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The State Following Approximation Method
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Abstract— A function approximation method is developed
which aims to approximate a function in a small neighborhood
of a state that travels within a compact set. The method provides
a novel approximation strategy for the efficient approximation
of nonlinear functions for real-time simulations and experiments.
The development is based on the theory of universal reproducing
kernel Hilbert spaces over the n-dimensional Euclidean space.
Several theorems are introduced which support the development
of this state following (StaF) method. In particular, it is shown
that there is a bound on the number of kernel functions required
for the maintenance of an accurate function approximation as
a state moves through a compact set. In addition, a weight
update law, based on gradient descent, is introduced where
arbitrarily close accuracy can be achieved provided the weight
update law is iterated at a sufficient frequency, as detailed
in Theorem 4. An experience-based approximation method is
presented which utilizes the samples of the estimations of the
ideal weights to generate a global approximation of a function.
The experience-based approximation interpolates the samples of
the weight estimates using radial basis functions. To illustrate
the StaF method, the method is utilized for derivative estimation,
function approximation, and is applied to an adaptive dynamic
programming problem where it is demonstrated that the stability
is maintained with a reduced number of basis functions.

Index Terms— Approximate dynamic programming, approxi-
mation theory, reproducing kernel Hilbert spaces, state following
approximation.

I. INTRODUCTION

OFTEN in the theory of approximation, an accurate
estimation of a function over a large compact set is

sought [1], [2]. It is well known that the larger the compact
set, a correspondingly larger number of basis functions are
required to achieve an accurate function approximation. There
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is a large body of the literature concerned with methods for the
reduction of the number of basis functions required to achieve
such an approximation (see [3]–[5]).

In many control applications, function approximation is
used to generate a stabilizing controller of a state in a
dynamical system. For instance, in adaptive dynamic pro-
gramming (ADP), an approximation of the optimal value
function is leveraged to produce an approximate optimal
controller [6]–[15]. Traditionally, the approximation is sought
over a large compact set and requires many basis functions.
The computational resources required to tune the weights
of the basis functions renders real-time implementation of
controllers based on ADP methods infeasible.

Motivated by problems in control theory, this paper intro-
duces an approximation methodology that aims to establish
and maintain an accurate approximation of a function in a
neighborhood of a moving state in a dynamical system. The
method, deemed the state following (StaF) method, reduces
the number of basis functions required to achieve an accurate
approximation by focusing on the approximation of a function
over a small neighborhood by linear combinations of time and
state varying basis functions. Therefore, even in cases where
processing power of onboard CPUs is limited, an accurate
approximation of a function can be maintained.

The particular basis functions that will be employed
throughout this paper are derived from kernel functions cor-
responding to reproducing kernel Hilbert spaces (RKHSs).
In particular, the centers are selected to be continuous func-
tions of the state variable bounded by a predetermined value.
That is, given a compact set D ⊂ R

n , � > 0, r > 0, and
M ∈ N, ci (x) = x+di(x) where di : R

n → R
n is continuously

differentiable and supx∈D �di (x)� < r for i = 1, . . . , M . The
parameterization of a function V : D → R in terms of StaF
kernel functions is given by

V̂ (y; x(t), t) =
M�

i=1

wi (t)K (y, ci (x(t)))

where wi (t) is a weight signal chosen to satisfy

lim sup
t→∞

Er (x(t), t) < �

where Er is a measure of the accuracy of an approximation in
a neighborhood of x(t), such as that of the supremum norm

Er (x(t), t) = sup
y∈Nr (x(t))

|V (y) − V̂ (y; x(t), t)|.

The goal of the StaF method is to establish and maintain
an approximation of a function in a neighborhood of the state.
The justification for this approach stems from the observation
that an optimal controller only requires the value of the
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estimation of the optimal value function to be accurate at the
current system state. Thus, when computational resources are
limited, computational efforts should be focused on improving
the accuracy of approximations near the system state.

The advantage of using RKHSs for the purpose of local
approximations is twofold. RKHSs have been found to be
effective for nonlinear function approximation [16], and the
use of RKHS can enable accurate estimations of a wide array
of nonlinear functions. Also, the ideal weights correspond-
ing to the Hilbert space norm provided by RKHSs change
smoothly with respect to smooth changes in the centers,
as demonstrated in Theorem 3, which allows the execution
of weight update laws to achieve and maintain an accurate
approximation. The ideal weights in the context of the StaF
approximation method become a continuous function of the
state and are investigated in Section V.

Previous efforts in the literature have performed nonlinear
approximation through the adjustment of the centers of radial
basis functions (see [17]–[19]) as a means to determine the
optimal centers for global approximation. These efforts are
more applicable when offline techniques can be used due to
computational demands. For other applications where compu-
tational resources are limited, global approximations may not
be feasible (especially as the dimension of the problem grows),
nor is the optimal selection of parameters.

Other approaches that use only local approximation for
function estimation, such as moving least-squares (MLS)
approximation are similar to the StaF method [20]–[26].
In MLS approximation, weight functions are modified based
on the state, and at each point a least-squares problem is
solved to produce an approximation [21]. The StaF method
leverages the theory of RKHSs to produce a local Hilbert
space norm, and the approximation is estimated producing
weights associated with real-time moving centers (or samples)
that minimize the local Hilbert space norm. Instead of a fixed
collection of samples used in MLS approximations, samples
are continuously updated for real-time approximations with
the StaF method. The StaF method may be implemented as
an analog to the MLS method from a collection of sam-
ples by discretely (i.e., discontinuously) moving the StaF
centers to the sample points when the neighborhood about
the state encompasses the sample. The advantage gained by
continuously moving the centers with the state is realized
through the ability to use weight update laws to improve
the estimation in real time. It should be noted that in MLS
the term weight function refers to functions that determine the
least-squares norm, whereas the term weight function in StaF
refers to the ideal weights for approximation determined by
the local Hilbert space norm. The two methods are contrasted
in Section IX.

The purpose of this paper is to provide a mathematical justi-
fication for the StaF method as implemented in [27] and [28].
Their several assumptions are made about the existence and
differentiability of ideal weight functions, which are critical for
the stability analysis in [27] and [28]. The preliminary work
for this paper was published in conference proceedings [29],
where several weaker results were established such as Propo-
sition 2 presented in this paper. The theoretical development

of [29] does not provide convergence guarantees in terms of
Hilbert space norms, which is the natural setting for kernel
functions. This paper lays the mathematical foundation for
the establishment and maintenance of a real-time moving
local approximation of a continuous function and establishes
results in a proper framework for RKHS. Moreover, this paper
introduces a method of reconstruction of a function through
the approximation of the ideal weight functions as a means
of an experience-based approximation. In scenarios where a
function is not directly sampled but weight update laws are
used to improve an approximation, as in ADP and system
identification, an experience-based approximation provides a
means of constructing an approximation based on the estimates
of the ideal weight function. The method is demonstrated for
both derivative estimations as well as for approximating the
value function.

Section III frames the particular approximation problem of
the StaF method. Section IV demonstrates accurate approxi-
mation with a fixed number of moving basis functions. The
accompanying supplementary materials provide a demonstra-
tion of an explicit bound on the number of required StaF
basis functions for the case of the exponential kernel function.
The ideal weight function arising from the StaF method is
introduced and discussed in Section V, where the existence
and smoothness of the ideal weight function are established.
Section VI provides a proof of concept demonstrating the
existence of weight update laws to maintain an accurate
approximation of a function in a local neighborhood, ulti-
mately establishing a uniform ultimate bounded (UUB) result.
The remaining sections demonstrate the developed method
through numerical experiments and discussions of applica-
tions. Specifically, Section VIII gives the results of a “gradient
chase” algorithm. In Section VIII, the utility of StaF methods
are demonstrated in an ADP application.

