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Abstract—Hybrid exoskeletons, which combine func-
tional electrical stimulation (FES) with a motorized test-
bed, can potentially improve the rehabilitation of people
with movement disorders. However, hybrid exoskeletons
have inherently nonlinear and uncertain dynamics, includ-
ing combinations of discrete modes that switch between
different continuous dynamic subsystems, which compli-
cate closed-loop control. A particular complication is the
uncertain muscle control effectiveness associated with
FES. In this work, adaptive integral concurrentlearning (ICL)
motor and FES controllers are developed for a hybrid biceps
curl exoskeleton, which are designed to achieve opportunis-
tic and data-based learning of the uncertain human and
electromechanical testbed parameters. Global exponential
trajectory tracking and parameter estimation errors are
proven through a Lyapunov-based stability analysis. The
motor effectiveness is assumed to be unknown, and, to help
with fatigue reduction, FES is enabled to switch between
multiple electrodes on the biceps brachii, further complicat-
ing the analysis. A consequence of switching between the
different uncertain subsystems is that the parameters must
be opportunistically learned for each subsystem (i.e. each
electrode and the motor), while that subsystem is active.
Experiments were performed to validate the developed ICL
controllers on twelve healthy participants. The average
(+ standard deviation) position tracking errors across each
participant were 1.44 + 5.32 deg, —0.25 + 2.85 deg, and
—0.17 + 2.66 deg across biceps Curls 1-3, 4-7, and 8-10,
respectively, where the average across the entire experi-
ment was 0.28 + 3.53 deg.
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I. INTRODUCTION

POTENTIAL rehabilitative exercise for people with

upper limb movement disorders is functional electrical
stimulation (FES) induced biceps curls [1], [2], [3], [4].
However, closed-loop FES control of muscle effort is chal-
lenging since the muscle effectiveness is unknown, the muscle
dynamics are both nonlinear and uncertain, and high stimu-
lation inputs are often uncomfortable [5], [6]. Furthermore,
rehabilitative hybrid exoskeletons, which combine FES and
motor control, must alternate control between FES and a motor
without compromising performance.

Closed-loop FES control has previously been implemented
on a range of rehabilitative exercises, such as rowing [7],
cycling [8], [9], [10], [11], [12], walking [13], leg exten-
sions [14], [15], [16], [17], and biceps curls [1], [2], [3],
[4], among others. To compensate for system uncertainties,
and to ensure stability, many closed-loop FES controllers
have included only robust (i.e., high (infinite) frequency
and/or high-gain) feedback terms (cf. [1], [2], [3], [16],
[17]). An added motivation for such robust controllers is that
they often produce a negative definite derivative of a strict
Lyapunov function, which aids the stability analysis of a
switched system (i.e., a system with mixed continuous and
discrete dynamics, also called a hybrid system). However, the
high-gain/high-frequency nature of robust FES control tends
to increase the rate of fatigue and may also be uncomfortable
for the participant [8]. Motivated to reduce the high-gain/high-
frequency feedback terms, some results have augmented FES
controllers with adaptive feedforward terms (cf. [7], [8], [9],
[10], [111, [12], [13], [14], [15]) to ensure asymptotic trajec-
tory tracking. The adaptive controllers in [7], [8], [9], [10],
[11], and [14] implemented model-free techniques ranging
from repetitive (RLC) and iterative (ILC) learning control,
neural networks (NN), and fuzzy logic, whereas [12], [13],
[15], [18], [19] implemented model-based techniques.

Although adaptive controllers are often used to improve
control performance, sometimes it is desired for the adaptive
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controller to simultaneously ensure parameter/system identi-
fication. Traditional adaptive controllers (cf. [20], [21]) can
yield both exponential tracking and parameter identifica-
tion provided the persistence of excitation (PE) condition is
satisfied. However, the PE condition cannot be verified,
in general, for nonlinear systems, and if the PE condition
is unsatisfied there may be periods of oscillatory or unstable
behavior (i.e., the bursting phenomenon [22]). In an effort to
relax the PE condition and to enable online parameter/model
identification, methods such as initial excitation (IE) [23],
[24], concurrent learning (CL) [25], [26], [27], and integral
concurrent learning (ICL) [28], [29] were recently developed.
IE relaxes the PE condition by using low pass filters and a
switched parameter estimator; whereas, CL and ICL require a
more mild finite excitation (FE) condition. Both CL and ICL
update the parameter estimates online using prior input/output
data, which enables exponential tracking and parameter esti-
mation. Furthermore, ICL eliminates the possibility of bursting
errors and, unlike CL, does not require the highest order
derivative to be known [28].

To date, ICL was previously implemented on a FES system
in the authors’ preliminary work [19], which this work is
built upon, and in [18]; however, unlike in this work, [18]
assumes the muscle effectiveness is known. ICL is motivated
for a FES system since it may increase the FES controller’s
efficiency and potentially yield smaller FES inputs (e.g., the
high-gain/high-frequency robust terms can be reduced), which
ultimately may reduce fatigue and increase the participant’s
comfort [8]. Furthermore, ICL yields exponential tracking
and parameter identification, which allows for the human and
machine dynamics to be learned online.

