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Abstract— This brief paper provides an approximate online adaptive
solution to the infinite-horizon optimal tracking problem for control-
affine continuous-time nonlinear systems with unknown drift dynamics.
To relax the persistence of excitation condition, model-based reinforce-
ment learning is implemented using a concurrent-learning-based system
identifier to simulate experience by evaluating the Bellman error over
unexplored areas of the state space. Tracking of the desired trajectory
and convergence of the developed policy to a neighborhood of the optimal
policy are established via Lyapunov-based stability analysis. Simulation
results demonstrate the effectiveness of the developed technique.

Index Terms— Data-driven control, nonlinear control, optimal
control, reinforcement learning (RL), system identification.

I. INTRODUCTION

Reinforcement learning (RL)-based techniques have effectively
been utilized to obtain online approximate solutions to optimal
control problems for systems with finite state–action spaces and sta-
tionary environments [1], [2]. Various implementations of RL-based
learning strategies to solve deterministic optimal control problems
in continuous state spaces can be found in results such as [3]–[11]
for set-point regulation and [12]–[17] for trajectory tracking. Results
such as [13] and [16]–[18] solve optimal tracking problems for linear
and nonlinear systems online, where the persistence of excitation
(PE) of the error states is used to establish convergence. In general,
it is impossible to guarantee PE a priori; hence, a probing signal
designed using trial and error is added to the controller to ensure
PE. However, the probing signal is not considered in the stability
analysis. In this brief paper, the objective is to employ data-driven
model-based RL to design an online approximate optimal tracking
controller for continuous-time uncertain nonlinear systems under a
relaxed finite excitation condition.

RL in systems with continuous state and action spaces is realized
via value function approximation, where the value function corre-
sponding to the optimal control problem is approximated using a
parametric universal approximator. The control policy is generally
derived from the approximate value function; hence, obtaining a
good approximation of the value function is critical to the stability
of the closed-loop system. In trajectory tracking problems, the
value function explicitly depends on time. Since universal function
approximators can approximate functions with arbitrary accuracy
only on compact domains, the value functions for infinite-horizon
optimal tracking problems cannot be approximated with arbitrary
accuracy [12], [18].
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The technical challenges associated with the nonautonomous nature
of the trajectory tracking problem are addressed in [18], where it is
established that under a matching condition on the desired trajectory,
the optimal trajectory tracking problem can be reformulated as a sta-
tionary optimal control problem. Since the value function associated
with a stationary optimal control problem is time invariant, it can be
approximated using traditional function approximation techniques.

The aforementioned reformulation in [18] requires the computa-
tion of the steady-state tracking controller, which depends on the
system model; hence, the development in [18] requires exact model
knowledge. Obtaining an accurate estimate of the desired steady-state
controller and injecting the resulting estimation error in the stability
analysis are the major technical challenges in extending the work
in [18] to uncertain systems.

Concurrent-learning (CL)-based system identifiers are used in
results such as [19] and [20] to solve optimal regulation problems
for uncertain systems. Extension of the techniques in [19] and [20]
to solve the optimal tracking problem is not trivial due to the fact that
the optimal tracking problem requires knowledge of the steady-state
controller. An estimate of the steady-state controller can be generated
using the CL-based system identifiers. The use of an estimate instead
of the true steady-state controller results in additional approximation
errors that can potentially cause instability during the learning phase.

A primary contribution of this brief paper and our preliminary work
in [21] is to analyze the stability of the closed-loop system in
the presence of the aforementioned approximation error. The error
between the actual steady-state controller and its estimate is included
in the stability analysis by examining the trajectories of the concate-
nated system under the implemented control signal. In addition to
estimating the desired steady-state controller, the CL-based system
identifier is also used to simulate experience by evaluating the
Bellman error (BE) over unexplored areas of the state
space [21]–[23]. To illustrate the effectiveness of the developed
technique, the simulation results are presented that demonstrate
an approximation of optimal policy without an added exploration
signal.