II. PRELIMINARIES

An RKHS, H , is a Hilbert space with inner product �·, ·�H

of functions f : X → F (where F = C or R) for which
given any x ∈ X , the functional Ex f := f (x) is bounded.
By the Reisz representation theorem, for each x ∈ X there
is a unique function kx ∈ H for which � f, kx �H = f (x).
Each function kx is called a reproducing kernel for the point
x ∈ X . The function K (x, y) = �ky, kx�H is called the kernel
function for H [30]. The norm corresponding to H will be
denoted as � · �H , and the subscript will be suppressed when
the Hilbert space is understood. Kernel functions are dense in
H under the RKHS norm.

Kernel functions have the property that for each collection
of points {x1, . . . , xm} ⊂ X , the matrix (K (xi , x j ))

m
i, j=1 is

positive semidefinite. The Aronszajn–Moore theorem states
that there is a one-to-one correspondence between kernel
functions with this property and RKHSs. In fact, starting with a
kernel function having the positive semidefinite property, there
is an explicit construction for its RKHS. Generally, the norm
for the RKHS is given by

� f �H := sup{�Pc1,...,cM f �H : M ∈ N and c1, . . . , cM ∈ X}
(1)
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where Pc1,...,cm f is the projection of f onto the subspace of
H spanned by the kernel function K (·, ci ) for i = 1, . . . , M .
Pc1,...,cM f is computed by interpolating the points (ci , f (ci ))

for i = 1, . . . , M with a function of the form
�M

i=1 wi K (·, ci ).
The norm of the projection then becomes1 �Pc1,...,cM f � =
(
�M

i, j=1 ci c j K (c j , ci ))
1/2. In practice, the utility of computing

the norm of f as (1) is limited, and alternate forms of the norm
are sought for specific RKHSs.

Unlike L2 spaces, norm convergence in an RKHS implies
pointwise convergence. This follows since if fn → f in the
RKHS norm, then

| f (x) − fn(x)| = |� f − fn , kx�|
≤ � f − fn��kx� = � f − fn��K (x, x).

When K is a continuous function of X , the term
√

K (x, x)
is bounded over compact sets, and thus, norm convergence
implies uniform convergence over compact sets. Therefore,
the problem of establishing an accurate approximation in the
supremum norm of a function is often relaxed to determining
an accurate approximation of a function in the RKHS norm.

Given an RKHS H over a set X and Y ⊂ X , the space
HY obtained by restricting each function f ∈ H to the set
Y is itself an RKHS where the kernel function is given by
restricting the original kernel function to the set Y × Y . The
resulting Hilbert space norm is given by

�g�HY = inf{� f �H : f ∈ H and f |Y = g}.
Therefore, the map f �→ f |Y is norm decreasing from
H to HY [30]. For the purposes of this paper, the norm
obtained by restricting an RKHS H over R

n to a closed
neighborhood

Nr (x) := {y ∈ R
n : �x − y�2 ≤ r}

where r > 0 and x ∈ R
n will be denoted as � · �r,x .

III. STAF PROBLEM STATEMENT

Given a continuous function V : R
n → R, r > 0,

an arbitrarily small � > 0, and a dynamical system ẋ =
f (x, u) (where f is sufficiently regular for the system to be
well defined), the goal of the StaF approximation method is
to select state and time-varying basis functions σi : R

n ×R
n ×

R → R for i = 1, 2, . . . , M and weight signals wi : R+ → R

for i = 1, 2, . . . , M such that

lim sup
t→∞

sup
y∈Nr (x(t))

�����V (y) −
M�

i=1

wi (t)σi (y; x(t), t)

����� < �. (2)

In other words, the StaF approximation method aims to
achieve an arbitrarily small steady-state error of order � in
a closed neighborhood of the state, Nr (x(t)) = {y ∈ R

n :
�x(t) − y�2 ≤ r}.

Central problems to the StaF method include determining
the basis functions and the weight signals. When RKHSs are
used for basis functions, (2) can be relaxed to where the
supremum norm is replaced with the Hilbert space norm. Since

1For z ∈ C, the quantity Re(z) is the real part of z, and z represents the
complex conjugate of z.

the Hilbert space norm of an RKHS dominates the supremum
norm, (2) with the supremum norm is simultaneously satisfied.
Moreover, when using an RKHS, the basis functions can
be selected to correspond to centers placed in a moving
neighborhood of the state. In particular, given a kernel function
K : R

n × R
n → R corresponding to a (universal) RKHS,

H , and continuous center functions ci : R
n → R

n for which
di (x) := ci (x) − x is bounded by r , then the StaF problem
becomes the determination of weight signals wi : R+ → R

for i = 1, . . . , M such that

lim sup
t→∞

�����V (·) −
M�

i=1

wi (t)K (·, ci (x(t)))

�����
r,x(t)

< � (3)

where �·�r,x(t) is the norm of the RKHS obtained by restricting
functions in H to Nr (x(t)).

Since (3) implies (2), the focus of this paper is to demon-
strate the feasibility of satisfying (3). Theorem 1 demonstrates
that under a certain continuity assumption, a bound on the
number of kernel functions necessary for the maintenance of
an approximation throughout a compact set can be determined,
and Theorem 3 shows that a collection of continuous ideal
weight functions can be determined to satisfy (3). Theorem 3
justifies the use of weight update laws for the maintenance of
an accurate function approximation, and this is demonstrated
by Theorem 4 as well as the numerical results contained in
Section VIII-A.

The choice of RKHS for Section VIII is that which cor-
responds to the exponential kernel K (x, y) = exp(xT y)
where x, y ∈ R

n and will be denoted by F2(Rn) since it
is closely connected to the Bargmann–Fock space [31]. The
RKHS corresponding to the exponential kernel is a universal
RKHS [30], [32], which means that given any compact set
D ⊂ R

n , � > 0 and continuous function f : D → R,
there exists a function f̂ ∈ F2(Rn) for which supx∈D | f (x)−
f̂ (x)| < �.

IV. FEASIBILITY OF THE STAF APPROXIMATION

AND THE IDEAL WEIGHT FUNCTIONS

The first theorem concerning the StaF method demonstrates
that if the state variable is constrained to a compact subset
of R

n , then, there is a finite number of StaF basis functions
required to establish the accuracy of an approximation.

Theorem 1: Suppose that K : X × X → C is a continuous
kernel function corresponding to an RKHS, H , over a set X
equipped with a metric topology. If V ∈ H , D is a compact
set of X , r > 0, and �V �r,x is continuous with respect to x ,
then for all � > 0 there is a M ∈ N such that for each x ∈ D
there are centers c1, c2, . . . , cM ∈ Nr (x) and weights wi ∈ C

such that
�����V (·) −

M�

i=1

wi K (·, ci )

�����
r,x

< �.

Proof: Let Hx,r be the RKHS obtained by restricting the
functions of H to the set Nr (x). The span of the collection of
kernel functions, {K (·, y) : y ∈ Nr (x)}, is dense in Hx,r [30].
Given � > 0, for each neighborhood Nr (x) with x ∈ D, there
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exists a finite number of centers c1, . . . , cM ∈ Nr (x), and
weights w1, . . . , wM ∈ C, such that

�����V (·) −
M�

i=1

wi K (·, ci )

�����
r,x

< �.