Building upon our work in [19], adaptive ICL motor and
FES controllers were developed for an uncertain nonlin-
ear hybrid biceps curl exoskeleton. Additionally, a complete
switched systems Lyapunov-like stability analysis was per-
formed to ensure global exponentially decaying parameter
estimation and trajectory tracking errors. Similar to [19],
FES is applied during desired elbow flexion, and the motor
is applied during desired elbow extension. Unlike our work
in [19], this paper assumes the motor effectiveness is unknown,
allows for FES control to switch between multiple electrodes,
and provides comparative experiments on twelve healthy par-
ticipants to validate the control development. Allowing FES
to switch control between multiple electrodes on the biceps
brachii allows for fatigue to be further reduced [2]; however,
it also complicates the analysis and required the model, control
development, and stability analysis to be greatly modified
compared to our work in [19]. This work is differentiated from
prior ICL developments, such as those in [19], [28], and [18],
since this work involves switching between multiple control
inputs that each have an uncertain (and potentially different)
control effectiveness, which results in different uncertain para-
meters for each control subsystem. The solution is to perform
opportunistic learning by updating the parameters and record-
ing input/output data for each subsystem, while that subsystem
is active. After sufficient learning has occurred for a given
subsystem, its parameters are able to be updated regardless of
the currently active subsystem. Comparative experiments were
performed on twelve healthy participants using the developed

control system, a traditional adaptive controller, and a robust
controller resulting in average (£ standard deviation) position
tracking errors of 0.28 + 3.53 deg, 1.47 £+ 5.78 deg, and
3.36 & 7.97 deg, respectively, across a 10 curl experiment.
The results indicated improved tracking performance for the
ICL controller compared to some traditional adaptive and
robust controllers, while providing similar average FES and
motor control inputs. The results further demonstrated the
ability of the ICL controller to improve the tracking perfor-
mance as adaptation occurred. Efforts to perform preliminary
experiments on participants with neurological conditions were
stymied due to Covid-19.

[1. DYNAMICS

The dynamics of the uncertain nonlinear hybrid biceps curl
exoskeleton are modeled as! [2]

M(G)+G(q)+P(q,9)+ Ba(q) = (t) + 7 (1), (1)

where ¢ : Rsg - 9, ¢ : Rso > R, and ¢ : Ry9p - R
denote the measured angle, measured angular velocity, and
unmeasurable acceleration, respectively, of the forearm about
the elbow joint. The set Q@ C R denotes a compact set of
potential forearm angles. The inertial, gravitational, passive
viscoelastic tissue, and damping effects of the hybrid biceps
curl exoskeleton are denoted by M : R — R.g9, G: Q — R,
P: QxR — R, and B; : R — R, respectively, and are
defined as

M (§) £ J§, G(q)= mglcos(q—6o), 2)
P(q,q) £ ke (g —ke2) +bog, Ba(q) = bag, (3)

where J,m, g,1,b,,bg € R.o and k.1, kex € R are unknown
constants and 0y € R is a known constant.

In this paper, FES is applied via multiple electrodes that
are placed on the biceps brachii muscle using w € N distinct
channels of a stimulator, where m € M = {1,2, ..., w)
indicates the m'" electrode channel, and M is a finite set.
The torques produced about the elbow joint due to the motor
and FES-induced muscle contractions are denoted by ., tj :
Rx>0 — R, respectively, and defined as

Te (1) 2 bUe (1), T ()2 D balUn(), (4

meM

where b,, b;, € R denote the unknown and constant control
effectiveness terms for the motor and stimulation via the m'”
electrode over the biceps brachii muscle,? respectively. The
current input to the motor and the stimulation (i.e., pulse
width) input for each electrode are denoted by U, : R>g — R
and Uy, : R>o — R, Vmm € M, respectively, and defined as

U. (1) £ Keoe (Ga)ue (t), Up(t) £ Knom (q, 4a) um (1),
Q)

I For notational brevity, all explicit dependence on time, ¢, within the terms
q(t), q(t), and G(¢) is suppressed.

2Due to unknown effects associated with changing muscle geometry, the
control effectiveness of stimulation varies with the angle of the elbow.
However, if each electrode is placed properly then the biceps can be split into
distinct stimulation regions for each electrode, where the control effectiveness
is approximately constant over each electrode’s stimulation region [2], [4].
An open problem for future work that may yield improved performance is to
consider the position and velocity dependency of the muscles along with a
stability analysis that accounts for such effects.
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VYm € M, where u,,u, : R-o — R represent the subse-
quently designed motor and FES control inputs, respectively,
K., K, € R. represent selectable constants, and g4, G4, Ga :
R>0 — R represent the bounded desired position, velocity,
and acceleration, respectively. The motor switching signal,
oe : R — {0, 1}, and the FES switching signal for the m'"
electrode, o, : @ x R — {0, 1}, are respectively defined as

