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Abstract— Hybrid exoskeletons, which combine func-1

tional electrical stimulation (FES) with a motorized test-2

bed, can potentially improve the rehabilitation of people3

with movement disorders. However, hybrid exoskeletons4

have inherently nonlinear and uncertain dynamics, includ-5

ing combinations of discrete modes that switch between6

different continuous dynamic subsystems, which compli-7

cate closed-loop control. A particular complication is the8

uncertain muscle control effectiveness associated with9

FES. In this work, adaptive integral concurrent learning (ICL)10

motor and FES controllers are developed for a hybrid biceps11

curl exoskeleton,which are designed to achieve opportunis-12

tic and data-based learning of the uncertain human and13

electromechanical testbed parameters. Global exponential14

trajectory tracking and parameter estimation errors are15

proven through a Lyapunov-based stability analysis. The16

motor effectiveness is assumed to be unknown, and, to help17

with fatigue reduction, FES is enabled to switch between18

multiple electrodes on the biceps brachii, further complicat-19

ing the analysis. A consequence of switching between the20

different uncertain subsystems is that the parameters must21

be opportunistically learned for each subsystem (i.e. each22

electrode and the motor), while that subsystem is active.23

Experiments were performed to validate the developed ICL24

controllers on twelve healthy participants. The average25

(± standard deviation) position tracking errors across each26

participant were 1.44 ± 5.32 deg, −0.25 ± 2.85 deg, and27

−0.17 ± 2.66 deg across biceps Curls 1-3, 4-7, and 8-10,28

respectively, where the average across the entire experi-29

ment was 0.28 ± 3.53 deg.30
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Index Terms— Functional electrical stimulation (FES), 31

integral concurrent learning (ICL), parameter identifica- 32

tion, switched systems, rehabilitation robotics, Lyapunov 33

methods. 34

I. INTRODUCTION 35

APOTENTIAL rehabilitative exercise for people with 36

upper limb movement disorders is functional electrical 37

stimulation (FES) induced biceps curls [1], [2], [3], [4]. 38

However, closed-loop FES control of muscle effort is chal- 39

lenging since the muscle effectiveness is unknown, the muscle 40

dynamics are both nonlinear and uncertain, and high stimu- 41

lation inputs are often uncomfortable [5], [6]. Furthermore, 42

rehabilitative hybrid exoskeletons, which combine FES and 43

motor control, must alternate control between FES and a motor 44

without compromising performance. 45

Closed-loop FES control has previously been implemented 46

on a range of rehabilitative exercises, such as rowing [7], 47

cycling [8], [9], [10], [11], [12], walking [13], leg exten- 48

sions [14], [15], [16], [17], and biceps curls [1], [2], [3], 49

[4], among others. To compensate for system uncertainties, 50

and to ensure stability, many closed-loop FES controllers 51

have included only robust (i.e., high (infinite) frequency 52

and/or high-gain) feedback terms (cf. [1], [2], [3], [16], 53

[17]). An added motivation for such robust controllers is that 54

they often produce a negative definite derivative of a strict 55

Lyapunov function, which aids the stability analysis of a 56

switched system (i.e., a system with mixed continuous and 57

discrete dynamics, also called a hybrid system). However, the 58

high-gain/high-frequency nature of robust FES control tends 59

to increase the rate of fatigue and may also be uncomfortable 60

for the participant [8]. Motivated to reduce the high-gain/high- 61

frequency feedback terms, some results have augmented FES 62

controllers with adaptive feedforward terms (cf. [7], [8], [9], 63

[10], [11], [12], [13], [14], [15]) to ensure asymptotic trajec- 64

tory tracking. The adaptive controllers in [7], [8], [9], [10], 65

[11], and [14] implemented model-free techniques ranging 66

from repetitive (RLC) and iterative (ILC) learning control, 67

neural networks (NN), and fuzzy logic, whereas [12], [13], 68

[15], [18], [19] implemented model-based techniques. 69

Although adaptive controllers are often used to improve 70

control performance, sometimes it is desired for the adaptive 71
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controller to simultaneously ensure parameter/system identi-72

