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VI. CONCLUSION

This paper presented a stabilizing RH controller for the regulation of
nonholonomic mobile robots. The stability was guaranteed by forcing
the terminal state to move into a terminal-state region and adding a
stability term to the cost function. A Lyapunov-like function was de-
veloped as the stability term. A new terminal-state region and its cor-
responding terminal-state controller were found.

Besides the stability problem, the computation is also a main ob-
stacle for using RH controllers in real-time systems. The measure taken
in this paper was the use of “hot start” in the optimization computation.

Using theRHcontroller bringsflexibility to controller design.As long
as the stability can be guaranteed, different weight parameters in cost
functions could result in different control performance. However, when
the predictive control horizon is selected to be very long, the computa-
tion still causes aproblemfor real-timeapplications.How to improve the
computation efficiency is currently under investigation, including using
artificial neural networks [22] or binary decision trees [16].
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Fault Identification for Robot Manipulators

M. L. McIntyre, W. E. Dixon, D. M. Dawson, and I. D. Walker

Abstract—Several factors must be considered for robotic task execution
in the presence of a fault, including: detection, identification, and accommo-
dation for the fault. In this paper, a nonlinear observer is used to identify
a class of actuator faults once the fault has been detected by some other
method. Advantages of the proposed fault-identification method are that
it is based on the nonlinear dynamic model of a robot manipulator (and
hence, can be extended to a number of general Euler Lagrange systems),
it does not require acceleration measurements, and it is independent from
the controller. A Lyapunov-based analysis is provided to prove that the de-
veloped fault observer converges to the actual fault. Experimental results
are provided to illustrate the performance of the identification method.

Index Terms—Fault identification, nonlinear dynamics, robot manipu-
lator.

I. INTRODUCTION

Due to the sustained needs for robotic application in remote and
hazardous environments, and with emerging applications in medicine

Manuscript received December 3, 2004. This paper was recommended for
publication by Associate Editor R. Roberts and Editor H. Arai upon evaluation
of the reviewers’ comments. This work was supported in part under two DOC
Grants, in part under an ARO Automotive Center Grant, in part under a DOE
Contract, in part under a Honda Corporation Grant, and in part under a DARPA
Contract. This paper was presented at the IEEE International Conference on
Robotics and Automation, New Orleans, LA, April 2004.

M. L. McIntyre, D. M. Dawson, and I. D. Walker are with the Hol-
combe Department of Electrical and Computer Engineering, Clemson
University, Clemson, SC 29634 USA (e-mail: mmcinty@ces.clemson.edu;
darren.dawson@ces.clemson.edu; ianw@ces.clemson.edu).

W. E. Dixon is with the Department of Mechanical and Aerospace
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
wdixon@ufl.edu).

Digital Object Identifier 10.1109/TRO.2005.851356

1552-3098/$20.00 © 2005 IEEE



IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, OCTOBER 2005 1029

and bioengineering for the treatment of disease (often requiring pa-
tient–robot interfacing), robot reliability and fault tolerance have re-
ceived significant interest. Several factors must be considered for robot
operation in the presence of a fault. These factors include: detection
of the fault; characterization, quantification, and identification of the
fault; and then response to the fault by halting the system and/or ac-
commodating for the fault (e.g., through a robust or adaptive controller
or through system redundancy).

In [3], a model-based fault-detection approach was successfully
demonstrated experimentally. This approach was based on the gener-
ation of residuals through a filtered torque estimate which does not
rely upon the measurement of acceleration quantities. Adaptive and
robust detection algorithms were also developed in [3] to take into
account possible uncertainty in the robot parameters. A more recent
adaptive fault detection and isolation scheme is presented in [2], where
concurrent faults could be detected and isolated during the adaptation
phase for the uncertainty in the dynamic system, based on the use of
generalized momenta [1] and a suitable overparameterization.