A 1, ga <0
217 , 6
9 (4d) [0, otherwise ©
. 1, gg>0and g € Oy
, 2 , YmeM, (7
om (@ Ga) [0, otherwise )

where Q,, € Q denotes the set of angles over which the
m' electrode channel is stimulated. In this paper, Q,, is
selected as in [4] and [2] such that O, segments Q and a

single electrode is active at a time, that is UM On = Q9
Vme
and N 9, = @. Furthermore, the switching signals in (6)

VmeM
and (’7n)eare designed to apply the motor and FES only during
desired elbow extension and flexion, respectively.?
Substituting (2), (4), and (5) into (1) yields*

Z buKmomum + beKeoou, = JCI +G+ P+ By, (8)
meM

which can be rewritten as

ZBiaiui = Jj+ G+ P + By, 9
ieS

where B; £ bjK;, andi € S &2 MU {e} ={1, 2, ..., w,¢e}
indicates the subsystem, which is either an electrode or the
motor. By design of the switching signals in (6) and (7),
whenever 6; = 1 forany i € S, g; = 0,Vj € S. The

1
switched hybrid biceps curl exoskeleton system in] (9) has the
subsequent properties [2].

Property 1: The inertial effects are bounded such that
¢j < J <cy, where c¢j, c; € R are known constants.

Property 2: The control effectiveness, b;, is bounded
Vi € S such that ¢; < B; < ¢;, where ¢;,¢; € Ry are
known constants.

Property 3: The switched system in (9) is linear in the
unknown constant parameters. For example, when the jth

subsystem is active (i.e., o = 1 and ¢; = 0,V i S) the
JF#i
following definition holds:

1 .
YlﬁiéE(Jq—i-G—i-P—i-Bd), (10)
1

where Y; € RI*P denotes a known regression matrix, 6; €
R” denotes the unknown constant parameters for the ;"
subsystem, and p denotes the number of uncertain parameters.

3FES-induced muscle activation can only produce a positive torque and
negative FES inputs are set to zero during implementation. Therefore, the
switching signals in (6) and (7) could result in uncontrolled regions; however,
this situation was not observed during the subsequent experimental analysis.
If desired, the switching signals in (6) and (7) could be modified to set o;;, =
0 if u;, <0 and to set o, = 1 if ), = 0,Vm € M.

4For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.

[1l. CONTROL DEVELOPMENT
A. Tracking Error Development

The objective of this paper is for the forearm to track
a desired position and velocity. The position tracking error,
e1 : R>o — R, is measurable and is defined as

Y

An auxiliary tracking error, €3 : R>9 — R, is measurable and
is defined as

A
€1 =dqd — 4.

er 2 é1 + aey, (12)

where a € R is a selectable constant. To obtain the open-
loop error system for the i’ subsystem (i.e., when ¢; = 1),
we take the derivative of (12), multiply both sides by J, and
use (9) to yield

Jér = Bi (Y20 —u;), 0i =1, (13)

forany i € S, where Y, € R!*P denotes a measurable matrix,
0; is defined in (10), and Y;,60; is defined as

1
Yze,-éE(Jéjd+G+P+Bd+aJé1). (14)
1

B. Parameter Identification Development

The parameter identification error vector for the i’ subsys-
tem, §; € R”, is defined Vi € S as

0: £ 6, — 0;, (15)

where §; € R” denotes the parameter estimates for the i'”
subsystem. Based on the subsequent stability analysis, an
update law for the i’” subsystem’s parameter estimates is
designed Vi € S as

] LiYley+yiliSi, oi=1
0; =10,
7iliS;,

o; = 0 and gi| = 0 5 (16)

oj =0 and Ojl = 1

where I'; € RP*P is a user-selectable diagonal and positive
definite matrix, y; € R.q is a selectable constant, and S;
contains a history stack of previous ICL terms, and is defined
Vi €S as

N;
S & VT (thy = 2i61) (17)
j=1

where N; € N denotes the size of the history stack for the
i"" subsystem. The switching signal, oil : Rxo — {0, 1},
is designed to indicate when sufficient learning has been
achieved for the ™" subsystem, and is defined Vi € S as

U domin {0 VEVij = A
0 Amin Z;V;lyiji,j </1i’

where A; € R.g,Vi € S are selectable constants, and
the minimum or maximum eigenvalue of {-} is indicated by

iy (1) = (18)
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Amin {-} or Amax {-}, respectively. To implement the ICL portion
of the update laws, the following ICL terms are defined

01><p oj =0

Vi (t) £ 1 01xp t—th,,€10,80], (19
| [ Y1 de =1k, > At
0 o] = 0

Ui (t) £ 10 t—ti,, €10,A1], (20)
Lftim oiu; (k)dr t— t,’;’on > At

Vi € S, where At € R. is a user-selectable constant that sets
the size of the integration window, and 01, denotes a 1 x p
matrix of zeros. For the i’" subsystem, let the n'" time instant
when o; becomes nonzero be denoted by t};,on, and let the
n'" time when o; becomes zero be denoted by tril’ of where
i eS8, ne{l,2,...}. Notice from the definitions in (17), (19),
and (20) that the history stacks of S; contain previous input
and output data. To select meaningful data for the history stack
(i.e., not zeros), define V; ; £ Vi (t;,;) and Uj,j = U; (t;,;) for
the i'h subsystem, where t; ; < ¢ is selected such that 1; ; €

thon + At,t,"l,off), Vn € {1,2,...}. For the i’" subsystem
(i.e., o; = 1), it can be shown that

