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Fault Detection for Robot Manipulators with
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Abstract—In this paper, we introduce a new approach to fault
detection for robot manipulators. The technique, which is based on
the isolation of fault signatures via filtered torque prediction error
estimates, does not require measurements or estimates of manip-
ulator acceleration as is the case with some previously suggested
methods. The method is formally demonstrated to be robust under
uncertainty in the robot parameters. Furthermore, an adaptive
version of the algorithm is introduced, and shown to both improve
coverage and significantly reduce detection times. The effectiveness
of the approach is demonstrated by experiments with a two-joint
manipulator system.

Index Terms—Fault detection, nonlinear dynamics, prediction
error, robot manipulator.

I. INTRODUCTION

I N THE past few years, as the application of robots has ex-
panded, there has been significant activity in the area of

robot reliability and fault tolerance [19]. Fault tolerance is espe-
cially important in remote and hazardous environments, such as
found in space, underwater, and radioactive applications (where
repair is often infeasible, and failure can have disastrous conse-
quences), although reliability and safety are important issues in
almost all applications.

Various approaches to tolerating failures in robot manipula-
tors have been proposed recently. Most have centered on the
addition of some form of redundancy, for example, in actuation
[15], [23], joints [7], [10], [13], [16], sensors [20], [25], or soft-
ware [22], to provide “backup” beyond the core requirements of
the system. Given the detection of a fault, the system degrades
gracefully by using the “backup” components. For example, if
a manipulator is kinematically redundant, its end-effector task
can often still be carried out by the surviving joints following
a joint failure [5], [13]. Similarly, redundant sensing allows a
system to switch to “healthy” sensors following a sensor failure
[14].
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However, such redundancy can only be exploited if fault de-
tection is effective, enabling the system to reconfigure and use
“healthy” components. Robot fault detection has therefore be-
come an issue of significant interest recently, with several new
approaches suggested for mobile robot fault detection [11], [14]
(see below).

In [25], the use of redundant sensors on each joint of
the Space Shuttle Remote Manipulator System (RMS) was
described. Faults were inferred if the sensors disagreed signif-
icantly with the prescribed trajectory or each other. A simple
thresholding scheme was used to infer when a fault has occurred
(i.e., when disagreement was “significant”). However, selection
of numerical values for the thresholds proved difficult, and
inappropriate choices led to false alarms during missions [25].

The problems described in [25] illustrate the key difficulty
endemic to manipulator fault detection. The normal (fault-free)
dynamics of the robot lead to inevitable deviations from the
nominal trajectory in fault-free operation, and the magnitude of
these deviations cannot be predicted (and therefore can appear
to be a fault unless properly masked by the thresholds), when
the dynamics are not explicitly considered in the analysis, as
was the case in [25]. Clearly, fault detection will be most effec-
tive when good dynamic models for the manipulator are consid-
ered in the fault detection tests (residuals) or the threshold selec-
tion, or both. In [13], a robust tracking controller/fault detection
scheme was proposed that utilized the full dynamic model of
the robot manipulator; unfortunately, the fault detection resid-
uals are based on conservative thresholds, that are obtained by
taking the norm of user defined upper bounds for the position
and velocity tracking errors.

A dynamics-based approach was adopted in [6], where faults
were inferred for a standard industrial robot by monitoring
sudden changes in a vector of on-line parameter estimates for
the robot. The method was shown to be effective for certain
types of faults. However the underlying dynamic model was
highly simplified (constant inertias and coupling between
joints was neglected), which implies again the need for either
conservative thresholds, or probable false alarms.

A more rigorous approach to the synthesis of fault detection
residuals was presented in [20], in which the theoretical max-
imum number of independent residuals were derived for a ma-
nipulator with redundant sensing, based on linearized dynamics
for the robot. Dynamic thresholds were developed based on full
(nonlinear) manipulator dynamics. The results were promising,
however the thresholds required the measurement or estimation

1042–296X/00$10.00 © 2000 IEEE



690 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 6, DECEMBER 2000

of manipulator acceleration which is problematic at best in prac-
tice. That is, for most practical applications the manipulator ac-
celeration is not directly measured, rather it is numerically cal-
culated from position or velocity signals, and hence, the signal
is inherently noisy.