Once the fault(s) has been detected, the next step in designing a
fault-tolerant system is to identify the fault. Based on the desire to have
fault-tolerant control, significant work has been focused on this topic.
The different approaches can be determined by the manner in which
the output residual signals are generated and if the focus is directed at
linear or nonlinear systems. In general, there are two types of residual
generators, structured and fixed directional [9]. For linear systems, the
residuals have been derived in several ways, including: observer-based
[6], parity relations [8], [10], eigenstructure assignment [17], and iden-
tification-based. Similar methods have been applied to nonlinear sys-
tems. Some of these approaches have focused on nonlinear observers
[7]. Other approaches apply parity relations to the nonlinear problem
[11], [12]. In [32], a fault detection and isolation architecture for non-
linear uncertain dynamics systems was presented. This approach relies
on faults to be smooth functions and full state measurability is required;
it uses a bank of nonlinear adaptive estimators, one for fault detection
and approximation, the other for fault isolation. In [15], the authors
consider fault detection and isolation in nonlinear Euler-Lagrange me-
chanical systems. The approach relies on faults acting as an additive
effect on the system dynamics, where exact model knowledge and full
state measurability is required. A nonlinear observer with linear error
dynamics is used to generate the residual for the fault detection and iso-
lation system. Some researchers have used other tools, such as fuzzy
logic and artificial neural networks, to approximate the system model
and/or to identify the fault [5], [18], [22], [24], [26], [30].

Various approaches have also been proposed for tolerating failures
in robot manipulators. Most approaches have centered on the addition
of some form of redundancy (e.g., in actuation [21], [28], joints [13],
[16], [19], [23], sensors [25], [31], or software [27]), where the system
degrades gracefully by using the redundant components. For example,
if a manipulator is kinematically redundant, its end-effector task can
often still be carried out by the surviving joints following a joint failure
[4], [19].

The development in this paper leverages on the research presented
in [3] to further develop a method for robot manipulator fault detection
and identification. Specifically, a nonlinear fault observer (see [29]) and
a filtered error signal are developed that do not rely upon the measure-
ment of acceleration quantities. The fault observer enables the develop-
ment of an estimate system which can be compared with the real system
through the system states, q(t) and _q(t). The occurrence of a single or a
concurrent fault(s) will result in a difference between the two systems,
allowing instantaneous detection of the fault (see [3]). Then the fault
observer asymptotically identifies the fault. A system supervisor could
use this information along with knowledge of the system to determine
specifically which fault has occurred.

II. SYSTEM MODEL

The mathematical model for an n-degree-of-freedom (DOF) robotic
manipulator is assumed to have the following form [3]:

�q(t) + �N(q; _q) + u
�1(t� Tf )��(t) = �� (t) (1)

where

�N(q; _q) M
�1(q)N(q; _q) (2)

��(t) M
�1(q)�(t) (3)

�� (t) M
�1(q)�(t): (4)

In (1)–(4), q(t), _q(t), �q(t) 2 n denote the joint position, velocity,
and acceleration, respectively, M(q) 2 n�n represents the positive-
definite, symmetric inertia matrix,N(q; _q) 2 n represents centripetal
Coriolis, gravitational, and friction effects, �(t) 2 n represents a fault
in the robot manipulator, u�1(t� Tf ) represents a unit step function,
Tf represents the time instant at which a fault occurs, and � (t) 2 n

represents the torque input vector. To further model the class of faults
considered in this paper, �(t) can be isolated by rewriting (1) as follows
[3]:

�i(t) = �i(t)� [M(q)�q +N(q; _q)]
i
8t � Tf : (5)

Hence, a locked-joint fault is characterized by (5) and a free-swinging
actuator fault (i.e., [M(q)�q +N(q; _q)]

i
= 0), a ramp actuator fault

(i.e., [M(q)�q +N(q; _q)]
i
= (0)i t), and a saturated actuator fault

(i.e., [M(q)�q +N(q; _q)]
i
= (�max)i) are characterized as [3]

�i(t) =

�i(t)

�i(t)� 0 t 8t � Tf

�i(t)� (�max)i

(6)

respectively, where �i(t) is the applied torque at joint i, 0 2 is a
positive scaling term per joint i, and �max 2

n represents a vector of
maximum torques that can be applied by the actuators.

The dynamic equation in (1) exhibits the following property which is
used in conjunction with the following assumptions in the subsequent
development.

Assumption 1: The following upper bounds exist:

��(t) � 1;
_��(t) � 2;

���(t) � 3 (7)

for some finite value of time (clearly, from (6), the ramp fault cannot
be bounded as t ! 1), where 1, 2, 3 2 are positive bounding
constants.

Assumption 2: A continuous control is designed which ensures that
q(t), _q(t), � (t) 2 L1 8t. It should be noted that based on the form of
the dynamic model given in (1), if q(t), _q(t), � (t) 2 L1, then from
Assumption 1, it is clear that �q(t) 2 L1.