Vi,j0i =Uj, Vi€ (tli,on + At, tli,off) , Vi, (21)

by substituting (10) into (9), integrating both sides, and
then using the definitions in (19) and (20). Now a
non-implementable form of S; can be obtained, to facilitate
the subsequent stability analysis, by substituting (21) into (17)
and using (15) to yield

Ni
Si= > YLY.,6:. (22)
j=1
Notice that the acceleration measurements are included
in (10). However, an advantage of ICL compared to CL is
that the ICL terms (19)-(20) are designed in such a way
that acceleration is not required. The term ftt_ a1 () dr

from (19) is obtained for the i’” subsystem by integrating
both sides of (10) to yield

t t
/ Y1 (k) O;dx £ Y30; + / Yy () O;dr, (23)
t—At t—At

Vi € (t,ijon + At, t,’;,off), Vn, where
A Jo. .
Y30i = 2 (q (1) — ¢ (t — &), (24)
1
1
Y46 = 5 (G+P+Ba). (25)
1

Thus, (19) can be calculated without measuring the accelera-
tion due to the design of (24), and (25).

C. Closed-Loop Error System
Based on the subsequent stability analysis, an adaptive
controller is designed for each subsystem as

uj = Ya0; + kies, (26)

Vi € §, where k; € R.g, Vi € S are selectable constants. The
closed-loop error system for the i’ subsystem is obtained by
substituting (26) into (13) to yield

Jér = B; (Yzéi — kiez) , 00 =1, 27

forany i € S.

IV. STABILITY ANALYSIS

A special characteristic of the update laws for the parameter
estimates of each subsystem, as defined in (16), is that the
typical PE criteria can be relaxed to yield a FE criteria
for parameter estimation convergence, which is stated in
Assumption 1.

Assumption 1: Sufficient excitation for the i'" subsystem
occurs over a finite duration of time. Thus, AT; € R~.o,Vi € S
such that Nt > T learning is complete for the i'" subsystem
(ie, o;; = 1), or in other words the following FE condition
is satisfied: Amin {Zj.vglyiiji,,-} > A;, ¥Vt > T;. Learning
across all subsystems is considered complete for ¥t > T,
where T € Rog 2 max{T; | i € S}.7
To facilitate the subsequent analysis, we define a common
Lyapunov function candidate, V : RZ+Pw+D _, R, that is
both continuously differentiable and positive define as

1 1 | P
VA Ee% + EJe% +> EBie,.Tr,. 16;. (28)
ieS
Notice that (28) can be bounded as
Allzl? <V <2z, (29)
where A, 2 € R.g are known constants defined as
1
A= Emin {l,cj,gl-/lm,-n {Fi_l} lie S} ,
|
7a Emax{l,c/,éilmax [rit}riest,
and z € RZP(+D) g defined as
= Y
22 [erea 0T 6T .. 0T 0T ] . (30)
Theorem 1: For the dynamic system in (9) with

Properties 1-3, the controllers defined in (26) and the
adaptive update laws defined in (16) ensure global bounded
parameter estimation and trajectory tracking errors for
t € [0,T), provided the following sufficient conditions are
met®

I L
2 e

1

a > VieS. 3D

Proof: Since the update laws in (16) and the closed-
loop error system in (27) are discontinuous, the solution to

the time derivative of (28) exists almost everywhere (a.e.)
within ¢ € [y, 00). There exists a generalized time derivative

SThe FE condition requires the system to be sufficiently excited, and unlike
the PE condition, can be verified online during run-time execution. Increasing
the number of data points in the history stack helps to satisfy the FE condition.

OThe results in Theorem 1 hold even if Assumption 1 is never satisfied;
however, in this case 7 = oo. When Assumption 1 is satisfied, the
subsequently developed Theorem 2 can be used to prove additional results.
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of V, denoted by XL/, where V (2) e \L/(z). Let z (¢) for
t € [tg, 00) be a Filippov solution to the differential inclusion
z € K|[h] (z) where K[] is defined as in [30], and h £

é1 én 91 (92 9 9 ] [31]. Taking the time derivative of
28) and substltuting in (12) yields

V Cei(er—ae)) +exK [Jér]

-> ol 'k 4], (32)
ieS
. Consider the case when o; = 1 for some i € S such that

9,-, Vi € § and Jé, are continuous according to (16) and (27).
Substituting (16) and (22) for the jth subsystem into (32),
substituting (27) into (32), using the fact that V (z) TV (),
and canceling common terms yields

a.c.