II. PROBLEM FORMULATION AND EXACT SOLUTION

Consider a control-affine system described by the differential
equation ẋ = f (x) + g(x)u, where x ∈ R

n denotes the state, u ∈ R
m

denotes the control input, and f : R
n → R

n and g : R
n → R

n×m are
locally Lipschitz continuous functions that denote the drift dynamics
and the control effectiveness, respectively.1 The control objective
is to optimally track a time-varying desired trajectory xd ∈ R

n .
To facilitate the subsequent control development, an error signal
e ∈ R

n is defined as e � x − xd . Since the steady-state control

1For notational brevity, unless otherwise specified, the domain of all the
functions is assumed to be R≥0. Furthermore, time dependence is suppressed
in equations and definitions. For example, the trajectory x : R≥0 → R

n is
defined by an abuse of notation as x ∈ R

n and unless otherwise specified, an
equation of the form f + h(y, t) = g(x) is interpreted as f (t) + h(y(t), t) =
g(x(t)) for all t ∈ R≥0.
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input that is required for the system to track a desired trajectory is,
in general, not identically zero, an infinite-horizon total-cost optimal
control problem formulated in terms of a quadratic cost function
containing e and u always results in an infinite cost. To address
this issue, an alternative cost function is formulated in terms of the
tracking error and the mismatch between the actual control signal
and the desired steady-state control [12], [16]–[18]. The following
assumptions facilitate the determination of the desired steady-state
control.

Assumption 1 [18]: The function g is bounded, the matrix g(x)
has full column rank for all x ∈ R

n , and the function
g+ : R

n → R
m×n defined as g+ � (gT g)−1gT is bounded and

locally Lipschitz.
Assumption 2 [18]: The desired trajectory is bounded by a known

positive constant d ∈ R, such that ‖xd‖ ≤ d , and there exists a
locally Lipschitz function hd : R

n → R
n , such that ẋd = hd (xd )

and g(xd )g+(xd )(hd (xd ) − f (xd )) = hd (xd ) − f (xd ), ∀t ∈ R≥t0 .
Based on Assumptions 1 and 2, the steady-state control policy

ud : R
n → R

m required for the system to track the desired
trajectory xd can be expressed as ud (xd ) = g+

d (hd (xd ) − fd ),
where fd � f (xd ) and g+

d � g+(xd ). The error between the actual
control signal and the desired steady-state control signal is defined
as μ � u − ud (xd ). Using μ, the system dynamics can be expressed
in the autonomous form

ζ̇ = F(ζ ) + G(ζ )μ (1)

where the concatenated state ζ ∈ R
2n is defined as ζ � [eT, xT

d ]T
,

and the functions F : R
2n → R

2n and G : R
2n → R

2n×m are

defined as F(ζ ) � [ f T (e + xd ) − hT
d + uT

d (xd )gT (e + xd ), hT
d ]T

and G(ζ ) � [ gT (e + xd ), 0m×n ]T
, respectively, where 0n×m

denotes an n × m matrix of zeros. The control error μ is treated
hereafter as the design variable. The control objective is to solve
the infinite-horizon optimal regulation problem online, i.e., to simul-
taneously synthesize and utilize a control signal μ online to mini-
mize the cost functional J (ζ,μ) �

∫ ∞
t0

r(ζ(τ),μ(τ))dτ , under the
dynamic constraint ζ̇ = F(ζ ) + G(ζ )μ, while tracking the desired
trajectory, where r : R

2n × R
m → R is the local cost defined as

r(ζ, μ) � Q(e) +μT Rμ, R ∈ R
m×m is a positive definite symmetric

matrix of constants, and Q : R
n → R is a continuous positive definite

function.
Assuming that an optimal policy exists, the optimal policy can

be characterized in terms of the value function V ∗ : R
2n → R

defined as V ∗(ζ ) � minμ(τ)∈U |τ∈R≥t

∫ ∞
t r(φμ(τ, t, ζ ),μ(τ))dτ ,

where U ∈ R
m is the action space and the notation φμ(t; t0, ζ0)

denotes the trajectory of ζ̇ = F(ζ ) + G(ζ )μ, under the con-
trol signal μ : R≥0 → R

m with the initial condition ζ0 ∈ R
2n

and the initial time t0 ∈ R≥0. Assuming that a minimizing
policy exists and that V ∗ is continuously differentiable, a closed-
form solution for the optimal policy can be obtained as [24]