fication. Traditional adaptive controllers (cf. [20], [21]) can73

yield both exponential tracking and parameter identifica-74

tion provided the persistence of excitation (PE) condition is75

satisfied. However, the PE condition cannot be verified,76

in general, for nonlinear systems, and if the PE condition77

is unsatisfied there may be periods of oscillatory or unstable78

behavior (i.e., the bursting phenomenon [22]). In an effort to79

relax the PE condition and to enable online parameter/model80

identification, methods such as initial excitation (IE) [23],81

[24], concurrent learning (CL) [25], [26], [27], and integral82

concurrent learning (ICL) [28], [29] were recently developed.83

IE relaxes the PE condition by using low pass filters and a84

switched parameter estimator; whereas, CL and ICL require a85

more mild finite excitation (FE) condition. Both CL and ICL86

update the parameter estimates online using prior input/output87

data, which enables exponential tracking and parameter esti-88

mation. Furthermore, ICL eliminates the possibility of bursting89

errors and, unlike CL, does not require the highest order90

derivative to be known [28].91

To date, ICL was previously implemented on a FES system92

in the authors’ preliminary work [19], which this work is93

built upon, and in [18]; however, unlike in this work, [18]94

assumes the muscle effectiveness is known. ICL is motivated95

for a FES system since it may increase the FES controller’s96

efficiency and potentially yield smaller FES inputs (e.g., the97

high-gain/high-frequency robust terms can be reduced), which98

ultimately may reduce fatigue and increase the participant’s99

comfort [8]. Furthermore, ICL yields exponential tracking100

and parameter identification, which allows for the human and101

machine dynamics to be learned online.102

Building upon our work in [19], adaptive ICL motor and103

FES controllers were developed for an uncertain nonlin-104

ear hybrid biceps curl exoskeleton. Additionally, a complete105

switched systems Lyapunov-like stability analysis was per-106

formed to ensure global exponentially decaying parameter107

estimation and trajectory tracking errors. Similar to [19],108

FES is applied during desired elbow flexion, and the motor109

is applied during desired elbow extension. Unlike our work110

in [19], this paper assumes the motor effectiveness is unknown,111

allows for FES control to switch between multiple electrodes,112

and provides comparative experiments on twelve healthy par-113

ticipants to validate the control development. Allowing FES114

to switch control between multiple electrodes on the biceps115

brachii allows for fatigue to be further reduced [2]; however,116

it also complicates the analysis and required the model, control117

development, and stability analysis to be greatly modified118

compared to our work in [19]. This work is differentiated from119

prior ICL developments, such as those in [19], [28], and [18],120

since this work involves switching between multiple control121

inputs that each have an uncertain (and potentially different)122

control effectiveness, which results in different uncertain para-123

meters for each control subsystem. The solution is to perform124

opportunistic learning by updating the parameters and record-125

ing input/output data for each subsystem, while that subsystem126

is active. After sufficient learning has occurred for a given127

subsystem, its parameters are able to be updated regardless of128

the currently active subsystem. Comparative experiments were129

performed on twelve healthy participants using the developed130

control system, a traditional adaptive controller, and a robust 131

controller resulting in average (± standard deviation) position 132

tracking errors of 0.28 ± 3.53 deg, 1.47 ± 5.78 deg, and 133

3.36 ± 7.97 deg, respectively, across a 10 curl experiment. 134

The results indicated improved tracking performance for the 135

ICL controller compared to some traditional adaptive and 136

robust controllers, while providing similar average FES and 137

motor control inputs. The results further demonstrated the 138

ability of the ICL controller to improve the tracking perfor- 139

mance as adaptation occurred. Efforts to perform preliminary 140

experiments on participants with neurological conditions were 141

stymied due to Covid-19. 142

II. DYNAMICS 143

The dynamics of the uncertain nonlinear hybrid biceps curl 144

exoskeleton are modeled as1 [2] 145

M (q̈) + G (q) + P (q, q̇) + Bd (q̇) = τe (t) + τM (t) , (1) 146

where q : R≥0 → Q, q̇ : R≥0 → R, and q̈ : R≥0 → R 147

denote the measured angle, measured angular velocity, and 148

unmeasurable acceleration, respectively, of the forearm about 149

the elbow joint. The set Q ⊂ R denotes a compact set of 150

potential forearm angles. The inertial, gravitational, passive 151

viscoelastic tissue, and damping effects of the hybrid biceps 152

curl exoskeleton are denoted by M : R → R>0, G : Q → R, 153

P : Q × R → R, and Bd : R → R, respectively, and are 154

defined as 155

M (q̈) � J q̈, G (q) � mgl cos (q − θ0) , (2) 156

P (q, q̇) � ke1 (q − ke2) + bv q̇, Bd (q̇) � bdq̇, (3) 157

where J, m, g, l, bv , bd ∈ R>0 and ke1, ke2 ∈ R are unknown 158

constants and θ0 ∈ R>0 is a known constant. 159

In this paper, FES is applied via multiple electrodes that 160

are placed on the biceps brachii muscle using w ∈ N distinct 161

channels of a stimulator, where m ∈ M � {1, 2, . . . , w} 162

indicates the mth electrode channel, and M is a finite set. 163

The torques produced about the elbow joint due to the motor 164

and FES-induced muscle contractions are denoted by τe, τM : 165

R≥0 → R, respectively, and defined as 166

τe (t) � beUe (t) , τM (t) �
∑

m∈M
bmUm (t) , (4) 167

where be, bm ∈ R>0 denote the unknown and constant control 168

effectiveness terms for the motor and stimulation via the mth
169

electrode over the biceps brachii muscle,2 respectively. The 170

current input to the motor and the stimulation (i.e., pulse 171

width) input for each electrode are denoted by Ue : R≥0 → R 172

and Um : R≥0 → R,∀m ∈ M, respectively, and defined as 173

Ue (t) � Keσe (q̇d) ue (t) , Um (t) � Kmσm (q, q̇d) um (t) , 174

(5) 175

1For notational brevity, all explicit dependence on time, t , within the terms
q(t), q̇(t), and q̈(t) is suppressed.

2Due to unknown effects associated with changing muscle geometry, the
control effectiveness of stimulation varies with the angle of the elbow.
However, if each electrode is placed properly then the biceps can be split into
distinct stimulation regions for each electrode, where the control effectiveness
is approximately constant over each electrode’s stimulation region [2], [4].
An open problem for future work that may yield improved performance is to
consider the position and velocity dependency of the muscles along with a
stability analysis that accounts for such effects.
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∀m ∈ M, where ue, um : R≥0 → R represent the subse-176