14

—ae? — Bikie3 — 7 B;6T ny]yl j
j=1
— Z BOI T O + ere, (33)
keS
ki

for the case when o; = 1. When o; = 1, (16) and (22) can
be used to determine that for a given k k7€é S, 9k = 0 (when
1

ok = 0) or O = Tk Z?’i] y,zjyk,jék (when or; = 1).
Since time is restricted to the time interval ¢t € [0, T'), it is clear
that learning is not yet complete for every subsystem according
to Assumptlon 1. Therefore, it can conservatively be assumed
that Z y, j>Yi € S is only positive semi-definite
throughout the interval ¢+ € [0,T), and (33) can be upper
bounded by using Young’s Inequality and using Property 2 to

yield
. ae. 1 1
Vv age — (a — 5) e% — (k,-gi — 5) e%,

Vi e [r,; s r,;joff) N[0, T), Va.
An overall upper bound for (34) can be determined across
all subsystems as

(34)

- peé, (35)
Vvt € [0, T), where # = min {kic; — 5 | i € S}.

By inspection of (28) and (35) it can be seen that V > 0 and
vV <0,V € [0, T). Thus, from (28) it can be shown that
e1,e2,0; € Lo, Vi € S and from (15) it is clear that 9; €
Lso,, Vi € S. From (11), (12), and (14) it can be determined
that ¢1,q,q, Y» € L. Since Ya,0;,es € Lo it can be seen
that u; € L, Vi € S. By using (29) it can proven that

lz(D)ll < \/gllz(())ll :
u

Theorem 2: For the dynamic system in (9) with Properties
1-3, provided that Assumption 1 holds, the controllers defined
in (26) and the adaptive update laws defined in (16) ensure

(36)

global exponential parameter estimation and trajectory track-
ing errors for t € [0, 00) in the sense that

Iz < ﬁ exp (%T) 120) ] exp (_%;) ,

where

(37

1
—, c.kij —
2

1
5éminIa— c; §,k3ie,yiiigi | i 63], (38)
provided the conditions in (31) are satisfied.

Proof: First, consider the time interval ¢ € [T, 00). Notice
that Apin {zj.v;l yl.’ij,-,j} > Ji,Vi €S (ie. o1y = 1,Vi €
S) by Assumption 1, and hence, Zjv'zl yi’ij,-,j,Vi e Sis
positive definite over the time interval ¢t € [T, oo). For the
case when o; = 1, for some i € S, (33) can be rewritten by
using (16) and the fact that g;; = 1,Vi € S as

Bktez Zthe zlejyl] is

ieS j=1

y i elez —ael

(39)

which can be upper bounded by using Young’s Inequality,
Assumption 1, and Property 2 to yield

— > yidic;07 6, (40)
ieS
vVt € t,’Z ons by off) N [T, c0), Vn. Using (29) and (38), where

o0 represents the most conservative decay rate for every sub-
system (i.e., every i € S), an overall upper bound for (40) can
be obtained as

.ae. O
V< -—=V,
A

(41)
Vt € [T, 00), which verifies that (28) is a common Lyapunov
function. The differential inequality in (41) can be solved and
used with (29) to yield

Iz I < \/%HZ(T)II exp (—% (t— T)) Vi €[T,00).

(42)

An exponential bound can be obtained for all ¢ € [0, c0) by
substituting (36) into (42) to yield the result in (37). From (30)
and (42) it can be seen that ej, e2,0; € Lo, Vi € S, and a
similar development from Theorem 1 can be used to show that
uj € Loo, Vi € S and the remaining signals are bounded. W

V. EXPERIMENTS

The adaptive update law in (16) contains both ICL terms
(y;T;S;) and more traditional adaptive terms (1",-Y2T e>). Note
that the ICL terms could be removed by setting y; = 0, Vi and
all adaptive terms could be removed by setting I'; as a matrix
of zeros Vi. Hereafter, the developed control system in this
work (i.e., (16) and (26)) is referred to as Controller A, the
developed adaptive controller without ICL terms (y; = 0, Vi)
is referred to as Controller B (i.e., a traditional adaptive
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Fig. 1. The testbed consists of A) a stimulator, B) electrodes placed
over the biceps, C) a torque sensor (not used), D) a gear motor, E) an
encoder. The six electrode positions, labeled 1 through 6, are defined
according to the above labeled percentages between the elbow crease
and acromion. The depicted angle 670, denotes the elbow angle, g.
Note, the testbed has mechanical stops to prevent elbow hyperextension
or hyperflexion. Figure is replicated from [4].

controller, cf. [20], [21]), and the developed controller with
no adaptive terms (I'; as a matrix of zeros Vi) is referred
to as Controller C (i.e., a robust controller). For all three
controllers, é(to) = [0,0,0,0,0]7. Comparative experiments
using Controllers A, B, and C were performed to determine the
effect of each of the adaptive terms on the system performance.

A. Experimental Testbed and Setup

The custom arm curl testbed detailed in [4] and [2] and
depicted in Fig. 1 was used as the experimental testbed.
The optical digital encoder, 27 Watt, parallel-shaft, brushed
gear-motor, and Hasomed Rehastim stimulator were inter-
faced in real-time at 1000 Hz using a desktop computer,
MATLAB/Simulink, and a Quanser Q-PIDe DAQ board. The
stimulator was used to input rectangular, symmetric, and
biphasic pulses to the biceps at a fixed amplitude and fre-
quency of 30 mA and 35 Hz, respectively, whereas the pulse
width (PW) was set by the FES controller [3].