μ∗(ζ ) = −(1/2)R−1GT (ζ )(∇ζ V ∗(ζ ))T , where ∇ζ (·) � (∂(·)/∂ζ ).
The optimal policy and the optimal value function satisfy the
Hamilton–Jacobi–Bellman (HJB) equation [24]

∇ζ V ∗(ζ )(F(ζ ) + G(ζ )μ∗(ζ )) + Q(ζ ) + μ∗T (ζ )Rμ∗(ζ ) = 0 (2)

with the initial condition V ∗(0) = 0, where the function
Q : R

2n → R is defined as Q([ eT , xT
d ]T

) = Q(e), ∀e, xd ∈ R
n .

Remark 1: Assumptions 1 and 2 can be eliminated if a discounted
cost optimal tracking problem is considered instead of the total-cost
problem considered in this brief paper. The discounted cost track-
ing problem considers a value function of the form V ∗(ζ ) �
minu(τ )∈U |τ∈R≥t

∫ ∞
t eκ(t−τ )r(φu(τ, t, ζ ), u(τ))dτ , where κ ∈ R>0

is a constant discount factor, and the control effort u is minimized
instead of the control error μ. The control effort required for a system
to perfectly track a desired trajectory is generally nonzero even if the
initial system state is on the desired trajectory. Hence, in general,
the optimal value function for a discounted cost problem does
not satisfy V ∗(0) = 0. Online continuous-time RL techniques are
generally analyzed using the optimal value function as a candidate
Lyapunov function. Since the optimal value function for a discounted
cost problem does not evaluate to zero at the origin, it cannot be
used as a candidate Lyapunov function, leading to complications
in the stability analysis of a discounted cost optimal controller
during the learning phase. Hence, to make the stability analysis
tractable, a total-cost optimal control problem is considered in
this brief paper.

III. BELLMAN ERROR

Since a closed-form solution of the HJB equation is generally
infeasible to obtain, an approximate solution is sought. In an actor-
critic-based solution, the optimal value function V ∗ is replaced by
a parametric estimate V̂ (ζ, Ŵc) and the optimal policy μ∗ by a

parametric estimate μ̂(ζ, Ŵa), where Ŵc ∈ R
L and Ŵa ∈ R

L denote
vectors of estimates of the ideal parameters. The objective of the
critic is to learn the parameters Ŵc , and the objective of the actor is
to learn the parameters Ŵa . Substituting the estimates V̂ and μ̂ for
V ∗ and μ∗ in the HJB equation, respectively, yields a residual error
δ : R

2n × R
L × R

L → R, called the BE, is defined as

δ(ζ, Ŵc, Ŵa) = Q(ζ ) + μ̂T (ζ, Ŵa)Rμ̂(ζ, Ŵa)

+ ∇ζ V̂ (ζ, Ŵc)(F(ζ ) + G(ζ )μ̂(ζ, Ŵa)). (3)

In particular, to solve the optimal control problem, the critic aims
to find a set of parameters Ŵc , and the actor aims to find a set
of parameters Ŵa , such that δ(ζ, Ŵc, Ŵa) = 0 and û(ζ, Ŵa) =
−(1/2)R−1GT (ζ )(∇ζ V̂ (ζ, Ŵa))T , ∀ζ ∈ R

2n . Since an exact basis
for value function approximation is generally not available, an
approximate set of parameters that minimizes the BE is sought.
In particular, to ensure uniform approximation of the value function
and the policy over a compact operating domain C ⊂ R

2n , it is desir-
able to find parameters that minimize the error Es : R

L × R
L → R

defined as Es (Ŵc, Ŵa) � supζ∈C |δ(ζ, Ŵc, Ŵa)|. Computation of
the error Es and computation of the control signal u require knowl-
edge of the system drift dynamics, f . Two prevalent approaches
employed to render the control design robust to uncertainties in the
system drift dynamics are integral RL [10], [25] and state derivative
estimation [7], [18]. However, in techniques, such as [7], [10],
[18], and [25], the BE can only be evaluated along the system
trajectory. Thus, instead of Es , the instantaneous integral error
Ê(t) �

∫ t
t0

δ2(φμ̂(τ, t0, ζ0), Ŵc(t), Ŵa(t))dτ is used to facilitate
learning.

