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Nonlinear Coupling Control Laws for an Underactuated
Overhead Crane System

Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu

Abstract—In this paper, we consider the regulation control problem for
an underactuated overhead crane system. Motivated by recent passivity-
based controllers for underactuated systems, we design several controllers
that asymptotically regulate the planar gantry position and the payload
angle. Specifically, utilizing LaSalle’s invariant set theorem, we first illus-
trate how a simple proportional–derivative (PD) controller can be utilized
to asymptotically regulate the overhead crane system. Motivated by the de-
sire to achieve improved transient performance, we then present two non-
linear controllers that increase the coupling between the planar gantry po-
sition and the payload angle. Experimental results are provided to illustrate
the improved performance of the nonlinear controllers over the simple PD
controller.

Index Terms—Energy damping, Lyapunov methods, nonlinear control,
overhead crane.

I. INTRODUCTION

Precise payload positioning by an overhead crane (especially when
performed by an operator using only visual feedback to position the
payload) is difficult due to the fact that the payload can exhibit a
pendulum-like swinging motion. Motivated by the desire to achieve
fast and precise payload positioning while mitigating performance
and safety concerns associated with the swinging motion, several
researchers have developed various controllers for overhead crane
systems. For example, Yuet al. [29] utilized a time-scale separation
approach to control an overhead crane system; however, an approx-
imate linearized model of the crane was utilized to facilitate the
construction of the error systems. In [27], Yashidaet al. proposed
a saturating control law based on a guaranteed cost control method
for a linearized version of the crane system dynamics. Martindaleet
al. [18] utilized an approximate crane model to develop exact model
knowledge and adaptive controllers while Butleret al. [2] exploited a
modal decomposition technique to develop an adaptive controller. In
[3], Chung and Hauser designed a nonlinear controller for regulating
the swinging energy of the payload.

Several researchers have also examined the control problem for over-
head crane systems with additional degree of freedom (DOF). Specif-
ically, Moustafa and Ebeid [19] derived the nonlinear dynamic model
for an overhead crane and then utilized a standard linear feedback con-
troller based on a linearized state space model. In [20], Noakes and
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Jansen developed a generalized input shaping approach for the lin-
earized crane dynamics that exploited a notch filtering technique to
control the motion of the bridge/trolley of an overhead crane system.
More recently, Lee [16] developed a nonlinear model for overhead
cranes based on a new swing-angle definition. Based on this nonlinear
model, Lee then developed an anti-swing control law for the decou-
pled linearized dynamics. In [22], Sakawa and Sano derived a nonlinear
model for a crane system that was subsequently linearized to facilitate
the development of a control scheme that first transferred the load to a
position near the equilibrium point using an open-loop controller and
then utilized a linear feedback controller to stabilize the payload about
the equilibrium point.

One of the limiting factors associated with the above overhead crane
control designs is that the system nonlinearities are often excluded from
the closed-loop error system design and stability analysis. To over-
come this drawback, several researchers have investigated control ap-
proaches that account for the nonlinear dynamics of overhead cranes
and similar systems. For example in [24], Teel utilized saturation func-
tions to develop an output feedback controller which achieves a robust,
semi-global stability result for the ball-and-beam control problem. In
[1], Burg et al. transformed the nonlinear crane dynamics into a struc-
ture that resembled the ball-and-beam problem and then adopted the
research efforts of [24] to achieve asymptotic positioning from a large
set of initial conditions. More recently, Fantoniet al.[8] and Lozanoet
al. [17] proposed passivity-based controllers for the inverted pendulum
and the pendubot (i.e., an inverted pendulum-like robot with an unac-
tuated second link) based on the paradigm of driving the underactu-
ated system to a homoclinic orbit using an energy-based nonlinear con-
troller and then switching to a linear controller to stabilize the system
around its unstable equilibrium point. Using similar stability-analysis
techniques, Colladoet al. [4] proposed a proportional-derivative (PD)
controller for an overhead crane problem with a 1-DOF gantry. In [15],
Kisset al.developed a PD controller for a vertical crane-winch system
that only requires the measurement of the winch angle and its deriva-
tive rather than a cable angle measurement. In [12] and [21], passivity
based interconnection and damping assignment control techniques are
used to stabilize underactuated mechanical systems. Specifically, the
desired inertia matrix is parameterized such that energy shaping can
be exploited to stabilize underactuated mechanical systems such as the
ball-and-beam problem and the inverted pendulum. In [28], Yoshida
developed a nonlinear energy-based controller to damp out the pen-
dulum oscillations despite amplitude constraints on the trolly position.
Recently, in [5] and [6], Fanget al. developed several energy-based
controllers for overhead crane systems in which additional nonlinear
terms were injected into the controller to increase the coupling between
the gantry position and the payload position to provide for improved
transient response.