Let Mx,� be the minimum such number. The claim of the
proposition is that the set Q� := {Mx,� : x ∈ D} is bounded.
Assume by way of contradiction that Q� is unbounded. If Q�

is unbounded, it follows that the set D is not finite, since
otherwise Q� must be bounded. For each z ∈ D, then by the
unboundedness of Q� , there is a z� ∈ D for which Mz,� +
1 < Mz�,� . Thus, there exists a sequence {xn} ⊂ D for which
{Mxn ,�} is unbounded. By [30, Lemma A.2.10], there exists a
subsequence {xnk } for which xnk converges to some point x .
Since D is compact, it is closed. Therefore, x ∈ D. Without
loss of generality, the sequence {xn} is henceforth identified
with its convergent subsequence, {xnk }, to simplify the notation
of the following argument. Let c1, . . . , cMx,�/2 ∈ Nr (x) and
w1, . . . , wMx,�/2 ∈ C be centers and weights for which

E(x) :=
������

V (·) −
Mx,�/2�

i=1

wi K (·, ci )

������
r,x

< �/2. (4)

For convenience, let each ci ∈ Nr (x) be expressed as x + di

for di ∈ Nr (0). The function E(x) in (4) can be written as
⎛

⎝�V �r,x − 2Re

⎛

⎝
Mx,�/2�

i=1

wi V (x + di )

⎞

⎠

+
Mx,�/2�

i, j=1

wiw j K (x + di , x + d j )

⎞

⎠
1/2

.

By the hypothesis, K is continuous with respect to x , which
implies that V is continuous [1], and �V �r,x is continuous
with respect to x . Hence, there exists η > 0 for which
|E(x) − E(xn)| < �/2 for all xn ∈ Nη(x). Thus, E(xn) <
E(x)+�/2 < � for sufficiently large n. By minimality Mxn ,� <
Mx,�/2 for sufficiently large n. This is a contradiction.

The assumption of the continuity of �V �r,x in Theorem 1 is
well founded. There are several examples where the assump-
tion is known to hold. For instance, if the RKHS is a space of
real entire functions, as it is for the exponential kernel, then
�V �r,x is not only continuous but it is constant.

Using a similar argument as that in Theorem 1, the theorem
can be shown to hold when the restricted Hilbert space norm
is replaced by the supremum norm over Nr (x). The proof of
the following theorem can be found in the preliminary work
for this paper in [29].

Proposition 2: Let D be a compact subset of R
n , V : R

n →
R be a continuous function, and K : R

n × R
n → R be a

continuous and universal kernel function. For all �, r > 0,
there exists M ∈ N such that for each x ∈ D, there is
a collection of centers c1, . . . , cM ∈ Nr (x) and weights
w1, . . . , wM ∈ R such that

sup
y∈Nr (x)

�����V (y) −
M�

i=1

K (y, ci )

����� < �.

An example of a computable bound for the exponential
kernel in the setting of the supremum norm can be found in
the supplementary materials.

V. EXISTENCE AND SMOOTHNESS OF THE

IDEAL WEIGHT FUNCTION

Theorem 1 and Proposition 2 establish that given a kernel
function, a finite number of centers can be used to yield
an arbitrarily accurate estimation of a function. The supple-
mentary material provides an example, using the exponential
kernel function, demonstrating that the number of centers
required to achieve the desired approximation accuracy can
be calculated in some cases. However, further investigation is
required to understand the characteristics of the ideal weights
that correspond to the moving centers. For example, in control
applications involving function approximation or system iden-
tification, it is assumed that there is a collection of constant
ideal weights, and much of the theory is in the demonstra-
tion of the convergence of approximate weights to the ideal
weights. The subsequent Theorem 3 establishes that ideal
weights, which are functions of the state-dependent centers,
are m-times continuously differentiable. This property can then
be used to develop weight update laws (see Section VI) that
may be subsequently used to prove Lyupunov-based stability
theorems (see [27] as well as Section VIII-A).

Since the ideal weights corresponding to a Hilbert space
norm are unique, Theorem 3 is framed in the Hilbert space
setting of (3). Theorem 3, together with Theorem 1, provides
the StaF framework for RKHSs.

Theorem 3: Let H be an RKHS over a set X ⊂ R
n

with a strictly positive kernel K : X × X → C such that
K (·, c) ∈ Cm0(Rn) for all c ∈ X . Suppose that V ∈ H .
Let C be an ordered collection of M distinct centers, C =
(c1, c2, . . . , cM ) ∈ X M , with the associated ideal weights

W (C) = arg min
(ai )

M
i=1∈CM

�����

M�

i=1

ai K (·, ci ) − V (·)
�����

H

. (5)

The function W is m0-times continuously differentiable with
respect to each component of C .

Proof: The determination of W (C) is equivalent to com-
puting the projection of V onto the space Y = span{K (·, ci ) :
i = 1, . . . , M}. To compute the projection, a Gram–Schmidt
algorithm can be employed. The Gram–Schmidt algorithm is
most easily expressed in its determinant form. Let D0 = 1
and Dm = det(K (c j , ci ))

m
i, j=1, then for m = 1, . . . , M the

functions

um(x) := 1√
Dm−1 Dm

× det

⎛

⎜⎜⎜⎝

K (c1, c1) · · · K (c1, cm)
...

. . .
...

K (cm−1, c1) · · · K (cm−1, cm)
K (x, c1) · · · K (x, cm)

⎞

⎟⎟⎟⎠

constitute an orthonormal basis for Y . Since K is strictly
positive definite, Dm is positive for each m and every C . The
coefficient for each K (x, cl) with l = 1, . . . , m in um is a
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sum of products of the terms K (ci , c j ) for i, j = 1, . . . m.
Each such coefficient is m0-times differentiable with respect
to each ci , i = 1, . . . , M . When �V , um� is computed for
the projection, the result is a linear combination of evaluations
of V at each of the centers. Since V ∈ H and the RKHS kernel
function, K , is m0-times differentiable, the function V is
m0-times continuously differentiable by [30, Corollary 4.36].
Therefore, �V , um� is continuous with respect to the centers.
Finally, each term in W (C) is a linear combination of the
coefficients determined by um for m = 1, . . . , M , and thus is
m0-times continuously differentiable with respect to each ci

for i = 1, . . . , M .

VI. GRADIENT CHASE THEOREM

As mentioned before, control theory problems involving
function approximation and system identification are centered
around the concept of weight update laws. Weight update laws
are a collection of rules that the approximating weights must
obey to achieve convergence to the ideal weights. In the case
of the StaF approximation framework, the ideal weights are
replaced with ideal weight functions. Theorem 3 showed that
the ideal weight functions will change smoothly with respect
to smooth changes in the centers. Thus, weight update laws can
be used to establish and maintain an accurate approximation
of the ideal weight function.

Theorem 4 provides an example of such weight update laws
that achieve a predetermined limiting error bound, called a
UUB result in the engineering literature [33]. The theorem
takes advantage of perfect samples of a function in the RKHS
H corresponding to a real-valued kernel function.

The proof of the theorem is similar to the standard proof
for the convergence of the gradient descent algorithm for a
quadratic programming problem [34]. The contribution of the
proof is in a modification, where the mean value theorem is
used to produce an extra term which yields a UUB result,
and the continuity of the largest and smallest eigenvalues of
a Gram matrix is used to get a uniform bound in tandem
with the Kantorovich inequality. Following conventions of the
optimization community, xk refers to the kth iteration of a
variable in the following theorem.

Theorem 4 (Gradient Chase Theorem): Let H be a real-
valued RKHS over R

n with a continuously differentiable
strictly positive definite kernel function K : R

n × R
n → R.

Let V ∈ H , D ⊂ R
n be a compact set, and x : R → R

n

a state variable for the dynamical system ẋ = q(x, t), where
q : R

n × R+ → R
n is a bounded locally Lipschitz continuous

function. Further suppose that x(t) ∈ D for all t > 0. Let
c : R

n → R
M , where for each i = 1, . . . , M , ci (x) = x+di(x)

where di ∈ C1(Rn), and let a ∈ R
M . Consider the function

F(a, c) =
�����V −

M�

i=1

ai K (·, ci (x))

�����

2

H

.

At each time instance t > 0, there is a unique W (t) for which

W (t) = arg min
a∈RM

F(a, c(x(t))).

Given any � > 0 and initial value a0, there is a fre-
quency τ > 0, where if the gradient descent algorithm (with

respect to a) is iterated at time steps �t < τ−1, then
F(ak, ck) − F(wk, ck) will approach a neighborhood of
radius � as k → ∞.

