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Precise payload positioning by an overhead crane (especially when
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payload) is difficult due to the fact that the payload can exhibit a
pendulum-like swinging motion. Motivated by the desire to achieve

dian hybrid filters with excellent transient response in noisyconditionse,l,r'aSt and precise payload positioning while mitigating performance

and safety concerns associated with the swinging motion, several
researchers have developed various controllers for overhead crane
systems. For example, Yet al. [29] utilized a time-scale separation
approach to control an overhead crane system; however, an approx-
imate linearized model of the crane was utilized to facilitate the
construction of the error systems. In [27], Yashieaal. proposed

a saturating control law based on a guaranteed cost control method
for a linearized version of the crane system dynamics. Martineale

al. [18] utilized an approximate crane model to develop exact model
knowledge and adaptive controllers while Buti¢ral. [2] exploited a
modal decomposition technique to develop an adaptive controller. In
[3], Chung and Hauser designed a nonlinear controller for regulating
the swinging energy of the payload.

Several researchers have also examined the control problem for over-
head crane systems with additional degree of freedom (DOF). Specif-
ically, Moustafa and Ebeid [19] derived the nonlinear dynamic model
for an overhead crane and then utilized a standard linear feedback con-
troller based on a linearized state space model. In [20], Noakes and
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Jansen developed a generalized input shaping approach for the lin-
earized crane dynamics that exploited a notch filtering technique to
control the motion of the bridge/trolley of an overhead crane system.
More recently, Lee [16] developed a nonlinear model for overhead
cranes based on a new swing-angle definition. Based on this nonlinear
model, Lee then developed an anti-swing control law for the decou-
pled linearized dynamics. In [22], Sakawa and Sano derived a nonlinear
model for a crane system that was subsequently linearized to facilitate
the development of a control scheme that first transferred the load to a .
position near the equilibrium point using an open-loop controller and A
then utilized a linear feedback controller to stabilize the payload about o0
the equilibrium point.

XYZ: Fixed
coordinate system

One of the limiting factors associated with the above overhead crane
control designs is that the system nonlinearities are often excluded freg. 1. overhead crane system.
the closed-loop error system design and stability analysis. To over-
come this drawback, several researchers have investigated control ag- . . I .

. . RE ved transient response. That is, another contribution of this research
proaches that account for the nonlinear dynamics of overhead crahes . . . .
L . o . IS 10 illustrate how nonlinear feedback terms can be incorporated in the
and similar systems. For example in [24], Teel utilized saturation func- . . o
cqntrol design to provide additional feedback for the unactuated pay-

tions to develop an output feedback controller which achieves a rObLfgad angle through the natural coupling that exists between the gantry

mi-global ility result for th ll-and-beam control problem. In . . .
semi-global stability result for the ball-and-beam control proble nd the payload. To further examine the potential for improved tran-

1], Burg et al. transformed the nonlinear crane dynamics into a strug: . . )
[1] g y nt performance, additional analysis techniques such as those pre-

ture that resembled the ball-e_md-beam proplem e.md _then adOptedthﬁted in [11] could possibly be explored to bound the transient re-
research efforts of [24] to achieve asymptotic positioning from a large