quently designed motor and FES control inputs, respectively,177

Ke, Km ∈ R>0 represent selectable constants, and qd , q̇d , q̈d :178

R≥0 → R represent the bounded desired position, velocity,179

and acceleration, respectively. The motor switching signal,180

σe : R → {0, 1}, and the FES switching signal for the mth
181

electrode, σm : Q × R → {0, 1}, are respectively defined as182

σe (q̇d) �
{

1, q̇d < 0

0, otherwise
, (6)183

σm (q, q̇d) �
{

1, q̇d ≥ 0 and q ∈ Qm

0, otherwise
, ∀m ∈ M, (7)184

where Qm ⊆ Q denotes the set of angles over which the185

mth electrode channel is stimulated. In this paper, Qm is186

selected as in [4] and [2] such that Qm segments Q and a187

single electrode is active at a time, that is ∪
∀m∈M

Qm = Q188

and ∩
∀m∈M

Qm = Ø. Furthermore, the switching signals in (6)189

and (7) are designed to apply the motor and FES only during190

desired elbow extension and flexion, respectively.3191

Substituting (2), (4), and (5) into (1) yields4
192 ∑

m∈M
bm Kmσmum + be Keσeue = J q̈ + G + P + Bd , (8)193

which can be rewritten as194 ∑
i∈S

Biσi ui = J q̈ + G + P + Bd , (9)195

where Bi � bi Ki , and i ∈ S � M ∪ {e} = {1, 2, . . . , w, e}196

indicates the subsystem, which is either an electrode or the197

motor. By design of the switching signals in (6) and (7),198

whenever σi = 1 for any i ∈ S, σ j = 0,∀ j ∈
j 
=i

S. The199

switched hybrid biceps curl exoskeleton system in (9) has the200

subsequent properties [2].201

Property 1: The inertial effects are bounded such that202

c j ≤ J ≤ cJ , where c j , cJ ∈ R>0 are known constants.203

Property 2: The control effectiveness, bi , is bounded204

∀i ∈ S such that ci ≤ Bi ≤ c̄i , where ci , c̄i ∈ R>0 are205

known constants.206

Property 3: The switched system in (9) is linear in the207

unknown constant parameters. For example, when the i th
208

subsystem is active (i.e., σi = 1 and σ j = 0,∀ j ∈
j 
=i

S) the209

following definition holds:210

Y1θi � 1

Bi
(J q̈ + G + P + Bd) , (10)211

where Y1 ∈ R
1×p denotes a known regression matrix, θi ∈212

R
p denotes the unknown constant parameters for the i th

213

subsystem, and p denotes the number of uncertain parameters.214

3FES-induced muscle activation can only produce a positive torque and
negative FES inputs are set to zero during implementation. Therefore, the
switching signals in (6) and (7) could result in uncontrolled regions; however,
this situation was not observed during the subsequent experimental analysis.
If desired, the switching signals in (6) and (7) could be modified to set σm =
0 if um ≤ 0 and to set σe = 1 if σm = 0,∀m ∈ M.

4For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.

III. CONTROL DEVELOPMENT 215

A. Tracking Error Development 216

The objective of this paper is for the forearm to track 217

a desired position and velocity. The position tracking error, 218

e1 : R≥0 → R, is measurable and is defined as 219

e1 � qd − q. (11) 220

An auxiliary tracking error, e2 : R≥0 → R, is measurable and 221

is defined as 222

e2 � ė1 + αe1, (12) 223

where α ∈ R>0 is a selectable constant. To obtain the open- 224

loop error system for the i th subsystem (i.e., when σi = 1), 225

we take the derivative of (12), multiply both sides by J , and 226

use (9) to yield 227

J ė2 = Bi (Y2θi − ui ) , σi = 1, (13) 228

for any i ∈ S, where Y2 ∈ R
1×p denotes a measurable matrix, 229

θi is defined in (10), and Y2θi is defined as 230

Y2θi � 1

Bi
(J q̈d + G + P + Bd + αJ ė1) . (14) 231

B. Parameter Identification Development 232

The parameter identification error vector for the i th subsys- 233

tem, θ̃i ∈ R
p , is defined ∀i ∈ S as 234

θ̃i � θi − θ̂i , (15) 235

where θ̂i ∈ R
p denotes the parameter estimates for the i th

236

subsystem. Based on the subsequent stability analysis, an 237

update law for the i th subsystem’s parameter estimates is 238

designed ∀i ∈ S as 239

˙̂
θi �

⎧⎪⎨
⎪⎩

�i Y T
2 e2 + γi�i Si , σi = 1

0, σi = 0 and σi,l = 0

γi�i Si , σi = 0 and σi,l = 1

, (16) 240

where �i ∈ R
p×p is a user-selectable diagonal and positive 241

definite matrix, γi ∈ R>0 is a selectable constant, and Si 242

contains a history stack of previous ICL terms, and is defined 243

∀i ∈ S as 244

Si �
Ni∑

j=1

YT
i, j

(
Ui, j − Yi, j θ̂i

)
, (17) 245

where Ni ∈ N denotes the size of the history stack for the 246

i th subsystem. The switching signal, σi,l : R≥0 → {0, 1}, 247

is designed to indicate when sufficient learning has been 248

achieved for the i th subsystem, and is defined ∀i ∈ S as 249

σi,l (t) �

⎧⎨
⎩

1 λmin

{∑Ni
j=1 YT

i, jYi, j

}
≥ λi

0 λmin

{∑Ni
j=1 YT

i, jYi, j

}
< λi

, (18) 250

where λi ∈ R>0,∀i ∈ S are selectable constants, and 251

the minimum or maximum eigenvalue of {·} is indicated by 252
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λmin {·} or λmax {·}, respectively. To implement the ICL portion253

of the update laws, the following ICL terms are defined254

Yi (t) �

⎧⎪⎨
⎪⎩

01×p σi = 0

01×p t − t i
n,on ∈ [0,�t]∫ t

t−�t Y1 (κ) dκ t − t i
n,on > �t

, (19)255

Ui (t) �

⎧⎪⎨
⎪⎩

0 σi = 0

0 t − t i
n,on ∈ [0,�t]∫ t

t−�t σi ui (κ) dκ t − t i
n,on > �t

, (20)256

∀i ∈ S, where �t ∈ R>0 is a user-selectable constant that sets257

the size of the integration window, and 01×p denotes a 1 × p258

matrix of zeros. For the i th subsystem, let the nth time instant259

when σi becomes nonzero be denoted by t i
n,on , and let the260

nth time when σi becomes zero be denoted by t i
n,of f , where261

i ∈ S, n ∈ {1, 2, . . .}. Notice from the definitions in (17), (19),262

and (20) that the history stacks of Si contain previous input263

and output data. To select meaningful data for the history stack264

(i.e., not zeros), define Yi, j � Yi
(
ti, j

)
and Ui, j � Ui

(
ti, j

)
for265

the i th subsystem, where ti, j ≤ t is selected such that ti, j ∈266 (
t i
n,on + 
t, t i