Proof: Let �̄ > 0. By the Hilbert space structure of H

F(a, c) = �V �2
H − 2V (c)T a + aT K (c)a (6)

where V (c) = (V (c1), . . . , V (cM ))T and K (c) =
(K (ci , c j ))

M
i, j=1 are the symmetric strictly positive kernel

matrices corresponding to c. At each time iteration tk , k =
0, 1, 2, . . ., the corresponding centers and weights can be
written as ck ∈ R

nM and ak ∈ R
M , respectively. The

ideal weights corresponding to ck will be denoted by wk .
It can be shown that wk = K (ck)−1V (ck) and F(wk , ck) =
�V �2

H −V (ck)T K (ck)V (ck). Theorem 3 ensures that the ideal
weights change continuously with respect to the centers which
remain in a compact set D̃M , where D̃ = {x ∈ R

M :
�x − D� ≤ maxi=1,...,M (supx∈D |di (x)|)}, so the collection
of ideal weights is bounded. Let R > �̄ be large enough so
that NR(0) contains both the initial value a0 and the set of
ideal weights. To facilitate the subsequent analysis, consider
the constants

R0 = max
x∈D,t>0

|q(x, t)|
R1 = max

a∈Nr (0),c∈D̃
|∇a F(a, c)|

R2 = max
c∈D̃

|∇c F(w(c), c)|
R3 = max

c∈D̃
|ḋi (x(t)|

R4 = max
c∈D̃

����
d

dc
w(c)

����

where ∇a is the gradient with respect to a, and let �t <
τ−1 := �̄ · (2(R0 + R3) · (R1 · R4 · (R0 + R3)+ R2 + 1))−1. The
proof aims to show that by using the gradient descent law for
choosing ak , the following inequality can be achieved:
F(ak+1, ck+1)−F(wk+1, ck+1)

F(ak, ck) − F(wk , ck)
< δ + �̄

F(ak, ck)−F(wk, ck)

for some 0 < δ < 1. Set

ak+1 = ak + λg (7)

where g = −∇a F(ak, ck) = 2V (ck) − 2K (ck)ak and λ is
selected so that the quantity F(ak+λg, ck) is minimized. λ that
minimizes this quantity is λ = (gT g/(2gT K (ck)g)) which
yields F(ak+1, ck) = F(ak, ck) − ((gT g)2)/(4gT K (ck)g).
Since F(ak+1, ck+1) is continuously differentiable in the sec-
ond variable, we have F(ak+1, ck+1) = F(ak+1, ck) +
∇c F(ak+1, η) · (ck+1 − ck). Since |ċ(x(t))| < R0 + R3,
an application of the mean value theorem demonstrates that
�ck+1 − ck� < (R0 + R3)�t . Thus,

F(ak+1, ck+1) = F(ak+1, ck) + �1(t
k)

where |�1(tk)| < �̄/2 for all k. The quantity F(wk+1, ck+1)
is continuously differentiable in both variables. Thus, by the
multivariable chain rule and another application of the mean
value theorem

F(wk+1, ck+1) = F(wk, ck) + �2(t
k)
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for |�2(tk)| < �̄/2 for all k. Therefore, the following is
established:
F(ak+1, ck+1) − F(wk+1, ck+1)

F(ak, ck) − F(wk , ck)

= F(ak+1, ck) − F(wk, ck) + (�1(tk) − �2(tk))

F(ak, ck) − F(wk, ck)

= 1− (gT g)2

(gT K (ck)g)(gT K (ck)−1g)
+ �1(tk) − �2(tk)

F(ak, ck) − F(wk, ck)
.

The Kantorovich inequality [34] yields

1 − (gT g)2

(gT K (ck)g)(gT K (ck)−1g)
≤


Ack /ack − 1

Ack /ack + 1

�2

(8)

where Ack is the largest eigenvalue of K (ck) and ack is the
smallest eigenvalue of K (ck). The quantity on the right of (8)
is continuous with respect to Ack and ack . In turn, Ack and ack

are continuous with respect to K (ck) (see [35, Exercise 4.1.6])
which is continuous with respect to ck . Therefore, there is a
largest value, δ that the right-hand side of (8) obtains on the
compact set D̃ and this value is less than 1. Moreover, δ is
independent of �̄, so it may be declared that �̄ = �(1 − δ).
Finally

F(ak+1, ck+1)−F(wk+1, ck+1)

F(ak, ck) − F(wk , ck)
≤δ + (�1(tk) − �2(tk))

F(ak, ck)−F(wk, ck)
.

Therefore, setting e(k) = F(ak, ck) − F(wk , ck), it can be
shown that e(k + 1) ≤ δe(k) + �(1 − δ) and the conclusion of
the theorem follows.

Corollary 5: In the framework of Theorem 4, if the gradient
descent algorithm is iterated μ ∈ N times per time step,
the resulting error bound becomes

e(k + 1) ≤ δμe(k) + �(1 − δμ)

where k represents the number of time steps in the system.

VII. EXPERIENCE-BASED APPROXIMATION

This section presents a method of using data recorded
from the moving local approximation of the StaF method
for the purpose of constructing a global approximation of
a function. Instead of calculating an approximation of the
function directly, continuity of the ideal weight function can
be exploited to construct an approximation of the ideal weight
function

W (x(t)) :=
⎛

⎜⎝
w1(x(t))

...
wM (x(t))

⎞

⎟⎠

= arg min
a∈RM

�����V (y) −
M�

i=1

ai K (y, ci (x(t)))

�����
Nr (x(t))

(9)

over the entire compact domain. Approximation of the ideal
weight function is then employed along with the StaF kernels
to produce an approximation of the original function.

The approach uses estimates of ideal weights at the current
state, produced by the weight update laws, as a sample of

the ideal weight function. Since the ideal weight function is a
continuous function of the state, these samples can be used
to produce an approximation of the ideal weight function.
Provided that the approximation of the ideal weight function
is accurate enough, the approximation of the ideal weight
function can be used in place of the ideal weight function
to produce an accurate approximation of the original function.

A. Collection of Sample Points for the
Ideal Weight Function

Approximation of a function in this section occurs in two
stages. The StaF algorithm is used as a system is running
to generate ideal weight function estimates at points where
the state visits. Estimated weight data are also collected and
postprocessed offline to generate an approximation over the
region the state has previously visited, henceforth the region
of experience. These two stages are iterated until a sufficient
amount of estimated weight data is collected to generate
a global approximation over a compact set. For instance,
suppose the region is D = [−1, 1]n ⊂ R

n . A grid of width
1/N for N ∈ N is laid over D. During a StaF approximation
trial, the weight estimates are continuously updated as the state
travels through D. When the state crosses a cell boundary,
the weight estimate (the best estimate for the current cell)
is recorded as a sample for later processing. The grid results
in an almost uniform distribution of samples, which enables
the use of approximation techniques such as [36]. The weight
estimates will be labeled w̃i ⊂ R

M for i = 1, . . . , N0 and
correspond to the state xi ∈ D for i = 1, . . . , N0.

B. Approximation via Scattered Data Interpolation
Scattered data interpolation via the Gaussian radial basis

function (RBF), KG (x, y) = exp(−((�x − y�2)/μ)) can pro-
duce a continuously differentiable approximation (from R

n to
R

M ) of (9) as

Ŵ (x) =
⎛
⎜⎝

ŵ1(x(t))
...