set of initial conditions. More recently, Fantagtial.[8] and Lozancet tk?(;)rsligl \évgf"fh‘;ddg'():raleinilr}iﬁ::r:; T?;Zﬁﬁ:?r:u?233&1%&2?%32?
al. [17] proposed passivity-based controllers for the inverted penduIL{m P NIS paper, exper . P ' )
. . . . rate that the increased coupling of the nonlinear controllers results in
and the pendubot (i.e., an inverted pendulum-like robot with an unac- . .
. . - mproved transient response over the linear PD control law.
tuated second link) based on the paradigm of driving the underactu-
ated system to a homoclinic orbit using an energy-based nonlinear con-
troller and then switching to a linear controller to stabilize the system
around its unstable equilibrium point. Using similar stability-analysis The dynamic model of the underactuated overhead crane system (see
techniques, Colladet al.[4] proposed a proportional-derivative (PD)Fig. 1) is assumed to have the following form [19]:
controller for an overhead crane problem with a 1-DOF gantry. In [15], o
Kisset al.developed a PD controller for a vertical crane-winch system M(9)§+ Vin(g,§)¢ + G(g) = u. 1)
hat only requires the m rement of the winch angle and i riva- .
t_ at only requires the measurement of the winch angle and its de.'Yr?(l), M(q) € R™*, Vo (q,4) € R, andG(q) € R, represent
tive rather than a cable angle measurement. In [12] and [21], passivity*.”" "~ . o . - .
. . - - . the inertia, centripetal-Coriolis, and gravity terms (for details regarding
based interconnection and damping assignment control techniques are : . "
- ; o ﬁe components of these matrices see [6], [7]), respectiyely,c R
used to stabilize underactuated mechanical systems. Specifically, . hg - .
Co S : - ~'is defined as follows:
desired inertia matrix is parameterized such that energy shaping can
be exploited to stabilize underactuated mechanical systems such as the a=[ y 6 ¢ )
ball-and-beam problem and the inverted pendulum. In [28], Yoshida ‘
developed a nonlinear energy-based controller to damp out the pafierex(t) € R denotes the gantry position along thecoordinate
dulum oscillations despite amplitude constraints on the trolly positiofXis,y(t) € R denotes the gantry position along ffiecoordinate axis,
Recently, in [5] and [6], Fangt al. developed several energy-based(?) € R denotes the payload angle with respect to the vertiga), €
controllers for overhead crane systems in which additional nonlinddrdenotes the projection of the payload angle alongX¥heoordinate
terms were injected into the controller to increase the coupling betweais, andu(t) € R* is defined as
the gantry position and the payload position to provide for improved

transient response.

In this paper, a linear PD controller is explicitly proven to yiel%herer(t) andF,(t) € R represent the control-force inputs acting

asymptotic regulation of an overhead crane system. By using Similg ihe cart and rail, respectively. Based on the structur 6f) and
analysis techniques as in [8] and [17], this paper provides the first 8x- (, ) it is straightforward to show that the following skew-sym-
plicit proof that a PD controller can be used to regulate the underactyatyic relationship is satisfied:

ated, nonlinear 2-DOF gantry and payload dynamics. Specifically, a PD

fee'dback loop at the gantry creates an grtlflual spnng/dar_nper system ¢ <_—M(q) — Viula, q)> £=0 Ve € RY )
which absorbs the payload energy. Motivated by the heuristic concept 2

that improved coupling between the gantry and the payload dynamics . . o , .
will provide a mechanism for improved transient response, additionX _ereM(f;)mr/[epresentz the time dzrllvatlvebfoi(q()j, 3”3 thhat ']Ehﬁ In-
nonlinear feedback terms are incorporated with the PD controller afida mlz_it.nxj' (a) can be upper and lower bounded by the following
the resulting nonlinear controller is proven to yield gantry/payload re@_equa ities:

ulatlpn using similar gnalys.ls technlques.“ The design for"one of the kel < ETM(G)E A vé € R )
nonlinear controllers is motivated by the “energy-squared” approach

inspired by [17]. A second nonlinear approach is also presented tovilherek; andk, € R are positive bounding constants. In a similar
lustrate that additional energy-based controllers can be developed thanner as in [1] and [8], we assume that the dynamic model given in
exploit the increased coupling between the gantry and payload for ifd) has the following characteristics.

II. DYNAMIC MODEL

w=[F, F, 0 0" ®3)
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Assumption 1: The payload and the gantry are connected by amass-  ws =mp L sin 8 cos ¢

less, rigid link. . [('mp + my + m)I + (m. + mc)mpL2 sin’ 9]
Assumption 2: The angular position and velocity of the payload and 2 9 . 2 9 9

the planar position and velocity of the gantry are measurable. - [d (m”L. St 6+1)+p (mpL” +1)]
Assumption 3: The gantry mass and the length of the connecting + 2myp LI0¢ cosf sin ¢

rod are known. . [('m,p + m, + mc)(mpL2 +1)- m?]L2 cos® 9]
Assumption 4:The connection between the payload link and the + m, gL sin 6 [(m n m‘)mst sin2 0 cos f cos &

gantry is frictionless and does not rotate about the connecting link (i.e., P " e ‘

the payload does not rotate about the link axis). +(mr +me + mp)my, L1 cos b cos ¢ (14)

Assumption 5:The angular position of the payload mass is
restricted according to the following inequality: wherem,, m,, andm. € R represent the payload mass, rail mass,
and cart mass, respectively,c R denotes the moment of inertia of

—r <Ot <7 (6) thepayloadl € R represents the length of the crane rod, gnd
R represents the gravity constant. To write the open-loop dynamics
wheref(t) is measured from the vertical position (see Fig. 1). givenin (8) and (9) in a more compact form for the subsequent control