In this paper, a linear PD controller is explicitly proven to yield
asymptotic regulation of an overhead crane system. By using similar
analysis techniques as in [8] and [17], this paper provides the first ex-
plicit proof that a PD controller can be used to regulate the underactu-
ated, nonlinear 2-DOF gantry and payload dynamics. Specifically, a PD
feedback loop at the gantry creates an artificial spring/damper system
which absorbs the payload energy. Motivated by the heuristic concept
that improved coupling between the gantry and the payload dynamics
will provide a mechanism for improved transient response, additional
nonlinear feedback terms are incorporated with the PD controller and
the resulting nonlinear controller is proven to yield gantry/payload reg-
ulation using similar analysis techniques. The design for one of the
nonlinear controllers is motivated by the “energy-squared” approach
inspired by [17]. A second nonlinear approach is also presented to il-
lustrate that additional energy-based controllers can be developed that
exploit the increased coupling between the gantry and payload for im-

Fig. 1. Overhead crane system.

proved transient response. That is, another contribution of this research
is to illustrate how nonlinear feedback terms can be incorporated in the
control design to provide additional feedback for the unactuated pay-
load angle through the natural coupling that exists between the gantry
and the payload. To further examine the potential for improved tran-
sient performance, additional analysis techniques such as those pre-
sented in [11] could possibly be explored to bound the transient re-
sponse. While additional analytical approaches such as [11] are beyond
the scope of this paper, experimental results are provided, which illus-
trate that the increased coupling of the nonlinear controllers results in
improved transient response over the linear PD control law.

II. DYNAMIC MODEL

The dynamic model of the underactuated overhead crane system (see
Fig. 1) is assumed to have the following form [19]:

M(q)�q + Vm(q; _q) _q +G(q) = u: (1)

In (1),M(q) 2 4�4, Vm(q; _q) 2 4�4, andG(q) 2 4, represent
the inertia, centripetal-Coriolis, and gravity terms (for details regarding
the components of these matrices see [6], [7]), respectively,q(t) 2 4

is defined as follows:

q = [x y � �]T (2)

wherex(t) 2 denotes the gantry position along theX-coordinate
axis,y(t) 2 denotes the gantry position along theY -coordinate axis,
�(t) 2 denotes the payload angle with respect to the vertical,�(t) 2

denotes the projection of the payload angle along theX-coordinate
axis, andu(t) 2 4 is defined as

u = [Fx Fy 0 0]T (3)

whereFx(t) andFy(t) 2 represent the control-force inputs acting
on the cart and rail, respectively. Based on the structure ofM(q) and
Vm(q; _q), it is straightforward to show that the following skew-sym-
metric relationship is satisfied:

�
T 1

2
_M(q)� Vm(q; _q) � = 0 8� 2 4 (4)

where _M(q) represents the time derivative ofM(q), and that the in-
ertia matrixM(q) can be upper and lower bounded by the following
inequalities:

k1k�k
2 � �

T
M(q)� � k2k�k

2 8� 2 4 (5)

wherek1 andk2 2 are positive bounding constants. In a similar
manner as in [1] and [8], we assume that the dynamic model given in
(1) has the following characteristics.
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Assumption 1:The payload and the gantry are connected by a mass-
less, rigid link.

Assumption 2:The angular position and velocity of the payload and
the planar position and velocity of the gantry are measurable.

Assumption 3:The gantry mass and the length of the connecting
rod are known.

Assumption 4:The connection between the payload link and the
gantry is frictionless and does not rotate about the connecting link (i.e.,
the payload does not rotate about the link axis).

Assumption 5:The angular position of the payload mass is
restricted according to the following inequality:

�� < �(t) < � (6)

where�(t) is measured from the vertical position (see Fig. 1).
Remark 1: Note that the model given by (1) could be modified to in-

clude other dynamic effects associated with the gantry dynamics (e.g.,
gantry friction, viscous damping coefficients, mass moment of inertia
of the gantry and rail motors, etc.); however, these additional dynamic
effects were not included in the model since these effects can be di-
rectly cancelled by the controller.