n,o f f

)
, ∀n ∈ {1, 2, . . .}. For the i th subsystem267

(i.e., σi = 1), it can be shown that268

Yi, j θi = Ui, j , ∀ti, j ∈
(

t i
n,on + 
t, t i

n,o f f

)
,∀n, (21)269

by substituting (10) into (9), integrating both sides, and270

then using the definitions in (19) and (20). Now a271

non-implementable form of Si can be obtained, to facilitate272

the subsequent stability analysis, by substituting (21) into (17)273

and using (15) to yield274

Si =
Ni∑

j=1

YT
i, jYi, j θ̃i . (22)275

Notice that the acceleration measurements are included276

in (10). However, an advantage of ICL compared to CL is277

that the ICL terms (19)-(20) are designed in such a way278

that acceleration is not required. The term
∫ t

t−�t Y1 (κ) dκ279

from (19) is obtained for the i th subsystem by integrating280

both sides of (10) to yield281 ∫ t

t−�t
Y1 (κ) θi dκ � Y3θi +

∫ t

t−�t
Y4 (κ) θi dκ, (23)282

∀t ∈
(

t i
n,on + 
t, t i

n,o f f

)
, ∀n, where283

Y3θi � J

Bi
(q̇ (t) − q̇ (t − �t)) , (24)284

Y4θi � 1

Bi
(G + P + Bd) . (25)285

Thus, (19) can be calculated without measuring the accelera-286

tion due to the design of (24), and (25).287

C. Closed-Loop Error System288

Based on the subsequent stability analysis, an adaptive289

controller is designed for each subsystem as290

ui = Y2θ̂i + kie2, (26)291

∀i ∈ S, where ki ∈ R>0,∀i ∈ S are selectable constants. The 292

closed-loop error system for the i th subsystem is obtained by 293

substituting (26) into (13) to yield 294

J ė2 = Bi

(
Y2θ̃i − ki e2

)
, σi = 1, (27) 295

for any i ∈ S. 296

IV. STABILITY ANALYSIS 297

A special characteristic of the update laws for the parameter 298

estimates of each subsystem, as defined in (16), is that the 299

typical PE criteria can be relaxed to yield a FE criteria 300

for parameter estimation convergence, which is stated in 301

Assumption 1. 302

Assumption 1: Sufficient excitation for the i th subsystem 303

occurs over a finite duration of time. Thus, ∃Ti ∈ R>0,∀i ∈ S 304

such that ∀t ≥ Ti learning is complete for the i th subsystem 305

(i.e., σi,l = 1), or in other words the following FE condition 306

is satisfied: λmin

{∑Ni
j=1 YT

i, jYi, j

}
≥ λi ,∀t ≥ Ti . Learning 307

across all subsystems is considered complete for ∀t ≥ T , 308

where T ∈ R>0 � max {Ti | i ∈ S}.5 309

To facilitate the subsequent analysis, we define a common 310

Lyapunov function candidate, V : R
2+p(w+1) → R≥0, that is 311

both continuously differentiable and positive define as 312

V � 1

2
e2

1 + 1

2
Je2

2 +
∑
i∈S

1

2
Bi θ̃

T
i �−1

i θ̃i . (28) 313

Notice that (28) can be bounded as 314

λ �z�2 ≤ V ≤ λ �z�2 , (29) 315

where λ, λ ∈ R>0 are known constants defined as 316

λ � 1

2
min

{
1, c j , ciλmin

{
�−1

i

}
| i ∈ S

}
, 317

λ � 1

2
max

{
1, cJ , c̄iλmax

{
�−1

i

}
| i ∈ S

}
, 318

and z ∈ R
2+p(w+1) is defined as 319

z �
[

e1 e2 θ̃T
1 θ̃T

2 . . . θ̃T
w θ̃T

e

]T
. (30) 320

Theorem 1: For the dynamic system in (9) with 321

Properties 1-3, the controllers defined in (26) and the 322

adaptive update laws defined in (16) ensure global bounded 323

parameter estimation and trajectory tracking errors for 324

t ∈ [0, T ), provided the following sufficient conditions are 325

met6 326

α >
1

2
, ki >

1

2ci
, ∀i ∈ S. (31) 327

Proof: Since the update laws in (16) and the closed- 328

loop error system in (27) are discontinuous, the solution to 329

the time derivative of (28) exists almost everywhere (a.e.) 330

within t ∈ [t0,∞). There exists a generalized time derivative 331

5The FE condition requires the system to be sufficiently excited, and unlike
the PE condition, can be verified online during run-time execution. Increasing
the number of data points in the history stack helps to satisfy the FE condition.