ŵM (x(t))

⎞
⎟⎠ :=

�
N0�

i=1

ai, j KG (x, xi)

�M

j=1

where the matrix a = (ai, j ) ∈ R
N0×M satisfies the

matrix equation: Ga = w, where G is the Gram matrix
(KG(xi , x j ))

N0
i, j=1 and w = (w̃i ) ∈ R

N0×M is the matrix
of samples. The final approximation of the original function,
V̂ , is given by

V̂ (x) = Ŵ (x)T (K (x, c1(x)), . . . , K (x, cM (x)))T

=
M�

j=1

N0�

i=1

ai, j KG(x, xi )K (x, c j (x)). (10)

The method and frequency by which the samples are
collected effect the feasibility of approximations by scattered
data interpolation. If the samples are too close, then the
matrix G becomes ill-conditioned, and it becomes difficult
to determine a. For this reason, the collection of samples
will be uniformly distributed (see [36]), thereby mitigating
the condition number problem by reducing clustering.

Remark: The resulting approximation may use a very large
number of basis functions. The large number of basis functions
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comes at the cost of efficient real-time estimation of a function
by the StaF method. The weights for the global approximation
are intended to be computed offline, when more computational
resources are available, in contrast to the real-time approxima-
tion scheme afforded by the StaF method where computational
power may be restricted.

VIII. EXAMPLES AND NUMERICAL EXPERIMENTS

The examples in this section illustrate the StaF method
by establishing accurate function approximations with several
weight update laws. Example 1 gives an example of establish-
ing and maintaining the approximation of a function using
StaF basis functions and a gradient descent update law as
in (7) of Theorem 4. To improve the transient performance
of the StaF method, the update law in (7) is iterated 10 times
per time step and utilizes Corollary 5 to justify convergence.
Example 2 utilizes the StaF approximation method to obtain an
accurate estimation of a function’s derivative. Derivative esti-
mation requires greater accuracy, and as such, a faster weight
update law was employed through the Nasterov accelerated
gradient descent method (see [37, Section 3.7.1]) applied to
the objective function Fc(a) := F(a, c) as in (6). Since
the centers c follow the state variable, the optimum value
of Fc(a) is a moving target as it is in Theorem 4, and
the Nasterov method is iterated to establish and maintain an
accurate estimate. A control theoretic application is explored in
Example 3, where the weight update laws are obtained from
the Hamilton–Jacobi–Bellman (HJB) equation in an optimal
control setting.

EXAMPLE 1 - APPROXIMATION THROUGH

THE GRADIENT CHASE THEOREM

To demonstrate the effectiveness of the Gradient Chase
theorem, a simulation performed on a 2-D linear system is
presented in the following. The system dynamics are given by


ẋ1
ẋ2

�
=


0 1

−1 0

� 
x1
x2

�

which is the dynamical system corresponding to a circular
trajectory. The function to be approximated is

V (x1, x2) = x2
1 + 5x2

2 + tanh(x1 · x2)

and the kernel function to be used for function approximation
is the exponential kernels, K (x, y) = exp(xT y). The centers
are arranged in an equilateral triangle centered about the state.
In particular, each center resides on a circle of radius 0.1
centered at the state

ci (x) = x + 0.1


sin((i − 1)2π/3)
cos((i − 1)2π/3)

�

for i = 1, 2, 3.
The initial values selected for the weights are a0 = [0 0 0]T .

Theorem 4 provides guarantees on the accuracy of the estima-
tion based on the ultimate velocity of the system state. The
slower the system state, the more accurate is the ultimate
result. To accelerate and improve the resulting estimation,
this example iterates the gradient descent algorithm 10 times
per 0.01-s time step. Thus, by Corollary 5, the error bound

Fig. 1. Results of the numerical experiment demonstrating the gradient
chase algorithm. (a) Trajectory of the state vector. (b) Comparison of V and
the approximation V̂ . (c) Values of the weight function estimates. (d) Error
committed by the approximation at the current state.

becomes e(k + 1) ≤ δ10e(k) + �(1 − δ10), where k represents
each time step. Fig. 1 presents the results of the simulation.

Fig. 1(d) demonstrates that the function approximation error
is regulated to a small neighborhood of zero as the gradient
chase theorem is implemented and validates the claim of the
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UUB result of Theorem 4. In Fig. 1(c), approximations of the
ideal weight function can be seen to be periodic as well as
smooth. The smoothness of the ideal weight function itself is
given in Theorem 3, and the periodicity of the approximation
follows from the periodicity of the selected dynamical system,
as illustrated in Fig. 1(a). Fig. 1(b) presents a comparison of
V evaluated at the current state to that of the approximation
evaluated at the current state. Approximation of the function
is maintained as the system state moves through its domain as
anticipated.

EXAMPLE 2 - DERIVATIVE ESTIMATION

In this example, a scheme for derivative estimation is
presented. In lieu of other derivative estimation methods, such
as finite difference methods, a kernelized version of derivative
estimation utilizing the StaF method is developed here instead.
The motivation for this method stems from the exponential
function’s role as the eigenfunction of differentiation. Thus,
if a differentiable function, f : R → C, (together with some
small h > 0) with values f (t0) = y0, f (t0 − h) = y1,
and f (t0 − 2h) = y2 is interpolated by the function

f̂ (t) = w0 et ·t0 + w1 et ·(t0−h) + w2 et ·(t0−2h)

then an estimate of f ’s derivative at t0 is given by

f̂ �(t0) = w0 t0 et0·t0 + w1(t0 − h)et0·(t0−h)

+ w2(t0 − 2h)et0·(t0−2h).

The universality of the exponential kernel and [30, Corol-
lary 4.36] guarantees that f̂ �(t0) is an accurate estimation
given a sufficient number of interpolation points are selected
and f is sufficiently regular. Theorem 1 guarantees a bound
for the number of centers required for accurate function
estimation. Moreover, for the exponential kernel in particular,
a sufficiently dense collection of samples is sufficient to gain
an accurate approximation of a function. Therefore, given
a small enough approximation neighborhood, three centers
is sufficient to give an accurate estimation of a function in
that neighborhood. For more information concerning kernel-
based numerical differentiation (refer to [38] and references
contained therein).

The StaF method views the current time t as the system
state in this example. The StaF centers then become c1(t) = t ,
c2(t) = t − h, c3(t) = t − 2h, and so on. For each time
instance, interpolating f involves solving K (c(t))w(t) = f(t)
where K (c(t)) is the matrix from Theorem 4, and f(t) =
( f (c1(t), f (c2(t)), . . . , f (cM (t)))T . For accurate estimation
of a function’s derivative, h must be selected to be small,
which can result in a poorly conditioned K (c(t)). Thus,
K (c(t)) can be difficult to invert. The StaF method then
takes advantage of the continuity of w(t) and can update
w(t) by either a gradient descent method (Theorem 4 for
example) or by seeding a preconditioning technique with the
most recent estimation of the weights.

In this example, an approximation of the derivative of
f (t) = sin(2π t) was sought over the interval [0.1, 2] using the
StaF method. The interval [0, 0.1] was used for initializing the
method. In particular, the weight approximation was initialized

by interpolating f at the times 1/30, 2/30, and 3/30 using
the inverse operation provided by MATLAB. The values of
the function f were used for the initialization to help facilitate
convergence to the steady-state approximation. However, other
initial values may be selected for the weights and will result
in varying transient performance, whereas the steady-state
approximation will be unaffected. The simulation employed
three StaF basis functions of exponential type, as did the
previous example. Since the problem is 1-D, the centers were
arranged to trail behind the current time at c1(t) = t , c2(t) =
t −1/30, and c3(t) = t −2/30. Nasterov’s accelerated gradient
descent method (see [37]) was employed as a weight update
law. Nasterov’s method provided a sharper estimation of the
function’s derivative than did performing the standard inverse
operation in MATLAB. The Nasterov method was chosen
since it can achieve a sufficient accuracy, and it demonstrates
how the number of iterations of the gradient descent law
can affect the overall accuracy. It should be noted that other
iterative methods, such as conjugate gradient descent, may be
used to produce sufficient accuracy with fewer iterations.