Prior to an experiment, the participant was seated in front
of the testbed, their upper arm placed upon a stationary plate,
and their forearm attached to a rotating plate as depicted in
Fig. 1. Three electrodes (0.6” x 2.75”), labeled Electrodes 1,
2, and 3, were then respectively placed on the biceps brachii
at positions 2, 4, and 5 according to Fig. 1, and a 3” times
5” electrode was placed on the shoulder to act as a reference
for the smaller electrodes. The stimulation regions for Elec-
trodes 1, 2, and 3 were defined (in deg) as Q1 € [20,45),
Q> € (45,70), O3 € (70, 100]. These regions were sufficient
to approximate the muscle control effectiveness as a constant,
but additional regions or modeling parameter variation in the
control effectiveness of the muscle, could yield improved

results.” Prior to performing any experiment, saturation limits
were obtained for each electrode to ensure comfort for the
participant.

B. Experimental Protocol

Experiments were performed on six male and six female
participants, aged 20-49 years old. Each participant provided
written informed consent as approved by the University of
Florida Institutional Review Board (IRB201701089).

During each experiment, the arm was initially fully extended
(i.e., g(tp) = 0 deg) and the desired angular position was
defined as

qa(t) = [

B

t t<5
—i—g—g(l—cos(%)) r>5"

The motor was used during the first 5 s to move forearm
to 25 deg, after which the next 125.6 s consisted of either
Controller A, B, or C being implemented to perform a total
of 10 arm curls between 25 deg and 95 deg.

Experiments were performed using each participant’s dom-
inant arm, and Controllers A, B, and C were implemented in
a random order. Participants were blind to the tracking per-
formance during each experiment, and were asked to remain
passive and provide no volitional effort. For each participant,
a single experiment was performed using each controller.

As stated in Section III.B, data was recorded during the
experiments to calculate (19) and (20) for each subsystem.
Furthermore, to facilitate implementation a counter was devel-
oped and initialized at zero for each subsystem. For the i’"
subsystem, whenever both (19) and (20) were non-zero, the
counter for the i subsystem was increased by one and then
the recorded values for (19) and (20) were included in the i'”
subsystem’s history stack in (17), until the history stack was
full (i.e., the counter was at N;). At this point, the counter
was reset to zero. Subsequently, whenever both (19) and (20)
were non-zero, they were added to the history stack if they
increased the eigenvalue of the subsystem, otherwise the data
was discarded. During the experiments, the following history
stack parameters were implemented: 2; = 5 x 107%,Vi € S,
N; =1000,Vi € S, and Ar =0.155.

(o)

3
5

gs

VI. RESULTS

Descriptive statistics of the position tracking error, motor
effort, and FES effort are included in Table I. To demonstrate
the effect of adaptation and to compare each controller, the
results in Table I are averaged across each participant for Curls
1-3, 4-7, 8-10, and 1-10 (i.e., the overall results). Across each
participant, the average (4 standard deviation) position track-
ing errors were 1.44 £ 5.32 deg, 2.84 &+ 7.40 deg, and 3.79 &+
8.14 deg across Curls 1-3 for Controllers A, B, and C,
respectively, —0.25 + 2.85 deg, 0.94 £ 5.31 deg, and
3.08 £ 7.85 deg across Curls 4-7 for Controllers A, B,
and C, respectively, —0.17 £ 2.66 deg, 0.81 + 4.78 deg, and

TFrom [2, Fig. 1], the torque produced from the electrodes at positions 2,
4, and 5 is approximately constant over the angle ranges (in deg) of 10 to 45,
45 to 70, and 70 to 100, respectively.
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TABLE |
AVERAGE RESULTS FOR EACH CONTROLLER
ACROSS EACH PARTICIPANT

Control | Curls RMS Error | Peak Error Motor FES

e1 (deg)* | e (deg)t | Effort (A)F | Effort (us)!!

1-3 5.64 17.34 1414052 | 39.8+17.6

A 4-7 3.00 10.27 1.4340.50 | 39.5+14.7
8-10 2.83 10.23 1.4240.55 | 41.7+12.7

1-10 3.74 17.98 1.42+0.52 | 40.24+15.0

1-3 8.30 23.53 1.4140.56 | 42.8+20.0

B 4-7 5.89 15.66 1.4140.53 | 40.9+19.2
8-10 5.50 14.53 1.4040.54 | 43.1+19.1

1-10 6.49 24.56 1.41+0.54 | 42.1+19.4

1-3 9.22 23.26 1.4240.59 | 43.7420.1

c 4-7 9.11 2241 1.4440.56 | 40.8+19.2
8-10 9.51 2436 1.4340.56 | 42.1+20.3

1-10 9.26 27.36 1.43+0.57 | 42.0+19.8

* The root mean square (RMS) position error.

TThe maximum absolute value of the position error.

¥The average + standard deviation (SD) of |U.| whenever U, is nonzero,
where U, denotes the current input to the motor.

lIThe average + SD of > mem |Um| whenever FES is applied, where Uy,
is the FES input into the m** electrode.