6The results in Theorem 1 hold even if Assumption 1 is never satisfied;
however, in this case T = ∞. When Assumption 1 is satisfied, the
subsequently developed Theorem 2 can be used to prove additional results.
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of V , denoted by ˙̃V , where V̇ (z)
a.e.∈ ˙̃V (z). Let z (t) for332

t ∈ [t0,∞) be a Filippov solution to the differential inclusion333

ż ∈ K [h] (z), where K [·] is defined as in [30], and h �334 [
ė1 ė2

˙̃θ1
˙̃θ2 . . . ˙̃θw

˙̃θe

]T
[31]. Taking the time derivative of335

(28) and substituting in (12) yields336

˙̃V ⊆ e1 (e2 − αe1) + e2 K [J ė2]337

−
∑
i∈S

Bi θ̃
T
i �−1

i K
[ ˙̂
θi

]
. (32)338

Consider the case when σi = 1 for some i ∈ S such that339 ˙̂
θi ,∀i ∈ S and J ė2 are continuous according to (16) and (27).340

Substituting (16) and (22) for the i th subsystem into (32),341

substituting (27) into (32), using the fact that V̇ (z)
a.e.∈ ˙̃V (z),342

and canceling common terms yields343

V̇
a.e.= −αe2

1 − Bi ki e
2
2 − γi Bi θ̃

T
i

Ni∑
j=1

YT
i, jYi, j θ̃i344

−
∑

k ∈
k 
=i

S
Bk θ̃

T
k �−1

k
˙̂θk + e1e2, (33)345

for the case when σi = 1. When σi = 1, (16) and (22) can346

be used to determine that for a given k ∈
k 
=i

S, ˙̂
θk = 0 (when347

σk,l = 0) or ˙̂
θk = γk�k

∑Nk
j=1 YT

k, jYk, j θ̃k (when σk,l = 1).348

Since time is restricted to the time interval t ∈ [0, T ), it is clear349

that learning is not yet complete for every subsystem according350

to Assumption 1. Therefore, it can conservatively be assumed351

that
∑Ni

j=1 YT
i, jYi, j ,∀i ∈ S is only positive semi-definite352

throughout the interval t ∈ [0, T ), and (33) can be upper353

bounded by using Young’s Inequality and using Property 2 to354

yield355

V̇
a.e.≤ −

(
α − 1

2

)
e2

1 −
(

ki ci − 1

2

)
e2

2, (34)356

∀t ∈
[
t i
n,on, t i

n,o f f

)
∩ [0, T ) ,∀n.357

An overall upper bound for (34) can be determined across358

all subsystems as359

V̇
a.e.≤ −

(
α − 1

2

)
e2

1 − βe2
2, (35)360

∀t ∈ [0, T ), where β � min
{
ki ci − 1

2 | i ∈ S}
.361

By inspection of (28) and (35) it can be seen that V ≥ 0 and362

V̇ ≤ 0, ∀t ∈ [0, T ). Thus, from (28) it can be shown that363

e1, e2, θ̃i ∈ L∞,∀i ∈ S and from (15) it is clear that θ̂i ∈364

L∞, ,∀i ∈ S. From (11), (12), and (14) it can be determined365

that ė1, q, q̇, Y2 ∈ L∞. Since Y2, θ̂i , e2 ∈ L∞ it can be seen366

that ui ∈ L∞,∀i ∈ S. By using (29) it can proven that367

�z(T )� ≤
√

λ

λ
�z(0)� . (36)368

369

Theorem 2: For the dynamic system in (9) with Properties370

1-3, provided that Assumption 1 holds, the controllers defined371

in (26) and the adaptive update laws defined in (16) ensure372

global exponential parameter estimation and trajectory track- 373

ing errors for t ∈ [0,∞) in the sense that 374

�z (t)� ≤ λ

λ
exp

(
δ

2λ
T

)
�z(0)� exp

(
− δ

2λ
t

)
, (37) 375

where 376

δ � min

{
α − 1

2
, ci ki − 1

2
, k3λe, γiλi ci | i ∈ S

}
, (38) 377

provided the conditions in (31) are satisfied. 378

Proof: First, consider the time interval t ∈ [T,∞). Notice 379

that λmin

{∑Ni
j=1 YT

i, jYi, j

}
≥ λi ,∀i ∈ S (i.e., σi,l = 1,∀i ∈ 380

S) by Assumption 1, and hence,
∑Ni

j=1 YT
i, jYi, j ,∀i ∈ S is 381

positive definite over the time interval t ∈ [T,∞). For the 382

case when σi = 1, for some i ∈ S, (33) can be rewritten by 383

using (16) and the fact that σi,l = 1,∀i ∈ S as 384

V̇
a.e.= e1e2 − αe2

1 − Bi ki e
2
2 −

∑
i∈S

γi Bi θ̃
T
i

Ni∑
j=1

YT
i, jYi, j θ̃i , 385

(39) 386

which can be upper bounded by using Young’s Inequality, 387

Assumption 1, and Property 2 to yield 388

V̇
a.e.≤ −

(
α − 1

2

)
e2

1 −
(

ci ki − 1

2

)
e2

2 389

−
∑
i∈S

γiλi ci θ̃
T
i θ̃i , (40) 390

∀t ∈
[
t i
n,on, t i

n,o f f

)
∩ [T,∞) ,∀n. Using (29) and (38), where 391

δ represents the most conservative decay rate for every sub- 392

system (i.e., every i ∈ S), an overall upper bound for (40) can 393

be obtained as 394

V̇
a.e.≤ − δ

λ
V , (41) 395

∀t ∈ [T,∞), which verifies that (28) is a common Lyapunov 396

function. The differential inequality in (41) can be solved and 397

used with (29) to yield 398

�z (t)� ≤
√

λ

λ
�z (T )� exp

(
− δ

2λ
(t − T )