Intuitively, for Ê to approximate Es over an operating domain,
the state trajectory φμ̂(t, t0, ζ0) needs to visit as many points in the
operating domain as possible. This intuition is formalized by the fact
that techniques, such as [7], [10], [18], [25], and [26], require PE to
achieve convergence. The PE condition is relaxed in [10] to a finite
excitation condition using integral RL along with experience replay,
where each evaluation of the BE is interpreted as gained experience,
and these experiences are stored in a history stack and are repeatedly
used in the learning algorithm to improve data efficiency.

In this brief paper, a different approach is used to improve data
efficiency. A dynamic system identifier is developed to generate a
parametric estimate F̂(ζ, θ̂) of the drift dynamics F , where θ̂ denotes
the estimate of the matrix of unknown parameters. Given F̂ , V̂ , and μ̂,
an estimate of the BE can be evaluated at any ζ ∈ R

2n . That is,
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using F̂ , experience can be simulated by extrapolating the BE over
unexplored off-trajectory points in the operating domain. Hence, if an
identifier can be developed, such that F̂ approaches F exponentially
fast, learning laws for the optimal policy can utilize simulated
experience along with experience gained and stored along the state
trajectory.

If parametric approximators are used to approximate F , the
convergence of F̂ to F is implied by the convergence of the
parameters to their unknown ideal values. It is well known
that adaptive system identifiers require PE to achieve parame-
ter convergence. To relax the PE condition, a CL-based system
identifier [21]–[23], [27] that uses recorded data for learning is
developed in Section IV.

IV. SYSTEM IDENTIFICATION

On any compact set C ⊂ R
n , the function f can be represented

using a neural network (NN) as f (x) = θT σ f (Y
T x1) + εθ (x),

where x1 � [ 1, xT ]T ∈ R
n+1, θ ∈ R

p+1×n , and Y ∈ R
n+1×p

denote the constant unknown output-layer and hidden-layer NN
weights, σ f : R

p → R
p+1 denotes a bounded NN basis function,

εθ : R
n → R

n denotes the function reconstruction error, and p ∈ N

denotes the number of NN neurons. Using the universal func-
tion approximation property of single layer NNs, given a constant

matrix Y such that the rows of σ f (Y
T x1) form a proper basis,

there exist constant ideal weights θ and known constants θ , εθ ,
and ε′

θ ∈ R, such that ‖θ‖ ≤ θ < ∞, supx∈C ‖εθ (x)‖ ≤ εθ , and

supx∈C ‖∇x εθ (x)‖ ≤ ε′
θ , where ‖ · ‖ denotes the Euclidean norm for

vectors and the Frobenius norm for matrices [28].
Using an estimate θ̂ ∈ R

p+1×n of the weight matrix θ , the func-
tion f can be approximated by the function f̂ : R

2n×R
p+1×n → R

n

defined as f̂ (ζ, θ̂ ) � θ̂T σθ (ζ ), where σθ : R
2n → R

p+1 is
defined as σθ (ζ ) = σ f (Y

T [ 1, eT + xT
d

]T ). An estimator for online
identification of the drift dynamics is developed as

˙̂x = θ̂T σθ (ζ ) + g(x)u + kx̃ (4)

where x̃ � x − x̂ , and k ∈ R is a positive constant learning
gain.