The simulation presented in Fig. 2 was incremented at
timesteps of �t = 1/100, and the Nasterov accelerated
gradient descent method was employed at 10, 100, 1000, and
10 000 iterations per time step as shown in Fig. 2(a). Since the
example demanded not only approximation of a function but
also of its derivative, a much greater accuracy of the estimation
of the ideal weights was required. The demand for greater
accuracy led to a larger number of iterations of the gradient
chase scheme.

Experience-Based Approximation of the Derivative:
To employ the methods described in Section VII, a sample
of the weight estimates was taken at intervals of �t � = 1/10.
The samples were interpolated by Gaussian RBFs of the
form KG(x, y) = exp(−((x − y)2)/(1/2)) with centers
at 1/10, 2/10, . . . ,19/10. Interpolation of the sampled
weight estimates (corresponding to the simulation with
10 000 iterations of gradient descent) are shown in Fig. 2(c).
The resulting approximation is shown in Fig. 2(b).

Fig. 2(b) suggests that the experience-based approximation
method is sensitive to errors in the estimations of the ideal
weights. Notice that for both the 1000 and 10 000 iteration
simulations, the corresponding StaF-based estimations of the
derivative are both accurate in Fig. 2(a). However, Fig. 2(b)
demonstrates that the resulting experience-based approxima-
tions of the derivative differ greatly near the endpoints of the
approximation interval.

EXAMPLE 3 - APPLICATION TO ADAPTIVE

DYNAMIC PROGRAMMING

The application of approximation theory to the theory of
optimal control arises through the approximation of the opti-
mal value function, which is the solution to the HJB equation.
Efficient methods for the approximation of the optimal value
function are essential since an increase in dimension can lead
to an exponential increase in the number of required basis
functions necessary to achieve an accurate approximation,
the so-called “curse of dimensionality.”
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Fig. 2. Results of the numerical experiment demonstrating derivative
estimation with StaF. (a) Approximation of the derivative of f (t) with a
varying number of iterations of the gradient descent algorithm per time step.
Note that with increased iterations, the estimation improves. In particular,
the curves representing 1000 and 10 000 time steps are indistinguishable
from the derivative in this figure. (b) Experience-based approximation of
the derivative utilizing the data collected from the 1000 and 10 000 iteration
simulations in Fig. 2(a). (c) Interpolation of the weight samples via Gaussian
radial basis functions for the simulation with 10 000 iterations of gradient
descent. The samples correspond to the marks on the curves.

The optimal value function corresponds to the infinite
horizon optimal regulator problem, where the cost function

J (x, u) =
� ∞

0
r(x(t), u(t)) dt

is to be minimized subject to the dynamics

ẋ(t) = f (x(t)) + g(x(t))u(t) (11)

where r(x, u) � xT Qx + uT Ru, x : R+ → R
n , u : R+ →

R
m , Q ∈ R

n×n , R ∈ R
m×m , with Q and R positive definite,

f : R
n → R

n , g : R
n → R

n×m . Moreover, f and g are

assumed to be locally Lipschitz. The optimal value function
V ∗ : R

n → R+ can be expressed as

V ∗(x) � inf
u∈U

� ∞

t
r(φu(τ ; t, x), u(τ )) dτ

where U is the set of admissible controllers and φu(τ ; t, x)
denotes the trajectory of the system in (11), evaluated at the
time instance τ , under the control signal u, with the initial
condition x ∈ R

n and initial time t ∈ R+. When the optimal
value function is continuously differentiable and an optimal
controller, u∗ ∈ U exists, the optimal value function is the
unique solution to the HJB equation

0 = min
u∈U

(r(x, u) + ∇V (x)( f (x) + g(x)u) (12)

where U ⊂ R
m is the action space.

Once the optimal value function is determined, the optimal
policy takes the form

u∗(x) = −1

2
R−1g(x)T ∇V ∗(x)T (13)

and the optimal controller is given by u∗(t) = u∗(x(t)), where
V ∗ denotes the unique solution to (12). In many applications,
an approximation of the optimal controller is used in real time
to yield autonomous behavior in a dynamic environment.

For some problems, such as the linear quadratic regu-
lator (LQR) problem, the optimal value function takes a
particular form which simplifies the choice of basis functions.
In the case of LQR, the optimal value function is of the form�n

i, j=1 wi, j x j xi (see [39], [40]), so basis functions of the form
σi, j = x j xi will provide an accurate estimation of the optimal
value function provided the weights, wi, j ∈ R, are tuned
properly. However, in most cases, the form of the optimal
value function is unknown, and generic basis functions have
been proposed to parameterize the problem.

ADP replaces V ∗ with a parametrization, V̂ (x, Wc) =�M
i=1 wi,cσi (x), with Wc = (w1,c, . . . , wM,c) ∈ R

M ,
and u∗ with a parametrization û(x, Wa) =
− 1

2 R−1g(x)T ∇x V (x, Wa)T where Wa ∈ R
M . The actor

and critic weights, Wa and Wc, respectively, are tuned to
minimize the residual Bellman error (BE)

δ(x, Wa, Wc) = x T Qx + û(x, Wa)T Ru(x, Wa)

+ ∇x V̂ (x, Wc)( f (x) + g(x)û(x, Wa))

overall x in some compact set D in real time. The BE is used
to motivate weight update laws for Wa and Wc to achieve a
real-time minimization.

Traditional ADP methods aim to achieve a global estimation
of the value function. If generic basis functions such as sig-
moids, RBFs, and polynomials are used, then approximation
of a function over a larger volume typically requires a large
number of basis functions. As a result, unless a smaller
application-specific set of basis functions can be constructed
using domain knowledge, ADP methods become computa-
tionally intractable, especially as the dimension of the state
increases. Motivated by the observation that the optimal policy
only requires information concerning the value function at
the current state, the StaF approach to ADP establishes and
maintains an approximation of the value function in a moving
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neighborhood of the state. As a result, the computational
effort can be concentrated to establish an estimation of the
value function over an area that is immediately relevant for
the generation of an optimal controller and not wasted to
approximate the value function over areas of the state space
where the state may never enter.

An immediate limitation of the local approach is that
after successfully implementing a StaF-based online ADP
controller, a global approximation of the value function cannot
be extracted from the weight functions. To mitigate this
limitation, an example is presented where the experience-based
approximation method is utilized to construct a global estimate
of the value function from the results of several simulations.

In this setting, the StaF problem becomes

lim sup
t→∞

sup
x∈Nr (x)

|δ(x, Wa(t), Wc(t))| < �.

Section VIII-A provides more information concerning the
application of the StaF method to ADP by presenting the
results of companion papers [27], [28].

A. Details for the Application to Adaptive
Dynamic Programming

To demonstrate the effectiveness of the StaF technique in
the context of optimal control, the simulation results from a
companion paper are duplicated here. Analysis of StaF-based
ADP appears in a preliminary form in [27] and in a detailed
form in [28]. The dynamical system in question is of the form
ẋ = f (x) + g(x)u, where x = (x1, x2)

T ∈ R
2

f (x) =
�

x2 − x1

−1

2
x1 − 1

2
x2(cos(2x1) + 2)2

�

and

g(x) =


0
cos(2x1) + 2

�
. (14)

Associated with this dynamical system is the cost functional

J (x, u) =
� ∞

0
(x T (τ )x(τ ) + u(τ )2) dτ. (15)

In the infinite horizon regulation problem, the goal is to
determine an optimal control law u∗ : R

2 → R (assuming
an optimal control law exists) that satisfies

u∗(x0) = arg min
u∈U

� ∞

0
(x T (τ )x(τ ) + u(τ )2) dτ

where U is the collection of admissible controllers and x(0) =
x0 inside the integrand. The optimal value function is given
by

V (x0) = min
u∈U

� ∞

0
(x T (τ )x(τ ) + u(τ )2) dτ

when such a minimum exists, and the optimal value function
satisfies the HJB equation (12). If V ∗ satisfies the HJB
equation and is also continuously differentiable, then it is the
unique solution to (12). Furthermore, u∗ can be determined
from V ∗ by u∗(x) = (1/2)gT (x)∇V ∗(x)T .