)
,∀t ∈ [T,∞) . 399

(42) 400

An exponential bound can be obtained for all t ∈ [0,∞) by 401

substituting (36) into (42) to yield the result in (37). From (30) 402

and (42) it can be seen that e1, e2, θ̃i ∈ L∞,∀i ∈ S, and a 403

similar development from Theorem 1 can be used to show that 404

ui ∈ L∞,∀i ∈ S and the remaining signals are bounded. 405

V. EXPERIMENTS 406

The adaptive update law in (16) contains both ICL terms 407

(γi�i Si ) and more traditional adaptive terms (�i Y T
2 e2). Note 408

that the ICL terms could be removed by setting γi = 0,∀i and 409

all adaptive terms could be removed by setting �i as a matrix 410

of zeros ∀i . Hereafter, the developed control system in this 411

work (i.e., (16) and (26)) is referred to as Controller A, the 412

developed adaptive controller without ICL terms (γi = 0,∀i ) 413

is referred to as Controller B (i.e., a traditional adaptive 414
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Fig. 1. The testbed consists of A) a stimulator, B) electrodes placed
over the biceps, C) a torque sensor (not used), D) a gear motor, E) an
encoder. The six electrode positions, labeled 1 through 6, are defined
according to the above labeled percentages between the elbow crease
and acromion. The depicted angle θflexion denotes the elbow angle, q.
Note, the testbed has mechanical stops to prevent elbow hyperextension
or hyperflexion. Figure is replicated from [4].

controller, cf. [20], [21]), and the developed controller with415

no adaptive terms (�i as a matrix of zeros ∀i ) is referred416

to as Controller C (i.e., a robust controller). For all three417

controllers, θ̂ (t0) = [0, 0, 0, 0, 0]T . Comparative experiments418

using Controllers A, B, and C were performed to determine the419

effect of each of the adaptive terms on the system performance.420

A. Experimental Testbed and Setup421

The custom arm curl testbed detailed in [4] and [2] and422

depicted in Fig. 1 was used as the experimental testbed.423

The optical digital encoder, 27 Watt, parallel-shaft, brushed424

gear-motor, and Hasomed Rehastim stimulator were inter-425

faced in real-time at 1000 Hz using a desktop computer,426

MATLAB/Simulink, and a Quanser Q-PIDe DAQ board. The427

stimulator was used to input rectangular, symmetric, and428

biphasic pulses to the biceps at a fixed amplitude and fre-429

quency of 30 mA and 35 Hz, respectively, whereas the pulse430

width (PW) was set by the FES controller [3].431

Prior to an experiment, the participant was seated in front432

of the testbed, their upper arm placed upon a stationary plate,433

and their forearm attached to a rotating plate as depicted in434

Fig. 1. Three electrodes (0.6” x 2.75”), labeled Electrodes 1,435

2, and 3, were then respectively placed on the biceps brachii436

at positions 2, 4, and 5 according to Fig. 1, and a 3” times437

5” electrode was placed on the shoulder to act as a reference438

for the smaller electrodes. The stimulation regions for Elec-439

trodes 1, 2, and 3 were defined (in deg) as Q1 ∈ [20, 45),440

Q2 ∈ (45, 70), Q3 ∈ (70, 100]. These regions were sufficient441

to approximate the muscle control effectiveness as a constant,442

but additional regions or modeling parameter variation in the443

control effectiveness of the muscle, could yield improved444

results.7 Prior to performing any experiment, saturation limits 445

were obtained for each electrode to ensure comfort for the 446

participant. 447

B. Experimental Protocol 448

Experiments were performed on six male and six female 449

participants, aged 20-49 years old. Each participant provided 450

written informed consent as approved by the University of 451

Florida Institutional Review Board (IRB201701089). 452

During each experiment, the arm was initially fully extended 453

(i.e., q(t0) = 0 deg) and the desired angular position was 454

defined as 455

qd(t) �
{

π
36 t t ≤ 5
5π
36 + 7π

36

(
1 − cos

(
t−5

2

))
t > 5

. 456

The motor was used during the first 5 s to move forearm 457

to 25 deg, after which the next 125.6 s consisted of either 458

Controller A, B, or C being implemented to perform a total 459

of 10 arm curls between 25 deg and 95 deg. 460

Experiments were performed using each participant’s dom- 461

inant arm, and Controllers A, B, and C were implemented in 462

a random order. Participants were blind to the tracking per- 463

formance during each experiment, and were asked to remain 464

passive and provide no volitional effort. For each participant, 465

a single experiment was performed using each controller. 466

As stated in Section III.B, data was recorded during the 467

experiments to calculate (19) and (20) for each subsystem. 468

Furthermore, to facilitate implementation a counter was devel- 469

oped and initialized at zero for each subsystem. For the i th
470

subsystem, whenever both (19) and (20) were non-zero, the 471

counter for the i th subsystem was increased by one and then 472

the recorded values for (19) and (20) were included in the i th
473

subsystem’s history stack in (17), until the history stack was 474

full (i.e., the counter was at Ni ). At this point, the counter 475

was reset to zero. Subsequently, whenever both (19) and (20) 476

were non-zero, they were added to the history stack if they 477

increased the eigenvalue of the subsystem, otherwise the data 478

was discarded. During the experiments, the following history 479

stack parameters were implemented: λi = 5 × 10−6,∀i ∈ S, 480

Ni = 1000,∀i ∈ S, and �t = 0.15 s. 481

VI. RESULTS 482

Descriptive statistics of the position tracking error, motor 483

effort, and FES effort are included in Table I. To demonstrate 484

the effect of adaptation and to compare each controller, the 485

results in Table I are averaged across each participant for Curls 486

1-3, 4-7, 8-10, and 1-10 (i.e., the overall results). Across each 487

participant, the average (± standard deviation) position track- 488

ing errors were 1.44 ± 5.32 deg, 2.84 ± 7.40 deg, and 3.79 ± 489

8.14 deg across Curls 1-3 for Controllers A, B, and C, 490

respectively, −0.25 ± 2.85 deg, 0.94 ± 5.31 deg, and 491

3.08 ± 7.85 deg across Curls 4-7 for Controllers A, B, 492

and C, respectively, −0.17 ± 2.66 deg, 0.81 ± 4.78 deg, and 493

7From [2, Fig. 1], the torque produced from the electrodes at positions 2,
4, and 5 is approximately constant over the angle ranges (in deg) of 10 to 45,
45 to 70, and 70 to 100, respectively.
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TABLE I
AVERAGE RESULTS FOR EACH CONTROLLER