Remark 1: Note that the model given by (1) could be modified to infi€velopment and stability analysis, we defirte) R* as follows:
clude other dynamic effects associated with the gantry dynamics (e.g.,
gantry friction, viscous damping coefficients, mass moment of inertia r=le yl" (15)
of the gantry and rail motors, etc.); however, these additional dynami ) ) o .
fter taking the second time derivative oft), we can rewrite the

effects were not included in the model since these effects can bed . . . :
rectly cancelled by the controller. open-loop dynamics given in (8) and (9) as follows:

z

u] decn) PE+W) (16)

I1l. OPEN-LOOP SYSTEM DEVELOPMENT 7= [

To express (1) in a form that facilitates the subsequent control de-

velopment and stability analysis, we premultiply both sides of (1) ByhereP(q) € R**? andW (q.4) € R? are defined as follows:
M™'(q) to obtain the following expression:

P11 P12 - wi
. _ .. P = V = 17
=M "u=V,i—-G) ) L}m m] 142 L] a7

whereM ~'(q) € R*** is guaranteed to exist due to the fact that thand F(t) € R? is defined as
determinant of\/ (¢), denoted bylet(A{), is a positive function (see
[6] and [7] for explicit details). After performing some algebraic ma- F=[F, FJ". (18)
nipulation, the first two rows of (7) can be expressed as follows:
Based on (17) and the fact th&Y¢) is a leading minor of the posi-
_ , , . tive-definite matrix}/ —*, we can conclude tha?(q) is positive defi-
~ det(M) P Fs +piaky +un) ® nite, symmetric, and invertible, where the invergs,d)jajf]), denoted by
, , , P~1(q), is also positive definite and symmetric [13].
2o+ peFy +ws) ©) To(facilitate the subsequent Lyapunov-based control design, we uti-
lize the energy of the overhead crane system, denotdd(byq) € R,
where the measurable termsii(q), pi2(q), p22(q), wi(q,4), defined as follows:
w2(q,q) € R are defined as follows:

P!
i =qeon

. 1.7, .
) E(q,4)==¢ M(q)§+ mpgL (1 —cos(f)) > 0. (29)
P11 = m;l)zl'(sin2 ¢ + 2sin” f cos” ¢) + m,I” 2 ’

+ mem, L' sin® 6 + mom, L*I(1+ sin® §) After taking the time derivative of (19), substituting (1) fof(¢)¢(?),
+m I+ m;]f cos” ¢sin’ ¢ (10) utilizing (4), and canceling common terms, the following expression
34 . 4 can be obtained:
P12 = — myL" sin ¢ cos @ sin” §
- m?]LQI sin ¢ cos ¢(sin® 6 — cos” #) (11) E=#"F. (20)
Ppao = 'mZL4 sin® ¢ sin® 19}
+ my L’ [1+ (sin” 6 — cos” #) sin” ¢] IV. CONTROL DESIGN AND ANALYSIS
2 274 . 2
+ (mp +my 4+ mo )7+ (me 4+ me)m;, L7 sin” § The control objective in this paper is to regulate the planar gantry
+ (m, +m.)m, L*I(1 + sin” f) (12) position of the overhead crane to a constant desired position, denoted

2 o ,
wy =m, Lsinfsin ¢ by ra € R?, which is explicitly defined as

- [(mp +me)I + mpmeL? sin® 9] ra =g ya” (21)

% (mpL?sin® 6 + I) + 6% (m,L* + I
[ (mp L7 sin® ¢ + 1) + 6" (m, 1" + )] while simultaneously regulating the payload angi¢) to zero. To

— 2I'my LA cos B cos ¢ quantify the control objective of regulating the overhead crane to a con-
[(mp + mo) I +my L2 (me + my sin® 6)] stant desired position, we define a gantry position error sigftalc
R* as follows:

+ migL2 sin # cos 6 sin ¢
[(mp +me)l + mpm.L” sin” o] (23) e(t) =r —rq. (22)
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In the subsequent control development, a PD control law and two nddased on (29), it is clear th#(q, ¢) ande(¢) are constant, and hence,
linear controllers are designed and proven to achieve the above confirein (23) and (28), it is clear thaf'(¢) is constant. To complete the
objective through a Lyapunov-based stability analysis. proof, the stability of the system must be analyzed for the case when
Remark 2: Asin [19], the crane dynamic model given in (1)—(3) ex#(t) = 0 V¢ and the case whefit,) # 0 for a specific timet,.
ploits a projection of the payload angle along tkieCoordinate axis, Specifically, the result given in (24) can be proven under the proposition
denoted by (¢). By injecting this artificial state, the dynamic modelthatf(¢) = 0Vt (see [7] for the detailed analysis). Development is also
can be written in a manner that facilitates the development of coprovided in [7] to prove that the propositicﬁﬁto) # 0 for a specific
trollers that achieve the control objective; unfortunately, the overall stime ¢, leads to a contradiction, and hence, is invalid. [ ]
bility analysis is complicated by the fact that another unactuated statdeRemark 4: In the stability analysis for Theorem 1, we have shown
is injected into the system. From a physical standpoint, if the paylo#itat the control objective is met and that all signals in the dynamics
angle, denoted bg(t), is regulated to zero, then from Fig. 1, the payand the controller remain bounded for all time except for the signal
load is regulated to the desired location, and hence, the control objectife) (Note that by assumption, the payload angle, denoted(by,
is not defined in terms of regulating ). Despite this theoretical issue, is assumed to be bounded). We note that the boundednegs)as
simulation results and the experimental results provided in Sectioninsignificant from a theoretical point of view sinegt) only appears
illustrate that the subsequently developed controllers provide supeiiimthe dynamics and control as arguments of trigonometric functions.

transient performance with respect to a simple PD controller. Remark 5: Heuristically, the only way for the energy from the pay-
load motion to be dissipated is through the coupling between the pay-
A. PD Control Law load dynamics and the gantry dynamics. That is, a PD feedback loop

Based on the subsequent stability analysis, we design the foIIowiﬂTgthe gantry creates an artificial spring/damper system Which absorbs
PD control law: the payload energy through the natural gantry/payload coupling; how-

ever, from our experience with many control experiments on overhead

F = —(kai + kype) (23) Ccrane testbeds, we believe that a PD feedback loop at the gantry will al-

ways provide poor performance because the gantry friction is not com-

wherekq andk, € R are positive constant control gains. pensated for perfectly (and it never will be). That is, the uncompen-
Theorem 1: The controller given in (23) ensures asymptotic regu|a$ated gantry friction effects tend to retard the natural coupling between
tion of the overheadcrane system in the sense that the gantry/payload dynamics, and hence, prevent payload energy from

being dissipated by the PD feedback loop at the gantry. In the following
. sections, we present controllers that tend to improve the performance

lim (2(t) y(H) ()= (ra ya 0) (24) P P P

of the PD feedback loop at the gantry due to the incorporation of ad-
ditional nonlinear terms in the control law that depend on the payload
dynamics. Although the subsequent controllers yield the same stability
result as the PD controller, the increase in gantry/payload coupling due
to the additional nonlinear terms results inimproved performance when
compared to the simple gantry PD controller. That is, the subsequent
controllers exploit additional energy-based nonlinear terms which pro-
) ) o o vide increased payload swing feedback through the coupling between
After taking the time derivative of (25) and then substituting (20), thg,q gantry and the payload. This concept has also been explored in [9]
time derivative of (22), and (23) into the resulting expression and thefq 110]. The improved performance of the subsequent controllers has
cancelling common terms, we obtain the following: been demonstrated by simulation results and by the experimental re-
sults presented in Section V.

wherex; andy,; were defined in (21).
Proof: To prove (24), we define a nonnegative functidi(t) €
R as follows:

1 ,
w=FE+ §kchc. (25)

Vi = —kat" i
B. Nonlinear Coupling Control Laws
Based on the expressions given in (5), (19), (22), (25), and (26), it iSga5eq on previous work presented in [17] for an inverted pendulum,
clearr(t), e(t), andg(t) € Lo.. Based on the fact that(?), ¢(t), e design the followingZ? coupling control law#
q(t) € Lo, it can be determined from (2) and (15) thet), #(¢),
y(t),y(t),7(t),8(t),andp(t) € L. Giventhak(t) andr(t) € L, . ] ko )
it is clear from (23) that'(¢) € L. Finally, from (3) and (18), we F=[9] <_kd7' = kpe = W”) (30)
can prove thaf.(t), Fy(t), u(t) € Lu.
Based on the fact that all of the closed-loop signals remain bound@ghere(2(t) € R*>*? is an auxiliary positive-definite, invertible matfix