Other approaches to manipulator fault detection have in-
cluded the development of observers [1], [11], [24] for residual
generation. However, the generation of appropriate thresholds
for the observer-based residuals (an issue not discussed in
[24]) remains an issue—for example, in [1], the estimation or
measurement of joint accelerations is still required in order to
mask the effects of disturbances due to parametric errors in the
dynamics. In [12], a fuzzy logic approach is used to allow for
such disturbances, however the approach remains somewhat
heuristic. A neural network approach to manipulator fault de-
tection was adopted in [2] and [17]; however, the fault detection
algorithms are based on a user defined bound on the modeling
uncertainty. We also note that other on-line estimation fault
detection approaches are proposed in [18], [21], and [26].

In this paper, we build on the initial research presented in [4]
to further develop a new method for robot manipulator fault de-
tection. The approach is based on the generation of residuals and
exploits the structure of the full nonlinear manipulator dynamics
through a filtered torque estimate that does not rely upon the
measurement of acceleration quantities. Furthermore, the struc-
ture of the algorithm lends itself to adaptive and robust versions
to take into account the inevitable uncertainty in the robot pa-
rameters. New thresholds for the residuals for all the above cases
are developed, and the effectiveness of the approach is demon-
strated through experiments with a two joint robot system.

II. DYNAMIC MODEL

The mathematical model for an -degree-of-freedom (DOF)
robotic manipulator is assumed to have the following form:

(1)

where , , denote the link position, velocity,
and acceleration, respectively, represents the
positive-definite, symmetric inertia matrix, rep-
resents centripetal-Coriolis, gravitational, and friction effects,

represents a fault in the robot manipulator,
represents a unit step function, represents the time instant

at which a fault occurs, and represents the torque
input vector. In order to further model the class of faults consid-
ered in this paper, we can isolate by rewriting (1) as follows:

(2)

Hence, a locked-joint fault is characterized by (2) and a free-
swinging actuator fault (i.e., ), a ramp
actuator fault (i.e., ), and a sat-
urated actuator fault (i.e., ) are
characterized as

(3)

respectively, where is the applied torque at joint ,
is a positive scaling term, and represents a vector of
maximum torques that can be applied by the actuators.

The dynamic equation given in (1), exhibits the following
property [8] which is utilized in conjunction with the following
assumptions in the subsequent fault detection algorithm devel-
opment.

Property 1: The robot dynamics given in (1) can be linearly
parameterized as follows:

(4)

where denotes a known regression matrix
that is a function of , , , and contains
the unknown constant system parameters.

Assumption 1: Each of the constant system parameters de-
fined in (4) can be lower and upper bounded as indicated by the
following inequalities

(5)

where denotes the th component of the vector , and ,
denote vectors of known, constant bounds for the unknown

parameters.
Assumption 2: A control is designed which ensures that in

the absence of a fault (i.e., , ,
and that where represents the
desired trajectory. Note that based on the form of the dynamic
model given in (1), if , , , it is clear that

.
Remark 1: One method for detecting actuator faults could be

to utilize (1) and (4) to isolate the fault as shown below

(6)

Unfortunately, due to the fact that (6) would require exact model
knowledge of the system and acceleration measurements, it is
clear that (6) is impractical for fault detection purposes; hence,
we are motivated to craft a fault detection algorithm that is inde-
pendent of link acceleration measurements and exact knowledge
of the system parameters.

III. TORQUE FILTERING

Motivated by the desire to eliminate link acceleration mea-
surements from the subsequent fault detection algorithm, we de-
fine a filtered torque signal denoted by as follows
[8]:

(7)

where denotes the standard convolution operation, was
defined in (1), the filter function, denoted by , is given
by

(8)

and , denote positive filter constants. By substituting
the left-hand side of (1) into (7) for and utilizing standard
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convolution properties (see Appendix A), we can rewrite (7) in
terms of the following linear parameterization:

(9)

where denotes the same unknown, constant parameter vector
defined in (4), denotes the measurable, fil-
tered regression matrix which is independent of link accelera-
tion measurements and is explicitly given by

(10)

and denotes a filtered fault signal defined as follows:

(11)

The structure of (9) will be exploited in the subsequent analysis;
however, since is a vector of uncertain parameters, the struc-
ture of (9) cannot be implemented. An implementable form (i.e.,
a measurable, acceleration independent form) of (9) can be de-
termined by utilizing (7) and (8) along with Laplace transform
properties to generate the filtered torque signal via the following
differential equality:

(12)

where , were defined in (8).
Remark 2: Due to the structure of the above torque filtering

technique, the filtered version of the fault is delayed from the
actual fault; although, if is made increasingly large, the delay
is minimized. Based on (9), it also is clear that the fault can be
isolated in terms of an expression that is independent of link ac-
celeration measurements. Thus, we are now motivated to design
an algorithm based on (9) that can detect actuator faults in the
presence of parametric uncertainty.