Assumption 3 [23]: A history stack containing recorded state–
action pairs {x j , u j }M

j=1 along with numerically computed state

derivatives { ˙̄x j }M
j=1 that satisfies λmin(

∑M
j=1 σ f j σ

T
f j ) = σθ > 0,

‖ ˙̄x j − ẋ j ‖ < d,∀ j is available a priori, where σ f j �
σ f (Y

T [ 1, xT
j ]T ), d ∈ R is a known positive constant,

ẋ j = f (x j ) + g(x j )u j , and λmin(·) denotes the minimum
eigenvalue.2

The weight estimates θ̂ are updated using the following CL-based
update law:

˙̂θ = �θσ f (Y
T x1)x̃T + kθ�θ

M∑

j=1

σ f j ( ˙̄x j − g j u j − θ̂T σ f j )
T (5)

where kθ ∈ R is a constant positive CL gain, and �θ ∈ R
p+1×p+1

is a constant, diagonal, and positive definite adaptation gain matrix.

2A priori availability of the history stack is used for ease of exposition,
and is not necessary. Provided the system states are exciting over a finite
time interval t ∈ [t0, t0 + t] (versus t ∈ [t0,∞) as in traditional PE-based
approaches), the history stack can also be recorded online. The controller
developed in [18] can be used over the time interval t ∈ [t0, t0 + t], while the
history stack is being recorded, and the controller developed in this result can
be used thereafter. The use of two different controllers results in a switched
system with one switching event. Since there is only one switching event, the
stability of the switched system follows from the stability of the individual
subsystems.

Using the identifier, the BE in (3) can be approximated as

δ̂(ζ, θ̂ , Ŵc, Ŵa) = Q(ζ ) + μ̂T (ζ, Ŵa)Rμ̂(ζ, Ŵa) + ∇ζ V̂ (ζ, Ŵa)

× (Fθ (ζ, θ̂ ) + F1(ζ ) + G(ζ )μ̂(ζ, Ŵa)). (6)

In (6)

Fθ (ζ, θ̂) �

⎡

⎣ θ̂T σθ (ζ ) − g(x)g+(xd )θ̂T σθ

([
0n×1

xd

])

0n×1

⎤

⎦

and F1(ζ ) � [(−hd + g(e + xd )g+(xd )hd)T , hT
d ]T .

V. VALUE FUNCTION APPROXIMATION

Since V ∗ and μ∗ are functions of the state ζ , the mini-
mization problem stated in Section II is intractable. To obtain a
finite-dimensional minimization problem, the optimal value function
is represented over any compact operating domain C ⊂ R

2n using an
NN as V ∗(ζ ) = W T σ(ζ ) + ε(ζ ), where W ∈ R

L denotes a vector
of unknown NN weights, σ : R

2n → R
L denotes a bounded NN basis

function, ε : R
2n → R denotes the function reconstruction error,

and L ∈ N denotes the number of NN neurons. Using the universal
function approximation property of single layer NNs, for any compact
set C ⊂ R

2n , there exist constant ideal weights W and known
positive constants W , ε, and ε′ ∈ R, such that ‖W‖ ≤ W < ∞,
supζ∈C ‖ε(ζ )‖ ≤ ε, and supζ∈C ‖∇ζ ε(ζ )‖ ≤ ε′ [28].

An NN representation of the optimal policy is obtained as

μ∗(ζ ) = −(1/2)R−1GT (ζ )(∇ζ σ T (ζ )W + ∇ζ εT (ζ )). Using esti-
mates Ŵc and Ŵa for the ideal weights W , the optimal value function
and the optimal policy are approximated as

V̂ (ζ, Ŵc) � Ŵ T
c σ(ζ ), μ̂(ζ, Ŵa) � −1

2
R−1GT (ζ )∇ζ σ T (ζ )Ŵa .

(7)

The optimal control problem is thus reformulated as the need to
find a set of weights Ŵc and Ŵa online, to minimize the error
Ê

θ̂
(Ŵc, Ŵa) � supζ∈χ |δ̂(ζ, θ̂ , Ŵc, Ŵa)|, for a given θ̂ , while

simultaneously improving θ̂ using (5), and ensuring the stability of
the system using the control law

u = μ̂(ζ, Ŵa) + ûd (ζ, θ̂ ) (8)

where ûd (ζ, θ̂) � g+
d (hd − θ̂T σθd ) and σθd � σθ ([ 01×n xT

d ]T
).