In most cases, the optimal value function cannot be deter-
mined analytically, and approximate solutions are used instead.

However, for the system presented in this section, the optimal
value function is known. In particular, for the infinite horizon
optimal regulator problem with dynamics given by (14) with
cost functional (15), the optimal value function is given by
V ∗(x) = (1/2)x2

1 + x2
2 and the associated optimal control law

is given by u∗(x) = −(cos(2x1) + 2)x2. More details can be
found in [12].

In this example, the infinite horizon optimal regulator
problem is solved in real time. The function V ∗ is approx-
imated by a function of the form

V̂ (x, Ŵc) =
3�

i=1

Ŵc,i (exp(x T ci (x)) − 1)

where Ŵc ∈ R
3 are weights to be adjusted in real time, and

ci (x) = x + di (x) where

di = 0.7 ·


x T x + 0.01

1 + x T x

� 
sin((i − 1) · 2π/3)
cos((i − 1) · 2π/3)

�
(16)

for i = 1, 2, 3. Three centers were selected based on the
heuristic that three centers can provide sufficient accuracy if
the designated neighborhood is sufficiently small. Thereby,
selecting three centers assists with the computational demand
to establish the approximation. Furthermore, the quantity 0.01
was added to the numerator of (16) to assure that the centers
remain distinct as xT x → 0. The approximation of the optimal
control law is given by

û(x, Ŵa) = −1

2
gT (x)∇x V̂ (x, Ŵa)T

where Ŵa ∈ R
3 are weights to be adjusted in real time. In the

framework of ADP, the functions V ∗ and u∗ are replaced
by their approximations V̂ and û, respectively, in the HJB
equation, yielding a residual nonzero error, called the BE. The
goal is to minimize the BE by adjustments of the weights,
Ŵa and Ŵc. If the BE is identically zero after the adjustment
of the weights, then the optimal value function and the
approximation of the optimal value function coincide. For
nonzero BE, the BE is used as a heuristic measure of the
distance between V̂ and V ∗, as well as the distance between
û and u∗. The weight update laws and subsequent convergence
analysis can be found in [27].

The results of the numerical experiment are presented
in Figs. 3 and 4. Fig. 3(a) indicates that the state is regulated
to the origin when using the ADP algorithm combined with
the StaF methodology. Fig. 3(b) shows that the weight vec-
tor Ŵa converged as well. In typical StaF implementations,
the weights are not expected to converge. However, since
the optimal control problem is a regulator problem, the state
and the centers ultimately occupy a fixed neighborhood of
the origin, and the weights converge to the ideal weights
corresponding to a small neighborhood of the origin.

When the weights converge, it is expected that Ŵa and
Ŵc converge to the same values. The convergence is demon-
strated by comparing Fig. 3(b) and (c). The approximate con-
troller and the optimal controller converge as well, as shown
in Fig. 4(a), and the value function estimation error, given
in Fig. 4(b), vanishes rapidly.
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Fig. 3. State and weight trajectories demonstrating the convergence for the
StaF ADP method [27]. (a) Trajectory of the state vector. (b) Trajectory of
the actor weights. (c) Values of the critic weights.

Fig. 4. Estimation errors demonstrating the convergence for the StaF ADP
method [27]. (a) Error committed by approximate policy. (b) Error of the
estimation of the value function at the current state.

B. Approximating the Value Function via
Experience-Based Approximations

The StaF approximation method is effective for produc-
ing a stabilizing, approximately optimal controller. For what
follows, the same parameters are used as in Section VIII-A

to execute the simulations, and the data collected from these
simulations are used to determine an approximation of the
value function over D = [−1, 1]2.

The system selected in Section VIII-A is of the form (11)
with x : R+ → R

2 given by

f (x) =
� −x1 + x2

−1

2
x1 − 1

2
x2(1 − (cos(2x2) + 2)2)

�

and

g(x) =


0
cos(2x1) + 2

�
.

The cost function was selected as
� ∞

0
x T (τ )x(τ ) + u2(τ ) dτ.

The dynamical system was selected because the value function
for this system is known, V ∗(x) = (1/2)x2

1 + x2
2 (see [12]),

thus the performance of the method developed in this paper
can be evaluated.

For the purposes of data collection, the simulation was run
100 times, while moving x0 along a circle of radius 2 centered
at the origin. The radius was selected to give a circle larger
than the domain of approximation. In this way, the weight
update laws have an opportunity to approach the values of the
ideal weight function.

As discussed in Section VII, a 10×10 grid was laid over D,
and the approximate samples of the ideal weight function
were recorded as the state passed over grid lines. The process
resulted in 93 samples of the estimation of the ideal weight
function. The data, ((xi1, xi2), (wi1, wi2, wi3))

93
i=1, were inter-

polated by kernels of the form KG(x, y) = exp(−�x − y�2/μ)
where μ = 100 · ln(10).

The StaF kernel functions in Section VIII-A were selected
as K (x, ci (x)) = exp(−x T ci (x)) − 1, where ci (x) = x +
di (x) with di given by (16). Both the kernel functions and the
value function satisfy V (0) = 0 and K (0, ci (x)) = 0, so the
approximation near the origin is expected to be very accurate.

Fig. 5(a)–(c) presents the results of the numerical experi-
ment. The function approximate is presented in Fig. 5(a). Near
the corners of the approximation domain, the approximate
value function is much larger than the optimal value function,
which takes a maximum value of 1.5. However, the plot of the
error over the approximation region in Fig. 5(b) demonstrates
that in a neighborhood near the origin, the value function
approximation is precise. Fig. 5(c) shows that this region
extends beyond a small neighborhood of the origin, and at
(−1, 0.6) and (−1,−0.4) the accuracy of the approximation
has been maintained.

Accuracy of the approximation is poor near the boundary
of D and the accuracy is especially bad at the corners. The
large errors primarily stem from the amount of time the weight
update laws had to perform their estimation. The corners of
the domain are the closest points in the domain to the circle
of radius 2 where the state was initialized. Therefore, this is
where the weight update laws had the least amount of time to
correct the approximation, and thus the approximation was still
in its transient stage of poor performance when the weights
were sampled.
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Fig. 5. Results of the experience-based approximation of the value function.
(a) Plot of the approximation of the value function. (b) Error committed by
the approximation. (c) Contour map of the error function.

On the other hand, in the interior of the region D,
the accuracy of the approximation is improved. In this region,
the weight update laws have had the most time to tune the
values of the approximations of the ideal weight function,
and thus they have achieved greater accuracy. Thus, when
these values are used to approximate the value function,
the performance of the approximation is improved.

Fig. 5(a)–(c) demonstrates both the strengths and the weak-
nesses of the StaF method. Having fast and accurate weight
update laws are essential to guarantee an accurate estimation
of the value function. When the approximate weights are
sampled from areas where the weight update laws are given
more time, the resulting approximation is more accurate.
In principle, better choices of update laws and gains will yield
better approximations when the experience-based approxima-
tion method is used.

IX. DISCUSSION CONCERNING SIMILARITIES SHARED

WITH OTHER KERNEL METHODS

As demonstrated in this paper, the StaF kernel method aims
to establish a moving approximation using local samples of a
function. Central to the StaF method is the establishment of

continuous or smooth ideal weight functions so that weight
update laws given either as differential equations or through
gradient descent updates can be leveraged to establish and
maintain an accurate estimation of a function. Other ker-
nel methods have used state-dependent weight functions
for approximation schemes in different ways. In particular,
the MLS method achieves an approximation of a function by
adjusting weights emphasizing different samples of a function
based on the position of the state variable.