IV. PREDICTION-ERROR-BASED FAULT DETECTION

The objective of this paper is to design an algorithm that can
detect actuator faults in -DOF robotic manipulators despite un-
certainty in the mechanical parameters. To this end, we define
a measurable prediction error signal, denoted by , as
follows:

(13)

where was defined in (12), and is a subsequently
designed filtered torque estimate. This is similar to one of the
fault detection tests proposed in [20]; however, in [20] acceler-
ation estimates were required for implementation.

A. Constant Best-Guess Estimate1

Due to the presence of parametric uncertainty in (1), the fil-
tered torque estimate given in (13) is designed as follows:

(14)

where is a constant, best-guess parameter estimate for
defined in (4) and was defined in (9). From the design
of , we can use (9), (13), and (14) to obtain the following
new expression for :

(15)

where quantifies the mismatch between the actual un-
certain parameters and the constant, best guess parameter esti-
mate as shown below

(16)

Based on Assumption 1, we can upper bound the prediction error
signal given in (15) as follows:

(17)

where is a positive bounding signal selected to satisfy
the following inequality:

(18)

and represents the th element of a vector. Based on the
structure of (17), we define a fault indicating, dead-zone residual
function, denoted by , as follows:

if

if
(19)

to determine if a fault occurs. That is, if

(20)

then an actuator fault is present in the system; however, if the pa-
rameter uncertainty in the system is relatively large, then some
faults may not be detected due to the inability of the fault detec-
tion scheme given in (19) to distinguish the actuator faults from
the parameter uncertainty.

Remark 3: Since the ability of the fault detection algorithm
to detect faults is directly linked to the degree of parametric
uncertainty in the system [see (18) and (19)], we are motivated
to examine the bounding signal given in (18). One method
for selecting is given below

(21)

where (5) and (16) were utilized. It is clear that selecting
according to (21) may yield a bound that is too conservative, and
hence, the sensitivity of the fault detection algorithm is reduced.

1The term best-guess-estimate is utilized to signify a constant parameter
estimate that is defined by the user as a best-guess of the actual value of
the unknown parameter. Specifically, the user may obtain a value for the
best-guess estimate utilizing any of the appropriate parameter identification
techniques that are found in literature.
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Another method for selecting is to utilize interval methods
[9]. That is, since we assume that is contained in the interval

[see (5)], a less conservative method for selecting
is given below

(22)

where the bounding functions , represent
time-varying interval parameters that are generated on-line ac-
cording to the following expression:

(23)

The advantage of selecting in a less conservative manner
[e.g., (22)] is demonstrated in the subsequent experimental ver-
ification section.

Remark 4: The motivation for selecting (19) as shown below

if

versus some positive constant (i.e., if ),
arises from the additional flexibility gained with regard to ob-
serving the extent that the residual given in (19) was violated.
That is, by utilizing (19), possible false alarm conditions that
may occur (e.g., due to signal noise, numeric roundoff, etc.) may
be avoided.

Remark 5: If exact model knowledge of the system is avail-
able, then we can simply redesign as follows:

(24)

where defined in (4) is now assumed to be known. After substi-
tuting (9) and (24) into (13), we obtain the following expression
for :

(25)

hence, at least, in the theory, for . It should
be noted that in practice small uncertainties and measurement
noise will no doubt ensure that for (i.e.,
will equal some unknown time-varying function); hence, we de-
fine a fault indicating, dead-zone residual function, denoted by

, as follows:

if

if
(26)

such that, if an actuator fault is present in the system

(27)

where is a vector of positive, scalar design constants
that are experimentally determined to account for small uncer-
tainties and measurement noise.

B. Parameter Uncertainty with Adaptive Update Law

In order to craft a more sensitive fault detection algorithm,
and hence, decrease the effects of the parameter uncertainty [i.e.,
reducing in (19)], we now construct a dynamic on-line es-
timate for the uncertain parameters versus the constant, best-

guess estimate used in (14). Specifically, is generated via a
prediction error driven gradient update law as follows:

(28)

where is a constant, diagonal, positive-definite, adap-
tation gain matrix. In order to facilitate the subsequent analysis,
we define a nonnegative function denoted by as
follows:

(29)

After taking the time derivative of (29), utilizing the fact that

, and then substituting for (28), we obtain the
following expression:

(30)

where (15) was utilized. After integrating both sides of (30), we
have

(31)
Since for , we can utilize (31) to upper bound
the integral of the norm of the prediction error as follows:

(32)

where the facts that is nonnegative and

(33)

have been utilized, where is a positive constant defined
as

(34)

and represents the induced infinity norm. Based on the
structure of (32), we define a fault indicating, dead-zone residual
function, denoted by , as follows:

if

if

(35)

That is, for the adaptive-based fault detection scheme, we can
use the following residual:

(36)

or the residual given in (19) to determine if an actuator fault is
present in the system.