ACROSS EACH PARTICIPANT

3.32 ± 7.96 deg across Curls 8-10 for Controllers A, B, and C,494

respectively, and 0.28 ± 3.53 deg, 1.47 ± 5.78 deg, and 3.36 ±495

7.97 deg across Curls 1-10 for Controllers A, B, and C,496

respectively. Typical position tracking, control input, and497

parameter estimate results for each controller are included in498

Figs. 2, 3, and 4, respectively, for a single participant. Note,499

the parameter estimates in Fig. 4 include the estimates for500

Electrodes 1-3 as a demonstration of typical estimation results501

for each subsystem. Furthermore, Controller C had no adap-502

tation and was consequently not included in Fig. 4.503

A. Statistical Analysis504

Two sets of statistical tests were performed to investigate505

the effect of each controller and the effect of adaptation on506

the six measurements in Table I: the RMS position error,507

peak position error, and the mean and standard deviation (SD)508

of the motor effort and FES effort. In the first set of tests,509

Friedman tests were conducted to determine if the controller510

affected a given measurement across the entire experiment511

(i.e., Curls 1-10) and determined that the choice of controller512

had a significant effect on the median RMS position error513

(P-Value < 0.001), peak position error (P-Value = 0.014), and514

SD of the FES control effort (P-Value = 0.006). Due to the515

paired nature of the data (i.e., each controller was implemented516

on each participant), a series of two-sided paired Wilcoxon517

signed-rank tests with Bonferroni corrections on the P-Values518

were performed on the significant measurements from the519

Friedman tests and it was concluded that the median peak520

position error (P-Value = 0.505) and the median SD of the521

FES effort (P-Value = 1.0) were not significantly different522

for Controller B, compared to Controller C. Subsequently,523

one-sided paired Wilcoxon signed-rank tests with Bonferroni524

corrections were performed to conclude that Controller A,525

compared to Controller B, reduced the median RMS posi-526

tion error (P-Value = 0.001), median peak position error527

(P-Value = 0.024), and median SD of the FES effort 528

(P-Value = 0.002); Controller A, compared to Controller C, 529

reduced the median RMS position error (P-Value = 0.001), 530

median peak position error (P-Value = 0.024), and median 531

SD of the FES effort (P-Value = 0.018); and Controller B, 532

compared to Controller C, reduced the median RMS position 533

error (P-Value = 0.013). 534

In the second set of tests, Friedman tests were con- 535

ducted to determine, for each controller, if the curl groups 536

(i.e., Curls 1-3, 4-7, and 8-10) affected each measure- 537

ment and determined that the curl group had a sig- 538

nificant effect on the median RMS position errors for 539

Controllers A (P-Value < 0.001) and B (P-Value = 540

0.001), the median peak position errors for Controllers A 541

(P-Value = 0.006) and B (P-Value = 0.039), and the median 542

SD of the FES effort for Controller A (P-Value < 0.001). 543

Two-sided paired Wilcoxon signed-rank tests with Bonferroni 544

corrections were performed on the significant measurements 545

from the second set of Friedman tests and it was concluded that 546

there was no significant difference between Curl group 4-7, 547

compared to Curl group 8-10, for the median RMS position 548

error for Controllers A (P-Value = 0.904) and B (P-Value = 549

0.454), the median peak position error for Controllers A 550

(P-Value = 1.0) and B (P-Value = 1.0), and the SD of the FES 551

effort for Controller A (P-Value = 0.330). Likewise, one-sided 552

paired Wilcoxon signed-rank tests with Bonferroni corrections 553

were performed to conclude that Curl group 4-7, compared to 554

Curl group 1-3, reduced the median RMS position error for 555

Controllers A (P-Value = 0.001) and B (P-Value = 0.002), 556

reduced the median peak position error for Controllers A 557

(P-Value = 0.014) and B (P-Value = 0.018), and reduced 558

the SD of the FES effort for Controller A (P-Value = 559

0.001); and Curl group 8-10, compared to Curl group 1-3, 560

reduced the median RMS position error for Controllers A 561

(P-Value = 0.001) and B (P-Value = 0.005), reduced the 562

median peak position error for Controllers A (P-Value = 563

0.004) and B (P-Value = 0.014), and reduced the SD of the 564

FES effort for Controller A (P-Value = 0.001). 565

VII. DISCUSSION 566

Using the data in Table I for Curls 1-10, Controller A, 567

compared to Controller B (Controller C), decreased8 the RMS 568

position error by 42.4% (59.6%), the peak position error by 569

26.8% (34.3%), the mean motor effort by -1.3% (0.5%), the 570

SD of the motor effort by 4.2% (8.6%), the mean FES effort by 571

4.5% (4.3%), and the SD of the FES effort by 22.8% (24.2%). 572

These results can be visually observed in Figs. 2 and 3 for 573

a single participant. Furthermore, the statistical analysis con- 574

firmed that Controller A reduced the median position tracking 575

error and the median SD of the FES effort relative to Con- 576

trollers B and C and that Controller B improved the position 577

tracking performance relative to Controller C. Therefore, it is 578

clear that the adaptive controllers (Controllers A and B) 579

outperformed a robust controller (Controller C) in position 580

tracking; however, the addition of adaptive ICL terms (Con- 581

troller A) further improved the position tracking performance 582

8Percent Decrease = Initial Value− Final Value (i.e., A value)
Initial Value (i.e., B or C Value) × 100.
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Fig. 2. The actual (q) versus the desired (qd) position for each controller for a single participant.