3.32 £ 7.96 deg across Curls 8-10 for Controllers A, B, and C,
respectively, and 0.28 £ 3.53 deg, 1.47 £ 5.78 deg, and 3.36 &
7.97 deg across Curls 1-10 for Controllers A, B, and C,
respectively. Typical position tracking, control input, and
parameter estimate results for each controller are included in
Figs. 2, 3, and 4, respectively, for a single participant. Note,
the parameter estimates in Fig. 4 include the estimates for
Electrodes 1-3 as a demonstration of typical estimation results
for each subsystem. Furthermore, Controller C had no adap-
tation and was consequently not included in Fig. 4.

A. Statistical Analysis

Two sets of statistical tests were performed to investigate
the effect of each controller and the effect of adaptation on
the six measurements in Table I: the RMS position error,
peak position error, and the mean and standard deviation (SD)
of the motor effort and FES effort. In the first set of tests,
Friedman tests were conducted to determine if the controller
affected a given measurement across the entire experiment
(i.e., Curls 1-10) and determined that the choice of controller
had a significant effect on the median RMS position error
(P-Value < 0.001), peak position error (P-Value = 0.014), and
SD of the FES control effort (P-Value = 0.006). Due to the
paired nature of the data (i.e., each controller was implemented
on each participant), a series of two-sided paired Wilcoxon
signed-rank tests with Bonferroni corrections on the P-Values
were performed on the significant measurements from the
Friedman tests and it was concluded that the median peak
position error (P-Value = 0.505) and the median SD of the
FES effort (P-Value = 1.0) were not significantly different
for Controller B, compared to Controller C. Subsequently,
one-sided paired Wilcoxon signed-rank tests with Bonferroni
corrections were performed to conclude that Controller A,
compared to Controller B, reduced the median RMS posi-
tion error (P-Value = 0.001), median peak position error

(P-Value = 0.024), and median SD of the FES effort
(P-Value = 0.002); Controller A, compared to Controller C,
reduced the median RMS position error (P-Value = 0.001),
median peak position error (P-Value = 0.024), and median
SD of the FES effort (P-Value = 0.018); and Controller B,
compared to Controller C, reduced the median RMS position
error (P-Value = 0.013).

In the second set of tests, Friedman tests were con-
ducted to determine, for each controller, if the curl groups
(i.e., Curls 1-3, 4-7, and 8-10) affected each measure-
ment and determined that the curl group had a sig-
nificant effect on the median RMS position errors for
Controllers A (P-Value < 0.001) and B (P-Value =
0.001), the median peak position errors for Controllers A
(P-Value = 0.006) and B (P-Value = 0.039), and the median
SD of the FES effort for Controller A (P-Value < 0.001).
Two-sided paired Wilcoxon signed-rank tests with Bonferroni
corrections were performed on the significant measurements
from the second set of Friedman tests and it was concluded that
there was no significant difference between Curl group 4-7,
compared to Curl group 8-10, for the median RMS position
error for Controllers A (P-Value = 0.904) and B (P-Value =
0.454), the median peak position error for Controllers A
(P-Value = 1.0) and B (P-Value = 1.0), and the SD of the FES
effort for Controller A (P-Value = 0.330). Likewise, one-sided
paired Wilcoxon signed-rank tests with Bonferroni corrections
were performed to conclude that Curl group 4-7, compared to
Curl group 1-3, reduced the median RMS position error for
Controllers A (P-Value = 0.001) and B (P-Value = 0.002),
reduced the median peak position error for Controllers A
(P-Value = 0.014) and B (P-Value = 0.018), and reduced
the SD of the FES effort for Controller A (P-Value =
0.001); and Curl group 8-10, compared to Curl group 1-3,
reduced the median RMS position error for Controllers A
(P-Value = 0.001) and B (P-Value = 0.005), reduced the
median peak position error for Controllers A (P-Value =
0.004) and B (P-Value = 0.014), and reduced the SD of the
FES effort for Controller A (P-Value = 0.001).

VIl. DISCUSSION

Using the data in Table I for Curls 1-10, Controller A,
compared to Controller B (Controller C), decreased® the RMS
position error by 42.4% (59.6%), the peak position error by
26.8% (34.3%), the mean motor effort by -1.3% (0.5%), the
SD of the motor effort by 4.2% (8.6%), the mean FES effort by
4.5% (4.3%), and the SD of the FES effort by 22.8% (24.2%).
These results can be visually observed in Figs. 2 and 3 for
a single participant. Furthermore, the statistical analysis con-
firmed that Controller A reduced the median position tracking
error and the median SD of the FES effort relative to Con-
trollers B and C and that Controller B improved the position
tracking performance relative to Controller C. Therefore, it is
clear that the adaptive controllers (Controllers A and B)
outperformed a robust controller (Controller C) in position
tracking; however, the addition of adaptive ICL terms (Con-
troller A) further improved the position tracking performance