Due to the fact that the residuals given by (19) and (35)
are based on fixed, conservative thresholds, we are motivated
to exploit the properties of the adaptive-based prediction
error signal and design a dead-zone update rule to modify
the dead-zone thresholds as decreases. To illustrate
that in the absence of a fault, we first
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Fig. 1. Sliding window diagram for a typical parameter estimate.

use (16), (29), and (30) to conclude that , .
Furthermore, from (12) and Assumption 2, we have that

. Based on the facts
that , , we can utilize (15) to conclude that

. Since , we can conclude

from (28) that . Based on the facts that ,

, , , we can prove that .
Furthermore, utilizing (30), we can conclude that ;
therefore, since , and , we can utilize
Barbalat’s Lemma to conclude that in the
absence of a fault. From (29) and (30), it is clear that

(37)

in the absence of a fault where is a positive constant.
Based on (37), it is straightforward to prove that

in the absence of a fault, where is a vector of positive
constants.

Based on the facts that and
in the absence of a fault, we now de-

sign a fault indicating, dead-zone residual function with the
improved capability of detecting smaller magnitude faults.
That is, since the parameter estimates converge to constants,
we construct an adjustable threshold window around each pa-
rameter estimate that allows for residual threshold reduction as
the estimate values become constant. To detect if the condition

is satisfied before a potential fault, we
define a set of sliding windows (see Fig. 1) with a user-defined
window height, denoted by , and a user-defined
window length, denoted by , as follows:

(38)

and . If violates
(38) at any time instant during the interval (i.e., if the
parameter estimate has not settled within the tolerances of the
window), then the window will slide along the parameter es-
timate with time. If satisfies (38) for all values of time
during the interval , then it is clear that the param-
eter estimates have approximately settled within the tolerances
of the sliding window, and hence, has approximately con-
verged to a constant. When (38) is satisfied for all of the param-

eter estimates (i.e., ), the maximum value of
the prediction error is measured and utilized as the threshold for
the residual. That is, the time instant when the final parameter
estimate is contained within the user-defined sliding window,
denoted by , the maximum value of the prediction
error (i.e., ) is recorded and utilized as the residual
threshold. Specifically, we define a fault indicating, dead-zone
residual function, denoted by , as follows:

if

if
(39)

such that if

(40)

then an actuator fault is present in the system.
Remark 6: Note that strictly speaking, we cannot guarantee

that is a true upper bound for in the absence
of a fault; hence, some false alarms may result. However, since

, if the lengths of the sliding windows are selected to
be appropriately long enough then the likelihood of false alarms
can be practically eliminated.

V. EXPERIMENTAL VERIFICATION

The proposed prediction-error-based fault detection algo-
rithm was implemented on an Integrated Motion Inc. two-link,
revolute, direct-drive robot manipulator (see Fig. 2) with the
following dynamics [3]:

(41)

where the mechanical parameters have been experimentally de-
termined as follows: kg m , kg m ,

kg m , Nm s, Nm s,
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Fig. 2. IMI direct-drive manipulator.

Nm, and Nm. For experimental verifica-
tion of the proposed prediction-error-based fault detection al-
gorithms, the above mechanical parameters are assumed to be
unknown. In addition, the parameter vector corresponding to
given in (4) is shown below

(42)

The links of the robotic manipulator are directly actuated by
switched-reluctance motors which are controlled through NSK
torque controlled amplifiers. A Pentium 266-MHz PC operating
under Qmotor 3.02 hosts the control and fault detection algo-
rithms. Data acquisition, control implementation, and fault de-
tection were performed using the Quanser MultiQ I/O board at
a frequency of 1 kHz.