Remark 1: The bounds given in (7) and Assumption 2 have both
a practical and mathematical basis [the subsequent stability analysis
requires (7)]. These assumptions require a smooth transition from the
working (nonfault) condition to the fault condition, which for the class
of faults in question appears to be a reasonable requirement. Exam-
ining the free-swinging actuator fault as described by (6), when the fault
occurs, the particular joint under control is either static or in motion.
After the fault, the torque on that joint is removed and the natural forces
(i.e., gravity, potential energy, etc.) at work on the joint may or may not
change the course of motion for the affected links, but at no time during
the transition are there any discontinuous activities associated with the
system states as a result of the fault. Similar statements could be made
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for the three other faults discussed in this paper. Assumptions of this
nature have also been made in [2] and [32] when dealing with the con-
tinuous nature of robot dynamics and faults.

III. FAULT IDENTIFICATION

Once a fault has been detected (i.e., 8t � Tf ), additional knowledge
regarding the fault may be required (e.g., to make decisions regarding
the continued operation of the system, to facilitate a fault-accommoda-
tion scheme). To facilitate the development of the fault-identification
scheme, a velocity observer error signal, denoted by e(t) 2 n, is de-
fined as follows:

e(t) _̂q(t)� _q(t) (8)

where _̂q(t) 2 n denotes the following velocity estimate:

_̂q(t) �
t

T

�N(q(�); _q(�))d� �
t

T

�̂(�)d�

+
t

T

�� (�)d�+ _̂q(Tf) 8t � Tf (9)

where �̂(t) 2 n denotes a subsequently designed nonlinear fault ob-
server. The time derivative of (8) is expressed as follows:

_e(t) = �̂q(t)� �q(t) (10)

where

�̂q(t) = � �N(q; _q)� �̂(t) + �� (t) 8t � Tf : (11)

After substituting (1) and (11) into (10), the following simplified ex-
pression can be obtained:

_e(t) = ~�(t) 8t � Tf (12)

where ~�(t) 2 n is defined as

~�(t) ��(t)� �̂(t): (13)

Based on (12) and the subsequent stability analysis (see Section IV), the
following proportional-integral-like nonlinear observer is developed to
identify the fault:

�̂(t)
t

T

(K0 + In)e(�)d�+
t

T

K1sgn(e(�))d�

+(K0 + In)e(t)� (K0 + In)e(Tf) (14)

where K0 and K1 2
n�n represent constant, diagonal, positive-def-

inite observer gain matrices, where sgn(�) denotes the vector signum
function, and In 2 n�n is the standard identity matrix. From (8) and
(14), it is clear that the fault observer does not depend on acceleration
measurements.

To facilitate the subsequent analysis, an auxiliary error signal, de-
noted by s(t) 2 n, is defined as follows:

s(t) _e(t) + e(t): (15)

The time derivative of (15) can be determined as

_s(t) = _��(t)� (K0+ In)s(t)�K1sgn(e(t))+ _e(t) 8t � Tf (16)

where the time derivative of (12) was used along with (13), (14) and
(15).

IV. ANALYSIS

Theorem 1: The fault observer given in (14) ensures that

�̂fi(t)! ��fi(t) as t!1 (17)

provided the observer gainK1 introduced in (14) is selected as follows:

K1 > _��i(t) + ���i(t) (18)

where the subscript i = 1; 2; . . . ; n denotes the ith element of the
vector or diagonal matrix.

Proof: Let V (t) 2 denote the following nonnegative function:

V =
1

2
e
T
e+

1

2
s
T
s (19)

where e(t) and s(t) were defined in (8) and (15), respectively. After
taking the time derivative of (19) and using (15) and (16), the following
expression can be obtained:

_V (t) = e
T (s� e)

+sT _�� � (K0 + In)s�K1sgn(e) + _e 8t � Tf : (20)

The following simplified expression can then be obtained after using
(15):

_V (t) = �eT e� s
T
K0s+ _eT _�� + e

T _��

� ( _e(t) + e(t))T K1sgn(e) 8t � Tf : (21)

The integral of (21) from Tf to t can be expressed as

V (t) �V (Tf)�
t

T

ke(�)k2 d�

� �min fK0g
t

T

ks(�)k2 d� +
t

T

_eT (�)_��(�)d�

�
t

T

_eT (�)K1sgn(e(�))d�

+
t

T

e
T (�) _��(�)�K1sgn(e(�)) d�: (22)