The error between ud and ûd is included in the stability analysis
based on the fact that the error trajectories generated by the system
ė = f (x) + g(x)u − ẋd under the controller in (8) are identical to
the error trajectories generated by the system ζ̇ = F(ζ ) + G(ζ )μ

under the control law μ = μ̂(ζ, Ŵa) + g+
d θ̃T σθd + g+

d εθd , where
εθd � εθ (xd ).

VI. SIMULATION OF EXPERIENCE

Since computation of the supremum in Ê
θ̂

is intractable in general,
the simulation of experience is implemented by minimizing a squared
sum of BEs over finitely many points in the state space. The following
assumption facilitates the aforementioned approximation.

Assumption 4 [21]: There exists a finite set of points {ζi ∈ C|
i = 1, . . . , N} and a constant c ∈ R, such that 0 < c �
(1/N)(inf t∈R≥t0

(λmin {∑N
i=1(ωiω

T
i /ρi )})), where ρi � 1+

νωT
i �ωi ∈ R and ωi � ∇ζ σ (ζi )(Fθ (ζi , θ̂) + F1(ζi ) +

G(ζi )μ̂(ζi , Ŵa)).
Using Assumption 4, the simulation of experience is implemented

by the weight update laws

˙̂Wc = −ηc1�
ω

ρ
δ̂t − ηc2

N
�

N∑

i=1

ωi

ρi
δ̂t i (9)
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�̇ =
(

β� − ηc1�
ωωT

ρ2 �

)

1{‖�‖≤�}, ‖�(t0)‖ ≤ � (10)

˙̂Wa = −ηa1(Ŵa − Ŵc) − ηa2Ŵa

+
⎛

⎝ηc1GT
σ ŴaωT

4ρ
+

N∑

i=1

ηc2GT
σ i ŴaωT

i
4Nρi

⎞

⎠ Ŵc (11)

where ω � ∇ζ σ (ζ )(Fθ (ζ, θ̂) + F1(ζ ) + G(ζ )μ̂(ζ, Ŵa)), � ∈ R
L×L

is the least-squares gain matrix, � ∈ R denotes a positive saturation
constant, β ∈ R denotes a constant forgetting factor, ηc1, ηc2,
ηa1, ηa2 ∈ R denote constant positive adaptation gains,
1{·} denotes the indicator function of the set {·}, Gσ �
∇ζ σ (ζ )G(ζ )R−1GT (ζ )∇ζ σ T (ζ ), and ρ � 1 + νωT �ω, where
ν ∈ R is a positive normalization constant. In (9)–(11) and in the
subsequent development, for any function ξ(ζ, ·), the notation ξi is
defined as ξi � ξ(ζi , ·), and the instantaneous BEs δ̂t and δ̂t i are

given by δ̂t = δ̂(ζ, Ŵc, Ŵa , θ̂ ) and δ̂t i = δ̂(ζi , Ŵc, Ŵa , θ̂).
Remark 2: To facilitate the stability analysis, the terms ω and δ are

defined, so that the update laws (9)–(11) have a similar form as the
update laws in results, such as [19] and [20]. However, the definitions
of ω and δ, when expanded, are different in this brief paper on account
of the optimal control problem being different. Hence, even though
the update laws (9)–(11) look similar to the update laws in results,
such as [19] and [20], their content, and hence, the resulting stability
analysis, are different in this brief paper.