To demonstrate the performance of the predic-
tion-error-based, best-guess estimate and adaptive estimate
fault detection algorithms, a free-swinging actuator fault,
a ramp actuator fault [with ], and a saturation
actuator fault were injected at s on Link 1 and Link 2,
respectively, where a standard proportional derivative control
scheme was utilized to ensure that tracks where

(43)

Furthermore, in order to examine the sensitivity of the fault
detection algorithm with regard to (see Remark 3), the
best-guess estimate experiments were performed with se-
lected according to (21)–(23), with (21) and (23) modified as
shown below

(44)

(45)

where , are vectors of positive constants experimen-
tally determined as shown below

to provide robustness to signal noise, numerical roundoff error,
etc., , were selected to be 40% of the actual parameters,

2Available at http://www.qrts.com

TABLE I
COMPARISON OF DELAY TIMES (ms) BETWEEN THE ACTUATOR FAULT

OCCURRENCE AND THE FAULT DETECTION

and was selected to be 20% of the parameter values for each
of the two cases, respectively. For the experimental verification
of the adaptive estimate prediction-error-based fault detection
algorithm, we selected (i.e., we assume that no
prior knowledge of the mechanical parameters exists) and of
(28) was selected as shown below

(46)

For each of the aforementioned experiments, the filter parame-
ters given in (8) were selected as

(47)

A comprehensive comparison of the delay time between the
fault occurrence and the fault detection for each of the above
cases was recorded in Table I. Fault histories for each of the
above cases are depicted in Figs. 3–8 for the best-guess esti-
mate case [where was selected according to (45) (referred
to as Case 1 in the figures) and (44) (referred to as Case 2 in the
figures)] and the adaptive estimate case given in (39). In each of
the figures, the marker “(a)” represents the residual threshold,
the marker “(b)” indicates the prediction error, and the marker
“(c)” indicates the instant the fault is detected. The left column
of plots in Figs. 3–8 depicts the full time scale, whereas the right
column of plots depicts the last 1.5 s in order to more clearly il-
lustrate when the fault is detected. Note that we selected a time
instant to inject the faults that corresponds to a time instant when
all the adaptive parameter estimates had settled within the re-
spective sliding windows (approximately 22 s); hence, the fault
indicating dead-zone residual function given in (39) was uti-
lized for the adaptive estimate case. If the fault had been in-
jected prior to the parameter estimates converging then either
the residual given in (19) or (36) could have been utilized. After
implementing the fault indicating dead-zone residual function
given in (36), we concluded that (19) provided superior fault de-
tection capabilities; hence, only data utilizing (19) was recorded
for comparison purposes.

From Table I, it is clear that the performance of the adaptive
estimate fault detection scheme provided superior fault detec-
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Fig. 3. Fault detection for a free swinging actuator fault on link 1.

Fig. 4. Fault detection for a free swinging actuator fault on link 2.

tion capabilities. That is, provided each of the adaptive estimates
have approximately settled to a constant, the time delay before
an injected fault was detected was significantly less than the ro-
bust fault detection scheme. In addition, it is clear from Table I
that the time delay before an injected fault was detected was sig-

nificantly decreased by utilizing the less conservative bounding
function given in (22) and (23) [versus the bounding func-
tion given in (21)]; hence, the performance of the proposed
best-guess estimate fault detection algorithm may be improved
by selecting the bounding function differently from (21)
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Fig. 5. Fault detection for a ramp actuator fault on link 1.

Fig. 6. Fault detection for a ramp actuator fault on link 2.

to (23) (i.e., an experimentally determined constant threshold
could be utilized).

Remark 7: Note that the disturbances such as signal noise,
numerical roundoff error, etc. can be incorporated in the
dynamic model of the robot manipulator given in (1) as an

additive bounded disturbance. Assuming that the upper and
lower bounds of the additive bounded disturbance are known,
it is straightforward to include the bounding terms and in
the theoretical development of the constant best-guess estimate
fault detection scheme.
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Fig. 7. Fault detection for a saturated actuator fault on link 1.

Fig. 8. Fault detection for a saturated actuator fault on link 2.

VI. CONCLUSION

In conclusion, we provide a fault detection method for robot
manipulators, for exact model knowledge and parameter un-
certainty cases. Two methods are presented for fault detection

under parameter uncertainty: best-guess parameter estimates
and a dynamic prediction error driven parameter update law.
Conditions were given for all three fault detection schemes and
a strategy was developed for detecting smaller faults after the
parameter estimates have converged. One of the advantages of
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the proposed fault detection scheme is that it is independent
from the controller; hence, the fault detection scheme can
be utilized in conjunction with any controller (provided link
position and velocity measurements are available). The effec-
tiveness of the proposed fault detection methods was illustrated
through experimental results.

APPENDIX

In order to rewrite (7) in terms of the linear parameterization
given in (9), we first note that (1) can be written in the following
form [8]:

(48)

where

(49)

and

(50)

After substituting (48) into (7), we obtain the following expres-
sion:

(51)

where the facts that

(52)

and

(53)

have been utilized. Hence, based on (51), it is straightforward to
conclude that (7) can be rewritten in the structure given in (9).
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