III. OPEN-LOOPSYSTEM DEVELOPMENT

To express (1) in a form that facilitates the subsequent control de-
velopment and stability analysis, we premultiply both sides of (1) by
M�1(q) to obtain the following expression:

�q = M
�1(u� Vm _q �G) (7)

whereM�1(q) 2 4�4 is guaranteed to exist due to the fact that the
determinant ofM(q), denoted bydet(M), is a positive function (see
[6] and [7] for explicit details). After performing some algebraic ma-
nipulation, the first two rows of (7) can be expressed as follows:

�x =
1

det(M)
(p11Fx + p12Fy + w1) (8)

�y =
1

det(M)
(p12Fx + p22Fy + w2) (9)

where the measurable termsp11(q), p12(q), p22(q), w1(q; _q),
w2(q; _q) 2 are defined as follows:

p11 =m
2

pL
2
I(sin2 �+ 2 sin2 � cos2 �) +mpI

2

+mcmpL
4 sin2 � +mcmpL

2
I(1 + sin2 �)

+mcI
2 +m

3

pL
4 cos2 � sin4 � (10)

p12 = �m
3

pL
4 sin� cos� sin4 �

�m
2

pL
2
I sin� cos�(sin2 � � cos2 �) (11)

p22 =m
3

pL
4 sin4 � sin2 �

+m
2

pL
2
I 1 + (sin2 � � cos2 �) sin2 �

+ (mp +mr +mc)I
2 + (mr +mc)m

2

pL
4 sin2 �

+ (mr +mc)mpL
2
I(1 + sin2 �) (12)

w1 =mpL sin � sin�

� (mp +mc)I +mpmcL
2 sin2 �

� _�2(mpL
2 sin2 � + I) + _�2(mpL

2 + I)

� 2ImpL _� _� cos � cos�

� (mp +mc)I +mpL
2(mc +mp sin

2
�)

+m
2

pgL
2 sin � cos � sin�

� (mp +mc)I +mpmcL
2 sin2 � (13)

w2 =mpL sin � cos�

� (mp +mr +mc)I + (mr +mc)mpL
2 sin2 �

� d
2(mpL

2 sin2 � + I) + p
2(mpL

2 + I)

+ 2mpLI _� _� cos � sin�

� (mp +mr +mc)(mpL
2 + I)�m

2

pL
2 cos2 �

+mpgL sin � (mr +mc)m
2

pL
3 sin2 � cos � cos�

+(mr +mc +mp)mpLI cos � cos�] (14)

wheremp, mr, andmc 2 represent the payload mass, rail mass,
and cart mass, respectively,I 2 denotes the moment of inertia of
the payload,L 2 represents the length of the crane rod, andg 2

represents the gravity constant. To write the open-loop dynamics
given in (8) and (9) in a more compact form for the subsequent control
development and stability analysis, we definer(t) 2 2 as follows:

r = [x y]T : (15)

After taking the second time derivative ofr(t), we can rewrite the
open-loop dynamics given in (8) and (9) as follows:

�r =
�x

�y
=

1

det(M)
(PF +W ) (16)

whereP (q) 2 2�2 andW (q; _q) 2 2 are defined as follows:

P =
p11 p12

p12 p22
W =

w1

w2

(17)

andF (t) 2 2 is defined as

F = [Fx Fy]
T
: (18)

Based on (17) and the fact thatP (q) is a leading minor of the posi-
tive-definite matrixM�1, we can conclude thatP (q) is positive defi-
nite, symmetric, and invertible, where the inverse ofP (q), denoted by
P�1(q), is also positive definite and symmetric [13].

To facilitate the subsequent Lyapunov-based control design, we uti-
lize the energy of the overhead crane system, denoted byE(q; _q) 2 ,
defined as follows:

E(q; _q) =
1

2
_qTM(q) _q +mpgL (1� cos(�)) � 0: (19)

After taking the time derivative of (19), substituting (1) forM(q)�q(t),
utilizing (4), and canceling common terms, the following expression
can be obtained:

_E = _rTF: (20)

IV. CONTROL DESIGN AND ANALYSIS

The control objective in this paper is to regulate the planar gantry
position of the overhead crane to a constant desired position, denoted
by rd 2 2, which is explicitly defined as

rd = [xd yd]
T (21)

while simultaneously regulating the payload angle�(t) to zero. To
quantify the control objective of regulating the overhead crane to a con-
stant desired position, we define a gantry position error signale(t) 2
2 as follows:

e(t) = r � rd: (22)
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In the subsequent control development, a PD control law and two non-
linear controllers are designed and proven to achieve the above control
objective through a Lyapunov-based stability analysis.