Initial Value— Final Value (i.e., A value) % 100

8 _
Percent Decrease = ~——rrValue (i, B or C Value)
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Fig. 3. The FES pulse width (PW) input applied to each electrode and t
(right) for a single participant. A 0.5 s moving average filter was applied

relative to a traditional adaptive controller (Controller B).
Furthermore, Controller A produced a significantly less vari-
able FES control effort relative to both Controllers B and C,
which may lead to a more comfortable experience for the
participant. It should be noted that experiments were unable
to be performed on participants with movement disorders
due to Covid-19; however, the authors’ have observed similar
trends for participants with and without neurological con-
ditions previously, although the tracking errors and control
inputs tend to be larger for the former group [32], [33], [34].
Therefore, it is expected that Controller A would outperform
Controllers B and C for participants with neurological con-
ditions. Furthermore, the system identification performance is
unable to be evaluated because the actual system parameters
are unknown. However, visual inspection of Fig. 4 indicates

he motor input for Controller A (left), Controller B (middle), and Controller C
to the motor input for visual clarity.

that different parameters were learned for Electrodes 1-3,
which was expected due to each electrode likely having a
different control effectiveness.

The effect of adaptation on position tracking can be investi-
gated by comparing the results for each curl group in Table I.
In fact, from Curls 1-3 to Curls 4-7, the RMS position error
decreased by 46.8%, 29.0%, and 1.2% for Controllers A, B,
and C, respectively, and the peak position error decreased by
40.8%, 33.4%, and 3.6% for Controllers A, B, and C, respec-
tively. In fact, the statistical analysis confirmed that the median
RMS and peak position errors decreased from Curls 1-3 to
4-7 and from Curls 1-3 to 8-10 for both Controllers A and
B. Furthermore, from inspection of Table I the RMS and
peak position errors changed minimally (|percent change| <
10%) from Curls 4-7 to 8-10 for each controller, which was
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Fig. 4. The parameter estimates for Electrodes 1-3 for Controller A (left) and Controller B (right) for a single participant..

confirmed by the statistical analysis. Overall, the tracking
performance was similar across curl groups for Controller
C, which was expected since Controller C implemented a
robust control law. However, both Controllers A and B
implemented adaptive control terms, which resulted in the
tracking performance improving from Curls 1-3 to Curls 4-7,
as confirmed by the statistical analysis for Controllers A
and B. Interestingly, there were minimal improvements from
Curls 4-7 to Curls 8-10 for controllers A and B, which can
be partly explained by inspection of Fig. 2. In Fig. 2, the
position tracking tended to improve with each curl until Curl
8 for Controller A and Curl 9 for Controller B, at which point
the performance slightly worsened and then began to improve
again. In this work, the control effectiveness was assumed to
be constant, but it is possible that fatigue caused the control
effectiveness to decrease during the later curls, which required
the parameter estimates to adjust accordingly as depicted in
Fig. 4.

The effect of adaptation on the control inputs can likewise
be investigated by comparing the results for each curl group
in Table I. Overall, the motor effort had minimal changes
across each curl group for each controller, which is confirmed
visually in Fig. 3 and by the statistical analysis. Furthermore,
as confirmed by the statistical analysis, the FES mean had
negligible changes across each curl group for each controller
and the SD of the FES effort had negligible changes across
each curl group for Controllers B and C. However, for

Controller A, the SD of the FES effort decreased by 16.2%
from Curls 1-3 to 4-7 and by 13.5% from Curls 4-7 to
Curls 8-10, and the statistical analysis confirmed that the FES
variance significantly decreased from Curls 1-3 to Curls 4-7
and from Curls 1-3 to Curls 8-10. Another important obser-
vation is that the position tracking improved significantly
between Curls 1-3 and Curls 4-7 for Controller A, but the FES
variation decreased and the median motor and FES efforts had
negligible changes from Curls 1-3 and Curls 4-7. Therefore,
the ICL-based adaptation was able to improve the tracking
performance and decrease the FES variance without increasing
the median control effort.

VIIl. CONCLUSION

Adaptive ICL motor and FES controllers that use data-based
and opportunistic learning were developed for a hybrid
biceps curl exoskeleton. Global exponential trajectory track-
ing and parameter identification were guaranteed through
a Lyapunov-like switched systems stability analysis. FES
was allowed to switch between multiple electrodes on the
biceps brachii and the motor effectiveness was uncertain,
which required a unique set of parameters to be oppor-
tunistically learned for each subsystem. Experiments were
performed on twelve healthy participants to compare the
developed control system, a traditional adaptive controller,
and a robust controller, which resulted in average position
tracking errors of 0.28 + 3.53 deg, 1.47 £+ 5.78 deg, and
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3.36 £ 7.97 deg, respectively, across a 10 curl experiment.
A clinically significant feature of ICL is that the uncertain
human and testbed parameters can potentially be identified in
real-time. Future research will focus on extending the results
to multiple degree-of-freedom testbeds, including experiments
on participants with neurological conditions, and validating
the parameter estimation performance and investigating if
parameters can be learned more efficiently or accurately
through intelligent modifications to the desired trajectory.
Furthermore, the results indicated that fatigue may effect the
performance of the controller during the later biceps curls.
Therefore, future efforts will seek to incorporate fatigue in the
dynamic model and to develop a means to compensate for its
effects.
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