LaSalle’s Invariance Theorem can now be utilized to prove (24). Tdefined as follows:
this end, we defin& as the set of all points where

, k.,
_ Q=kpEL + —2__p (31)
Vi =0. 27) det(M)
N ke, kp, ka, kv € R are positive constant control gairs, denotes the
In the setl’, it is clear from (26) and (27) that standard 2« 2 identity matrix, andP(q), andW (q. ¢) were defined in
y B (17). Using the same principles as in the the proof for Theorem 1, the
P(t)=0 #()=0 (28)  E? coupling control law given in (30) can be proven to asymptotically

and hence, we can conclude from (15), (25), (27), and (28)that 1The control strategy is called a3 coupling control law because its struc-

. ture is motivated by a squared energy term and an additional squared gantr
y(t), andV;(t) are constant. Furthermore, from (20), (22), and (28), locity term in theyLyap?Jnov funCtiO?l)./ a gantty
is clear that

2Since P and I, are positive definite matrices, and;, k., F(q,q), and
. det(M(q)) are positive scalars, it can be proven tf¥dt) is positive definite
E(q,4) = ¢é(t) =0. (29) and invertible.
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Fig. 2. Results for the PD controller. Fig. 3. Results for th&? coupling control law.

05 05

regulate the crane system. For explicit details that prove the controller 0
given in (30) yields asymptotic regulation of the crane system see [7]. g“
To illustrate how additional controllers can also be derived, we design ]
the following nonlinear coupling control la®:

p o That = kpe — ko PT'W = Lky (4 (det(M)P)) 7

5 5

o ¥ o @ g, g NWF_
5 5

wherekr, k,, kq, andk, € R are positive constant control gains, "o L "o o2 » W
and P(q), andW (g, ¢) were defined in (17). The gantry kinetic en- 3 3
ergy coupling control law given in (32) can also be proventoyieldthe . 2 <2
same stability result as described by Theorem 1. For explicit details & fﬂ
that prove the controller given in (32) yields asymptotic regulation of ° °

the crane system see [7]. "o w2 ® o 0 2 »

Time[sec} Time[sec]

V. EXPERIMENT RESULTS Fig. 4. Results for the gantry kinetic energy coupling contol law.

The controllers given in (23), (30), and (32) were implemented on

the InTeCo overhead crane testbed [14]. The physical parameters ofthstrol law. Based on the results illustrated in Figs. 2—4 (more quan-
overhead crane testbed were determined as follows: titative results are provided in [7]), it is clear that the coupling control

laws exhibit superior settling time when compared to the simple PD

m, =0.73 kg controller. One reason for this superior performance is that the only
i payload/gantry coupling that exists for the PD controller is the nat-
m. =1.06 kg ural coupling. When the gantry approaches the desired setpoint, fric-
m, =6.4kg tion damps the gantry to the extent that no overshoot can be observed;
I =0.005kg- m* hence, the gantry stops and the payload swings freely. In contrast, the
L—07m. (33) payload/gantry coupling for the coupling control laws is enhanced, re-

sulting in gantry overshoot that damps out the payload swing.

Each of the controllers was implemented at a sampling frequency of

. - VI. CONCLUSION
1 kHz and the desired gantry position was selected as follows:

In this paper, we presented three controllers for an overhead crane
/ T . - 4 system. By utilizing a Lyapunov-based stability analysis along with
[va  yal” =[1.75 1.75]"m. (34)  Lasalle’s Invariance Theorem, we proved asymptotic regulation of the

gantry and payload position for a PD controller and two nonlinear con-
For each of the experiments, the initial conditions were set to zero amndllers. Experimental results were utilized to demonstrate that the in-

the control gains were tuned until the best performance was achieve@ased coupling between the gantry and payload that results from the
The resulting gantry position error, payload angle, and the input foradditional nonlinear feedback terms in the nonlinear coupling control
are shown in Fig. 2 for the PD control law, Fig. 3 for th& cou- laws, resulted in improved transient response. Future efforts will focus
pling control law, and Fig. 4 for the gantry kinetic energy couplingn examining other types of overhead crane systems. For example, fu-
ture efforts will target incorporating additional DOF such as the length

3The control strategy is called a gantry kinetic energy coupling control IaW the pgndulum link (i.e., helght of the F’ay'oad)- .Furthermore, futgre
because its structure is derived from an additional gantry kinetic energy-liREforts will be directed at different modeling techniques that do not in-
term in the Lyapunov function. corporate additional auxiliary states in the system.
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