Remark 2: As in [19], the crane dynamic model given in (1)–(3) ex-
ploits a projection of the payload angle along theX-Coordinate axis,
denoted by�(t). By injecting this artificial state, the dynamic model
can be written in a manner that facilitates the development of con-
trollers that achieve the control objective; unfortunately, the overall sta-
bility analysis is complicated by the fact that another unactuated state
is injected into the system. From a physical standpoint, if the payload
angle, denoted by�(t), is regulated to zero, then from Fig. 1, the pay-
load is regulated to the desired location, and hence, the control objective
is not defined in terms of regulating�(t). Despite this theoretical issue,
simulation results and the experimental results provided in Section V
illustrate that the subsequently developed controllers provide superior
transient performance with respect to a simple PD controller.

A. PD Control Law

Based on the subsequent stability analysis, we design the following
PD control law:

F = �(kd _r + kpe) (23)

wherekd andkp 2 are positive constant control gains.
Theorem 1: The controller given in (23) ensures asymptotic regula-

tion of the overheadcrane system in the sense that

lim
t!1

(x(t) y(t) �(t)) = (xd yd 0) (24)

wherexd andyd were defined in (21).
Proof: To prove (24), we define a nonnegative functionV1(t) 2

as follows:

V1 = E +
1

2
kpe

T
e: (25)

After taking the time derivative of (25) and then substituting (20), the
time derivative of (22), and (23) into the resulting expression and then
cancelling common terms, we obtain the following:

_V1 = �kd _r
T _r: (26)

Based on the expressions given in (5), (19), (22), (25), and (26), it is
clear r(t), e(t), and _q(t) 2 L1. Based on the fact thatr(t), e(t),
_q(t) 2 L1, it can be determined from (2) and (15) thatx(t), _x(t),
y(t), _y(t), _r(t), _�(t), and _�(t) 2 L1. Given thate(t) and _r(t) 2 L1,
it is clear from (23) thatF (t) 2 L1. Finally, from (3) and (18), we
can prove thatFx(t), Fy(t), u(t) 2 L1.

Based on the fact that all of the closed-loop signals remain bounded,
LaSalle’s Invariance Theorem can now be utilized to prove (24). To
this end, we define� as the set of all points where

_V1 = 0: (27)

In the set�, it is clear from (26) and (27) that

_r(t) = 0 �r(t) = 0 (28)

and hence, we can conclude from (15), (25), (27), and (28) thatx(t),
y(t), andV1(t) are constant. Furthermore, from (20), (22), and (28), it
is clear that

_E(q; _q) = _e(t) = 0: (29)

Based on (29), it is clear thatE(q; _q) ande(t) are constant, and hence,
from (23) and (28), it is clear thatF (t) is constant. To complete the
proof, the stability of the system must be analyzed for the case when
_�(t) = 0 8t and the case when_�(t0) 6= 0 for a specific timet0.
Specifically, the result given in (24) can be proven under the proposition
that _�(t) = 0 8t (see [7] for the detailed analysis). Development is also
provided in [7] to prove that the proposition_�(t0) 6= 0 for a specific
time t0 leads to a contradiction, and hence, is invalid.

Remark 4: In the stability analysis for Theorem 1, we have shown
that the control objective is met and that all signals in the dynamics
and the controller remain bounded for all time except for the signal
�(t) (Note that by assumption, the payload angle, denoted by�(t),
is assumed to be bounded). We note that the boundedness of�(t) is
insignificant from a theoretical point of view since�(t) only appears
in the dynamics and control as arguments of trigonometric functions.

Remark 5: Heuristically, the only way for the energy from the pay-
load motion to be dissipated is through the coupling between the pay-
load dynamics and the gantry dynamics. That is, a PD feedback loop
at the gantry creates an artificial spring/damper system which absorbs
the payload energy through the natural gantry/payload coupling; how-
ever, from our experience with many control experiments on overhead
crane testbeds, we believe that a PD feedback loop at the gantry will al-
ways provide poor performance because the gantry friction is not com-
pensated for perfectly (and it never will be). That is, the uncompen-
sated gantry friction effects tend to retard the natural coupling between
the gantry/payload dynamics, and hence, prevent payload energy from
being dissipated by the PD feedback loop at the gantry. In the following
sections, we present controllers that tend to improve the performance
of the PD feedback loop at the gantry due to the incorporation of ad-
ditional nonlinear terms in the control law that depend on the payload
dynamics. Although the subsequent controllers yield the same stability
result as the PD controller, the increase in gantry/payload coupling due
to the additional nonlinear terms results in improved performance when
compared to the simple gantry PD controller. That is, the subsequent
controllers exploit additional energy-based nonlinear terms which pro-
vide increased payload swing feedback through the coupling between
the gantry and the payload. This concept has also been explored in [9]
and [10]. The improved performance of the subsequent controllers has
been demonstrated by simulation results and by the experimental re-
sults presented in Section V.