After integrating the fourth term on the right-hand side (RHS) of (22)
by parts and integrating the fifth term on the RHS of (22) with respect
to time, the following expression is obtained for V (t):

V (t) �V (Tf)�
t

T

ke(�)k2 d� + e
T (t)_��(t)

� �min fK0g
t

T

ks(�)k2 d� � e
T (Tf)

_��(Tf )

+ e
T (Tf)K1sgn(e(Tf))� e

T (t)K1sgn(e(t))

+
t

T

e
T (�) _��(�)� ���(�)�K1sgn(e(�)) d�:

Provided K1 is selected according to (18), V (t) can be further upper
bounded as follows:

V (t) � ��min fK0g
t

T

ks(�)k2 d� �
t

T

ke(�)k2 d� + C (23)

were C 2 represents the following positive bounding constant:

C V (Tf)� e
T (Tf)

_��(Tf )�K1sgn(e(Tf)) : (24)

From the structure of (23) and the definition in (24), it is clear that
V (t) 2 L1; hence, s(t), e(t) 2 L1. Since s(t), e(t) 2 L1, (15)
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can be used to prove that _e(t) 2 L1. Based on the assumption that
_��(t) 2 L1 (Assumption 2) and the fact that s(t), e(t), _e(t) 2 L1, (16)
can be used to prove that _s(t) 2 L1. The inequality in (23) can also be
used to show that s(t), e(t) 2 L2. Since s(t), _s(t), e(t), _e(t) 2 L1,
and s(t), e(t) 2 L2, then Barbalat’s Lemma can be used to conclude
that

lim
t!1

ks(t)k ; ke(t)k = 0: (25)

Based on (12), (13), and (25), the result in (17) can be obtained.

V. EXPERIMENTAL VERIFICATION

The fault-identification strategy given in Section III was imple-
mented on a Barrett Whole Arm Manipulator (WAM). This strategy
requires a method of fault detection for notification that a fault has
occurred, hence t � Tf . The fault-detection method used in [3] was
implemented on the WAM, and integrated as part of a fault detection
and identification strategy. The following sections describe the ex-
perimental testbed and results obtained for several classes of injected
faults.

A. Experimental Testbed

A fault detection and identification strategy was implemented on the
WAM. For simplicity, five links of the WAM were locked at a fixed,
specified angle, resulting in a two-link planar manipulator (see Fig. 1).
Henceforth, link 1 is used to denote the base link of the manipulator,
and link 2 is used to denote the other actuated link. In this configuration,
the dynamics of the robot can be expressed as follows [20]:

� =
M11 M12

M21 M22

�q1
�q2

+
Vm Vm

Vm Vm

_q1
_q2

+
fd 0

0 fd

_q1
_q2

+
fs 0

0 fs

sgn( _q1)

sgn( _q2)
: (26)

In (26), the elements of the inertia and centripetal-Coriolis matrices are
given as

M11 = p1 + 2p2 cos(q2)

M12 = p3 + p2 cos(q2)

M21 = p3 + p2 cos(q2)

M22 = p3

VM = � p2 sin(q2) _q2

VM = � p2 sin(q2) _q1 � p2 sin(q2) _q2

VM = p2 sin(q2) _q1

VM =0

where p1 = 1:35 kg�m2, p2 = 0:0529 kg�m2, and p3 = 0:2502
kg�m2, the constant dynamic friction coefficients are fd = 0:8838
N�m�s and fd = 0:66285 N�m�s, the constant static friction coeffi-
cients are fs = 1:50246 N�m and fs = 0:7074 N�m. The gravita-
tional effects are not included in (26) due to the plane of motion of the
manipulator.

The links of the WAM manipulator are driven by brushless mo-
tors supplied with sinusoidal electronic commutation. Each axis has
encoders located at the motor shaft for link position measurements.
Since no tachometers are present for velocity measurements, link ve-
locity signals are calculated via a filtered backward difference algo-
rithm. An AMD Athlon 1.2 GHz PC operating QNX 6.2.1 RTP (Real
Time Platform), a realtime microkernel-based operating system, hosts
the control, detection, and identification algorithms which were written
in “C++”. Qmotor 3.0 [14], was used to facilitate realtime graphing,

Fig. 1. Planar, two-link configuration of WAM.

data logging, and online gain adjustment. Data acquisition and control
implementation were performed at a frequency of 1.0 kHz using the
ServoToGo I/O board.

