection algorithm
in different scenarios for FDI attack, in presence of sensor and
measurement noise, for a two-area interconnected power system.
The RMSE for this case is defined by

RMSEi =
2

√
Σ

kf

k=1(α
i,l
k − α̂i,l

k )2

S
(43)

where kf is the total number of samples time kΔt.

A. Scenario I: Single Nonperiodic FDI Attack

Consider a scenario in which an FDI attack targets the third
state of the first power area, e.g.,

α1,3
k =

⎧⎪⎪⎨
⎪⎪⎩

0 0 < kΔt < 3 & kΔt > 8

0.4 3 ≤ kΔt ≤ 5

0.9 7 ≤ kΔt ≤ 8

. (44)

In Fig. 3, the performance of the proposed anomaly detec-
tion algorithm for this case is demonstrated. Our proposed
algorithm is able to track the injected FDI step changes more
accurately and quicker than a traditional anomaly detection
algorithm. The traditional anomaly detection algorithm consists
of a Leuenberger observer with a NN-based estimator while
the proposed algorithm uses a linear Kalman filter observer
and a NN-based EKF attack estimator. Fig. 4 shows the tra-
ditional controller is not able to reach the desired value of 0
for both the third and the fifth states, while the proposed re-
silient controller can compensate for the negative effects of FDI
attack.

Fig. 3. Scenario I: Estimation of a single nonperiodic FDI attack with
the proposed and traditional anomaly detection algorithms.

Fig. 4. Scenario I: Performance of the proposed resilient controller and
traditional controller in the presence of a single nonperiodic FDI attack.

B. Scenario II: Single Periodic FDI Attack

Consider a case where a single periodic FDI attack is injected
into the third state measurement of the first power area as

α1,3
k =

{
0 0 < kΔt < 3

1.5 sin(10kΔt) 3 ≤ kΔt

. (45)

Fig. 5 shows the proposed anomaly detection algorithm tracks
the magnitude and phase of a single periodic FDI attack accu-
rately. Fig. 6 shows the secure controller performs better than
the traditional controller in the presence of a single periodic FDI
attack, in the sense that it depicts less oscillations in tracking the
states X3 and X5. However, the secure controller cannot accu-
rately compensate for the effects of the single periodic FDI at-
tack, since the estimated and actual FDI attacks have a phase lag.
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Fig. 5. Scenario II: Estimation of a single periodic FDI attack with the
proposed and traditional anomaly detection algorithms.

Fig. 6. Scenario II: Performance of the proposed resilient controller
and traditional controller in the presence of a single periodic FDI attack
with a sampling time of 10 ms attack with the proposed and traditional
anomaly detection algorithms.

This would be improved significantly by increasing the sampling
time from 10 to 1 ms, as shown in Fig. 7.

C. Scenario III: Simultaneous FDI Attacks

Consider a scenario in which FDI attacks with different
patterns and at different times are injected to multiple state
measurements, e.g.,

α1,3
k =

⎧⎪⎨
⎪⎩

0 0 < kΔt < 0.1 & kΔt > 8

0.6 0.1 ≤ kΔt ≤ 5

1.2 7 ≤ kΔt

(46)

Fig. 7. Scenario II: Performance of the proposed resilient controller
and traditional controller in the presence of a single periodic FDI attack
with a sampling time of 1 ms.

Fig. 8. Scenario III: Estimation of simultaneous FDI attacks with the
proposed and traditional anomaly detection algorithms.

and

α2,3
k =

⎧⎪⎨
⎪⎩

0 0 < kΔt < 0.1 & kΔt > 8

0.9 sin(10kΔt) 0.1 ≤ kΔt ≤ 5

0.1 7 ≤ kΔt

. (47)

The results for FDI estimation and control compensation are
shown in Figs. 8 and 9.

D. Scenario IV: Pulse Train FDI Attack

Fig. 10 compares the estimation of the proposed and tradi-
tional anomaly detection algorithms when the FDI attacks have
pulse-train asymmetric saw-tooth waveform with saw-tooth
width of 0.2 s, repetition frequency of 2 Hz, and skew factor
of 1. Fig. 11 illustrates the performance of the proposed secure
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Fig. 9. Scenario III: Performance of the proposed resilient controller
and traditional controller in presence of a single periodic FDI attack.

Fig. 10. Scenario IV: Estimation of a pulse-train FDI attack with the
proposed and traditional anomaly detection algorithms.

TABLE II
RMSE FOR THE LFC CONTROLLER

∗RMSE is calculated for the fifth state of the first power area.

controller and traditional controller in presence of a pulse-train
FDI attack. Table I compares the accuracy of the proposed and
traditional anomaly detection algorithms, and Table II compares
the accuracy of the proposed and the traditional controllers in
detecting FDI attacks.

Fig. 11. Scenario IV: Performance of the proposed secure controller
and traditional controller in presence of a pulse-train FDI attack.

E. Discussion

Model-based methods are not able to accurately and simul-
taneously compensate for the effects of uncertainties and FDI
attacks, whereas learning-based methods are not able to detect
faults in real time for systems with unknown inputs and under
process and measurement noises. In our proposed algorithm,
significantly lower values of RMSE indicate that adding a NN
unit to model-based methods makes them robust to uncertainties.
Hence, the developed anomaly detection algorithm can estimate
uncertainties and FDI attacks accurately and in a timely manner.
Unlike other methods, the developed anomaly detection algo-
rithm is able to detect simultaneous faults and attacks on dif-
ferent states of the system. Furthermore, the developed method
eliminates the need for control reconfiguration in presence of
FDI attacks, therefore, it reduces costs and complexity.

VIII. CONCLUSION

This article proposed a secure control strategy for NCSs
under measurement noise, process noise, and FDI attacks. Any
uncertainty in the system, including FDI attacks, have the poten-
tial to make NCSs work inefficiently or become unstable. The
developed anomaly detection algorithm consisting of a Kalman
filter-based observer and a NN observer can detect and simul-
taneously compensate for the adverse effects of uncertainties
in the system and FDI attacks in real time. The Kalman filter
estimated the states of the system. The NN unit provided an
estimate of the deviation between the predicted value of the
output computed via the linear model and the actual nonlinear
system output. In comparison with a traditional fault detection
method, the developed anomaly detection algorithm can detect
uncertainties and FDI attacks faster and more accurately.
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