Fig. 3. The FES pulse width (PW) input applied to each electrode and the motor input for Controller A (left), Controller B (middle), and Controller C
(right) for a single participant. A 0.5 s moving average filter was applied to the motor input for visual clarity.

relative to a traditional adaptive controller (Controller B).583

Furthermore, Controller A produced a significantly less vari-584

able FES control effort relative to both Controllers B and C,585

which may lead to a more comfortable experience for the586

participant. It should be noted that experiments were unable587

to be performed on participants with movement disorders588

due to Covid-19; however, the authors’ have observed similar589

trends for participants with and without neurological con-590

ditions previously, although the tracking errors and control591

inputs tend to be larger for the former group [32], [33], [34].592

Therefore, it is expected that Controller A would outperform593

Controllers B and C for participants with neurological con-594

ditions. Furthermore, the system identification performance is595

unable to be evaluated because the actual system parameters596

are unknown. However, visual inspection of Fig. 4 indicates597

that different parameters were learned for Electrodes 1-3, 598

which was expected due to each electrode likely having a 599

different control effectiveness. 600

The effect of adaptation on position tracking can be investi- 601

gated by comparing the results for each curl group in Table I. 602

In fact, from Curls 1-3 to Curls 4-7, the RMS position error 603

decreased by 46.8%, 29.0%, and 1.2% for Controllers A, B, 604

and C, respectively, and the peak position error decreased by 605

40.8%, 33.4%, and 3.6% for Controllers A, B, and C, respec- 606

tively. In fact, the statistical analysis confirmed that the median 607

RMS and peak position errors decreased from Curls 1-3 to 608

4-7 and from Curls 1-3 to 8-10 for both Controllers A and 609

B. Furthermore, from inspection of Table I the RMS and 610

peak position errors changed minimally (|percent change| < 611

10%) from Curls 4-7 to 8-10 for each controller, which was 612
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Fig. 4. The parameter estimates for Electrodes 1-3 for Controller A (left) and Controller B (right) for a single participant..

confirmed by the statistical analysis. Overall, the tracking613

performance was similar across curl groups for Controller614

C, which was expected since Controller C implemented a615

robust control law. However, both Controllers A and B616

implemented adaptive control terms, which resulted in the617

tracking performance improving from Curls 1-3 to Curls 4-7,618

as confirmed by the statistical analysis for Controllers A619

and B. Interestingly, there were minimal improvements from620

Curls 4-7 to Curls 8-10 for controllers A and B, which can621

be partly explained by inspection of Fig. 2. In Fig. 2, the622

position tracking tended to improve with each curl until Curl623

8 for Controller A and Curl 9 for Controller B, at which point624

the performance slightly worsened and then began to improve625

again. In this work, the control effectiveness was assumed to626

be constant, but it is possible that fatigue caused the control627

effectiveness to decrease during the later curls, which required628

the parameter estimates to adjust accordingly as depicted in629

Fig. 4.630

The effect of adaptation on the control inputs can likewise631

be investigated by comparing the results for each curl group632

in Table I. Overall, the motor effort had minimal changes633

across each curl group for each controller, which is confirmed634

visually in Fig. 3 and by the statistical analysis. Furthermore,635

as confirmed by the statistical analysis, the FES mean had636

negligible changes across each curl group for each controller637

and the SD of the FES effort had negligible changes across638

each curl group for Controllers B and C. However, for639

Controller A, the SD of the FES effort decreased by 16.2% 640

from Curls 1-3 to 4-7 and by 13.5% from Curls 4-7 to 641

Curls 8-10, and the statistical analysis confirmed that the FES 642

variance significantly decreased from Curls 1-3 to Curls 4-7 643

and from Curls 1-3 to Curls 8-10. Another important obser- 644

vation is that the position tracking improved significantly 645

between Curls 1-3 and Curls 4-7 for Controller A, but the FES 646

variation decreased and the median motor and FES efforts had 647

negligible changes from Curls 1-3 and Curls 4-7. Therefore, 648

the ICL-based adaptation was able to improve the tracking 649

performance and decrease the FES variance without increasing 650

the median control effort. 651

VIII. CONCLUSION 652

Adaptive ICL motor and FES controllers that use data-based 653

and opportunistic learning were developed for a hybrid 654

biceps curl exoskeleton. Global exponential trajectory track- 655

ing and parameter identification were guaranteed through 656

a Lyapunov-like switched systems stability analysis. FES 657

was allowed to switch between multiple electrodes on the 658

biceps brachii and the motor effectiveness was uncertain, 659

which required a unique set of parameters to be oppor- 660

tunistically learned for each subsystem. Experiments were 661

performed on twelve healthy participants to compare the 662

developed control system, a traditional adaptive controller, 663

and a robust controller, which resulted in average position 664

tracking errors of 0.28 ± 3.53 deg, 1.47 ± 5.78 deg, and 665
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3.36 ± 7.97 deg, respectively, across a 10 curl experiment.666

A clinically significant feature of ICL is that the uncertain667

human and testbed parameters can potentially be identified in668

real-time. Future research will focus on extending the results669

to multiple degree-of-freedom testbeds, including experiments670

on participants with neurological conditions, and validating671

the parameter estimation performance and investigating if672

parameters can be learned more efficiently or accurately673

through intelligent modifications to the desired trajectory.674

Furthermore, the results indicated that fatigue may effect the675

performance of the controller during the later biceps curls.676

Therefore, future efforts will seek to incorporate fatigue in the677

dynamic model and to develop a means to compensate for its678

effects.679
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