B. Nonlinear Coupling Control Laws

Based on previous work presented in [17] for an inverted pendulum,
we design the following:E2 coupling control law:1

F = [
]�1 �kd _r � kpe�
kv

det(M)
W (30)

where
(t) 2 2�2 is an auxiliary positive-definite, invertible matrix2

defined as follows:


 = kEEI2 +
kv

det(M)
P (31)

kE , kp, kd, kv 2 are positive constant control gains,I2 denotes the
standard 2� 2 identity matrix, andP (q), andW (q; _q) were defined in
(17). Using the same principles as in the the proof for Theorem 1, the
E2 coupling control law given in (30) can be proven to asymptotically

1The control strategy is called anE coupling control law because its struc-
ture is motivated by a squared energy term and an additional squared gantry
velocity term in the Lyapunov function.

2SinceP and I are positive definite matrices, andk , k , E(q; _q), and
det(M(q)) are positive scalars, it can be proven that
(t) is positive definite
and invertible.
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Fig. 2. Results for the PD controller.

regulate the crane system. For explicit details that prove the controller
given in (30) yields asymptotic regulation of the crane system see [7].
To illustrate how additional controllers can also be derived, we design
the following nonlinear coupling control law:3

F =
�kd _r � kpe� kvP

�1W �

1

2
kv

d

dt
det(M)P�1 _r

kE + kv
(32)

wherekE , kp, kd, andkv 2 are positive constant control gains,
andP (q), andW (q; _q) were defined in (17). The gantry kinetic en-
ergy coupling control law given in (32) can also be proven to yield the
same stability result as described by Theorem 1. For explicit details
that prove the controller given in (32) yields asymptotic regulation of
the crane system see [7].

V. EXPERIMENT RESULTS

The controllers given in (23), (30), and (32) were implemented on
the InTeCo overhead crane testbed [14]. The physical parameters of the
overhead crane testbed were determined as follows:

mp =0:73 kg

mc =1:06 kg

mr =6:4 kg

I =0:005 kg � m2

L =0:7 m: (33)

Each of the controllers was implemented at a sampling frequency of
1 kHz and the desired gantry position was selected as follows:

[xd yd]
T = [1:75 1:75]Tm: (34)

For each of the experiments, the initial conditions were set to zero and
the control gains were tuned until the best performance was achieved.
The resulting gantry position error, payload angle, and the input force
are shown in Fig. 2 for the PD control law, Fig. 3 for theE2 cou-
pling control law, and Fig. 4 for the gantry kinetic energy coupling

3The control strategy is called a gantry kinetic energy coupling control law
because its structure is derived from an additional gantry kinetic energy-like
term in the Lyapunov function.

Fig. 3. Results for theE coupling control law.

Fig. 4. Results for the gantry kinetic energy coupling contol law.

control law. Based on the results illustrated in Figs. 2–4 (more quan-
titative results are provided in [7]), it is clear that the coupling control
laws exhibit superior settling time when compared to the simple PD
controller. One reason for this superior performance is that the only
payload/gantry coupling that exists for the PD controller is the nat-
ural coupling. When the gantry approaches the desired setpoint, fric-
tion damps the gantry to the extent that no overshoot can be observed;
hence, the gantry stops and the payload swings freely. In contrast, the
payload/gantry coupling for the coupling control laws is enhanced, re-
sulting in gantry overshoot that damps out the payload swing.

VI. CONCLUSION

In this paper, we presented three controllers for an overhead crane
system. By utilizing a Lyapunov-based stability analysis along with
LaSalle’s Invariance Theorem, we proved asymptotic regulation of the
gantry and payload position for a PD controller and two nonlinear con-
trollers. Experimental results were utilized to demonstrate that the in-
creased coupling between the gantry and payload that results from the
additional nonlinear feedback terms in the nonlinear coupling control
laws, resulted in improved transient response. Future efforts will focus
on examining other types of overhead crane systems. For example, fu-
ture efforts will target incorporating additional DOF such as the length
of the pendulum link (i.e., height of the payload). Furthermore, future
efforts will be directed at different modeling techniques that do not in-
corporate additional auxiliary states in the system.
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