VII. STABILITY ANALYSIS

If the state penalty function Q is positive definite, then the optimal
value function V ∗ is positive definite, and serves as a Lyapunov func-
tion for the concatenated system under the optimal control policy μ∗;
hence, V ∗ is used [6], [7], [25] as a candidate Lyapunov function
for the closed-loop system under the policy μ̂. The function Q,
and hence, the function V ∗, are positive semidefinite; hence, the
function V ∗ is not a valid candidate Lyapunov function. However,
the results in [18] can be used to show that a nonautonomous form
of the optimal value function denoted by V ∗

t : R
n × R → R,

defined as V ∗
t (e, t) = V ∗([eT , xT

d (t)]T ),∀e ∈ R
n , t ∈ R, is positive

definite and decrescent. Hence, V ∗
t (0, t) = 0, ∀t ∈ R and there

exist class K functions v : R → R and v : R → R, such that
v(‖e‖) ≤ V ∗

t (e, t) ≤ v(‖e‖), for all e ∈ R
n and for all t ∈ R.

To facilitate the stability analysis, a concatenated state
Z ∈ R

2n+2L+n(p+1) is defined as

Z �
[
eT W̃ T

c W̃ T
a x̃T (vec(θ̃))T

]T

and a candidate Lyapunov function is defined as

VL(Z , t) � V ∗
t (e, t) + 1

2
W̃ T

c �−1W̃c + 1

2
W̃ T

a W̃a

+1

2
x̃T x̃ + 1

2
tr
(
θ̃T �−1

θ θ̃
)

(12)

where vec(·) denotes the vectorization operator. The saturated
least-squares update law in (10) ensures that there exist positive
constants γ , γ ∈ R, such that γ ≤ ‖�−1(t)‖ ≤ γ ,∀t ∈ R.

Using the bounds on � and V ∗
t and the fact that tr(θ̃T �−1

θ θ̃) =
(vec(θ̃ ))T (�−1

θ ⊗ Ip+1)(vec(θ̃)), the candidate Lyapunov function
in (12) can be bounded as

vl (‖Z‖) ≤ VL (Z , t) ≤ vl (‖Z‖) (13)

for all Z ∈ R
2n+2L+n(p+1) and for all t ∈ R, where vl : R → R

and vl : R → R are class K functions.
Theorem 1: Provided Assumptions 2–4 hold, and the number

of NN neurons and the minimum singular values c and σθ are

large enough,3 the controller in (8), along with the weight update
laws (9)–(11), and the identifier in (4) along with the weight update
law (5) ensure that the system states remain bounded, the tracking
error is ultimately bounded, and that the control policy μ̂ converges
to a neighborhood around the optimal control policy μ∗.

Proof: Using (1) and the fact that V̇ ∗
t (e(t), t) = V̇ ∗(ζ(t)),

∀t ∈ R, the time derivative of the candidate Lyapunov function
in (12) is

V̇L = ∇ζ V ∗(F + Gμ∗) − W̃ T
c �−1 ˙̂Wc − 1

2
W̃ T

c �−1�̇�−1W̃c

− W̃ T
a

˙̂Wa + V̇0 + ∇ζ V ∗Gμ − ∇ζ V ∗Gμ∗. (14)

Under sufficient gain conditions (cf. [29]), using (2) and (4)–(7), and
the update laws in (9)–(11), the expression in (14) can be bounded
as

V̇L ≤ −vl (‖Z‖) ∀‖Z‖ ≥ v−1
l (ι) ∀Z ∈ χ (15)

where ι is a positive constant, and χ ⊂ R
2n+2L+n(p+1) is a

compact set. Using (13) and (15), [30, Th. 4.18] can be invoked to
conclude that every trajectory Z(t) satisfying ‖Z(t0)‖ ≤ vl

−1(vl (ρ)),

where ρ is a positive constant, is bounded for all t ∈ R and satisfies
lim supt→∞ ‖Z(t)‖ ≤ vl

−1(vl (v
−1
l (ι))).4

VIII. SIMULATION

In the following, the developed technique is applied to solve a
linear quadratic tracking (LQT) problem. A linear system is selected,
because the optimal solution to the LQT problem can be computed
analytically and compared against the solution generated by the devel-
oped technique. For simulation results on nonlinear systems, see [29].
To demonstrate convergence to the ideal weights, the following linear

system is simulated: ẋ =
[ −1 1
−0.5 −0.5

]
x +

[
0
1

]
u. The control

objective is to follow a desired trajectory, which is the solution of

the initial value problem ẋd =
[ −1 1
−2 1

]
xd and xd (0) =

[
0
2

]
while

ensuring the convergence of the estimated policy μ̂ to a neighborhood
of the policy μ∗, such that the control law μ(t) = μ∗(ζ(t)) minimizes

the cost
∫ ∞

0 (eT (t)diag([10, 10])e(t) + μ2(t))dt .
Since the system is linear, the optimal value function is known to

be quadratic. Hence, the value function is approximated using the
quadratic basis σ(ζ ) = [e2