The weighted inner product for MLS takes the form

� f, g�Q(x) =
N�

i=1

f (xi )g(xi)Qi (x)

where f and g are functions in a Hilbert space, Q(x) :=
(Q1(x), . . . , QN (x)) is a vector of nonnegative functions, and
x1, . . . , xn ∈ R

n are predefined sample points [21]. This yields
the state-dependent norm

� f − g�2
MLS,x :=

N�

i=1

( f (xi ) − g(xi))
2 Qi (x).

Thus, the approximation of f with the basis functions u j

for j = 1, . . . , M , given the samples ((xi , f (xi ))
N
i=1, takes

the form f̂ (x) = �M
i=1 bi (x)u j (x), where (b1(x), . . . , bM (x))

minimizes

min
(ai (x))M

i=1

������
f −

M�

j=1

a j (x)u j

������
MLS,x

.

As with the StaF method, the weight functions bi may
depend smoothly on the state variable, depending on the choice
of Q. Also, like the StaF method, weight functions must be
recalculated for each state. The main difference between the
MLS method and the StaF method is that the MLS method is
an approximation method that relies on a collection of a priori
sampled points, whereas the StaF method is implemented
through continuously sampling a function online in a fixed
grid. In particular, the StaF method does not require a set
of samples to be available before implementation, which is
ideal in the setting of dynamical systems, where the ultimate
trajectory of a system may be unknown. In addition, in contrast
to the MLS method, the StaF approximation method utilizes
basis functions that change with the state variable and the
change in the ideal weight functions come from adjustments
in the basis functions rather than the inner product.

Each of the two methods provides an approximation of a
function using local information in different settings. Where
the MLS method to be implemented in the StaF setting, a very
large number of sample points would be required to be stored
in advance, which would become computationally intractable.

However, the StaF method can be modified to work in
an MLS setting, if we allow for the state-dependent cen-
ters to change discretely. Given a collection of samples
{(xi , f (xi ))}N

i=1, let C(x) = (c1(x), . . . , cM (x)) to be the
collection of the closest M points of {x1, . . . , xN } to the state
variable x . Each of the centers ci (x) and the associated ideal
weights are piecewise constant for i = 1, . . . , M . Some care
may be required if there were more than M points that qualify
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Fig. 6. StaF method is employed to approximate the Franke function given
a collection of presampled points. This differs from the usage of the StaF
method in the rest of this paper, where the centers changed continuously.
Here, the centers are adjusted discretely to the nearest neighbors of the state
variable. (a) Estimation of the Franke function obtained when using only
one kernel function with the center determined by the nearest neighbor to
the state. (b) Estimation of the Franke function obtained when using only
10 kernel functions with the centers determined by the 10 nearest neighbors
to the state.

as being the closest to x , such as when M = 1, x1 = −1,
x2 = 1, and x = 0. However, this issue is only expected to
arise for isolated state values.

Fig. 6 shows the result of using the StaF method in
the setting where the centers are selected as the nearest
neighbors. The approximated function is the Franke function,
a common benchmark for interpolation problems [21]. The
sampled points are 256 points in [0, 1]2 which were generated
from the Halton sequence [21]. The particular kernel used
in this example is the Gaussian kernel function K (x, y) =
exp(−((�x − y�2

2)/5)). Fig. 6(a) presents the results when
using one nearest neighbor, and Fig. 6(b) presents the results
when using 10 nearest neighbors. Since the ideal weight func-
tions are piecewise constant, the ideal weights were calculated
at each state by inverting the Gram matrix for interpolation.
Table I gives the rms errors for different choices of nearest
neighbors. Note that the error is governed not only by the
number of kernels employed but also by the spacing of the
initial sample set {xi }N

i=1.
To establish a comparison with the MLS method, the indi-

cator function of the ball with center x and radius 0.1 was

TABLE I

HERE, THE ERRORS COMMITTED BY THE STAF METHOD IN A TYPICAL
APPROXIMATION REGIME. HERE, THE CENTERS ARE DETERMINED

BY NEAREST POINTS {xi }N
i=1 TO THE STATE x , WHICH RESULTS

IN PIECEWISE CONSTANT CENTERS AND IDEAL WEIGHT

FUNCTIONS. PRESENTED IS THE ESTIMATION ERROR
CORRESPONDING TO DIFFERENT NUMBERS OF

NEIGHBORS CHOSEN. TWO FACTORS DETERMINE

THE RMS ERROR, THE SPACING OF THE POINTS
{xi }N

i=1 AND THE NUMBER OF KERNELS

EMPLOYED FOR THE APPROXIMATION

(WHICH CORRESPONDS TO THE

NUMBER OF NEAREST
NEIGHBORS SELECTED)

TABLE II

ERRORS COMMITTED WHEN USING MLS WITH A POLYNOMIAL BASIS.
IT CAN BE SEEN THAT A CUBIC POLYNOMIAL BASIS (WHICH

CONSISTS OF 10 FUNCTIONS) APPROACHES THE ORDER
OF ACCURACY OF THE STAF METHOD WITH

FIVE BASIS FUNCTIONS

selected as

Qi (x) =
�

1, �x − xi�2 ≤ 0.1
0, �x − xi�2 > 0.1

as well as the basis of monomials of degree at most M ,
{x p yq}p+q≤M . The results of the MLS implementation are
shown in Table II. The numerical accuracy of the two methods
is comparable, with the StaF method performing slightly
better. The accuracy of the MLS method may be improved
with a better selection of Qi . For instance, when Qi is the
indicator of a ball with radius 0.2, the accuracy improves to
1.953E − 3. However, the MLS method has a significantly
longer computation time the larger the support of Qi . The
duration of the simulation using a support radius of 0.2 and
a fifth-degree polynomial basis was 63.4 s to achieve a lower
accuracy than the StaF method with 15 centers executed
in 2.5 s. The longer computation time is likely due to the
repeated computation of the weighted inner products.

X. CONCLUSION

A new StaF kernel method is introduced in this paper for
the purpose of function approximation. The development in
this paper establishes that by using the StaF method a local
approximation of a function can be maintained in real time
as a state moves through a compact domain. Heuristically,
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much fewer kernel functions are required in comparison to
more traditional function approximation schemes since the
approximation is maintained in a smaller region. For the expo-
nential kernels, a new theorem in this paper established that
an explicit bound on the number of kernel functions required
can be calculated. Two applications of this methodology were
presented. In Section VI, a “gradient chase” algorithm was
developed. There, it was seen that a function may be well
approximated provided that the algorithm was applied with
a high enough frequency. Simulations results provided in
Section VIII demonstrated the performance of the gradient
chase algorithm, the gradient chase algorithm was also imple-
mented for a derivative estimation problem in Section VIII,
and an application to ADP is provided in Section VIII-A for
an infinite horizon optimal regulation problem.

The strength of the StaF methodology is the reduction of the
computational requirements for real-time implementation of
function approximation, through the reduction in the number
of basis functions. The reduction in the number of basis
functions was demonstrated in Section VIII-A, where only
three basis functions were required to achieve a stabilizing
approximate optimal controller for a 2-D system. However,
since the StaF method aims at maintaining an accurate local
approximation of the value function only in a local neigh-
borhood of the current system state, the StaF kernel method
lacks memory, in the sense that the information about the
ideal weights over a region of interest is lost when the state
leaves the region of interest. Thus, unlike existing techniques,
the StaF method generates an approximation that is valid only
in a local region.

A so-called experience-based approximation method is
presented to address this limitation of the StaF method.
An example in Section VIII is presented where the ideal
weight functions were approximated to produce an approxi-
mation of the derivative of sin(2π t) over a compact interval.
In Section VIII-B, the method was applied an ADP problem,
where moderate success was achieved in the approximation of
the optimal value function. The experience-based approxima-
tion is more suited to applications in settings such as ADP,
where the weight update laws govern the approximation, and
direct sampling of the value function is not available.
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