B. Experimental Results

A standard proportional derivative control scheme with a feedfor-
ward desired acceleration component was used to ensure that q(t)
tracks qd(t) where qd(t) is defined as follows:

qd (t)

qd (t)
=

0:8 sin(t)

0:8 sin(t)
: (27)

Since the objective in this experiment is to identify the fault signature,
the ad hoc threshold method as seen in [3, eq. (26), Remark 5] was im-
plemented. Specifically, the fault indicating dead-zone residual func-
tion can be defined as follows:

D["i] =
j"ij ; if j"ij > (�o)i
0; if j"ij � (�o)i

(28)

where �o1 = 0:0375 and �o2 = 0:0132 denotes positive, scalar con-
stants that were experimentally determined to account for small uncer-
tainties and measurement noise [3]. For fault detection, the filter pa-
rameters were selected as [3]

� = 1; � = 150 (29)

and the fault-identification gains as defined in (14) were selected as
shown below

K0 = diag f80;80g ; K1 = diag f100;100g (30)

where diagf�; �g represent the elements along the diagonal for K0 and
K1. All parameters were tuned by trial and error until reasonable results
were observed.

To demonstrate the performance of the fault detection and identifi-
cation system using the WAM, a free-swinging actuator fault, a ramp
actuator fault (with 0 = 0:048 and 0 = 0:022), and a satu-
ration actuator fault (with the maximum torque artificially limited to
�max = 0:838 N�m and �max = 0:66 N�m for safety) were injected
at Tf = 30 s for link 1 and at Tf = 40 s for link 2, respectively.
Figs. 2–4 illustrate the performance of the fault-detection algorithm.
From these plots, the fault indicating dead-zone residual function as
defined in (28) is shown for links 1 and 2, also the threshold for �o1 and
�o2 can be seen. In these figures, the marker (a) represents the residual



1032 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, OCTOBER 2005

Fig. 2. Fault detection for a free-swinging fault. Markers: (a) represents the
residual thresholds; (b) indicates the prediction errors; and (c) indicates the
instants the faults are detected.

Fig. 3. Fault detection for a ramp fault. Markers: (a) represents the residual
thresholds; (b) indicates the prediction errors; and (c) indicates the instants the
faults are detected.

threshold, the marker (b) indicates the prediction error, and the marker
(c) indicates the instant the fault is detected, which is achieved when
the fault indicating dead-zone residual function breaks the respective
threshold. This ad hoc threshold method for fault detection worked per-
fectly without any false alarms or missed detections. The robustness of
this method comes from the ability to set the detection thresholds, �o1
and �o2, for each experimental testbed. See [3] for additional experi-
mental results using alternate fault-detection methods.

Figs. 5–7 illustrate the performance of the nonlinear observer. From
these plots, the fault-identification error _e(t) = ~�(t) is shown to de-
crease toward zero, indicating identification of the fault. Figs. 8–10 il-
lustrate the identified fault signature �̂(t) for each joint. In the event of
concurrent faults, the resultant fault signature, �̂(t), is the summation
of both faults. Future efforts will target exploring the fault signatures
to further characterize the fault, leading to potential fault accommoda-
tion. Future work may include the use of estimation theory to properly
account for sensor noise that can be seen in Figs. 5–10.

Fig. 4. Fault detection for a saturated fault. Markers: (a) represents the residual
thresholds; (b) indicates the prediction errors; and (c) indicates the instants the
faults are detected.

Fig. 5. Fault-identification error ~�(t) for a free-swinging fault.

Fig. 6. Fault-identification error ~�(t) for a ramp fault.
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Fig. 7. Fault-identification error ~�(t) for a saturated fault.

Fig. 8. Fault signature �̂(t) for a free-swinging fault.

Fig. 9. Fault signature �̂(t) for a ramp fault.

Fig. 10. Fault signature �̂(t) for a saturated fault.

VI. CONCLUSION

In conclusion, a fault-identification method is proposed for robot ma-
nipulators. This method is based on the nonlinear dynamics of the robot
model, it does not require acceleration measurements, and is indepen-
dent from the controller. The fault-identification scheme can be applied
to a generic class of actuator faults that are second-order differentiable.
The effectiveness of the proposed fault-identification method is illus-
trated through experimental results.
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