1, e2
2, e1e2, e1xd1, e2xd2, e1xd2, e2xd1]T,

and the unknown drift dynamics is approximated using the linear
basis σθ (x) = [x1, x2]T.5

The linear system and the linear desired dynamics result in the
linear time-invariant concatenated error system

ζ̇ =

⎡

⎢
⎢
⎣

−1 1 0 0
−0.5 −0.5 0 0

0 0 −1 1
0 0 −2 1

⎤

⎥
⎥
⎦ ζ +

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ μ.

Since the system is linear, the optimal tracking problem reduces to an
optimal regulation problem, which can be solved using the resulting
algebraic Riccati equation. The optimal value function is given by

3For a detailed description of the sufficient gain conditions, see [29].
4For detailed definitions of ι, ρ, and vl , see [29], the ultimate bound can

be decreased by increasing learning gains and by increasing the number of
neurons in the NNs provided the points in the history stack and the points
for BE extrapolation can be selected to increase σθ and c.

5The learning gains, the basis functions for the NNs, and the points for
BE extrapolation are selected using a trial-and-error approach. Alternatively,
global optimization methods, such as a genetic algorithm, or simulation-based
methods, such as a Monte Carlo simulation, can be used to tune the gains.
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Fig. 1. System trajectories and policy weight trajectories and the unknown
parameters in the system drift dynamics generated using the proposed method
for the linear system. Dashed lines: ideal values for the policy and drift
weights.

Fig. 2. Satisfaction of Assumptions 3 and 4 for the linear system.

V ∗(ζ ) = ζ T Pζ ζ , where the matrix Pζ is given by

Pζ =
⎡

⎣
4.43 0.67 02×2
0.67 2.91
02×2 02×2

⎤

⎦.

Using the matrix Pζ , the ideal weighs corresponding to the selected
basis can be computed as W = [4.43, 1.35, 0, 0, 2.91, 0, 0].

Fig. 1 shows that the controller remains bounded, the tracking error
goes to zero, and the weight estimates Ŵc , Ŵa , and θ̂ go to their true
values, establishing the convergence of the approximate policy to the
optimal policy. Fig. 2 shows the satisfaction of the rank conditions
in Assumptions 3 and 4.

IX. CONCLUSION

A CL-based implementation of model-based RL is developed to
obtain an approximate online solution to infinite-horizon optimal
tracking problems for nonlinear continuous-time control-affine
systems. The desired steady-state controller is used to facilitate
the formulation of a feasible optimal control problem, and the
system state is augmented with the desired trajectory to facilitate
the formulation of a stationary optimal control problem. A CL-based
system identifier is developed to remove the dependence of the
desired steady-state controller on the system drift dynamics and to
facilitate the simulation of experience via BE extrapolation. Simu-
lation results are provided to demonstrate the effectiveness of the
developed technique.

Similar to the PE condition in the RL-based online optimal control
literature, Assumption 4 cannot, in general, be guaranteed a priori.

However, Assumption 4 can heuristically be met by oversampling,
i.e., by selecting N � L . Furthermore, unlike PE, the satisfaction
of Assumption 4 can be monitored online; hence, threshold-based
algorithms can be employed to preserve rank by selecting new
points if the minimum singular value falls below a certain threshold.
Provided the minimum singular value does not decrease during a
switch, the trajectories of the resulting switched system can be shown
to be uniformly bounded using a common Lyapunov function. The
formulation of sufficient conditions for Assumption 4 that can be
verified a priori is a topic for future research.
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