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Approximate Optimal Motion Planning to Avoid
Unknown Moving Avoidance Regions

Patryk Deptula , Hsi-Yuan Chen , Ryan A. Licitra , Joel A. Rosenfeld, and Warren E. Dixon , Fellow, IEEE

Abstract—In this article, an infinite-horizon optimal regulation
problem is considered for a control-affine nonlinear autonomous
agent subject to input constraints in the presence of dynamic
avoidance regions. A local model-based approximate dynamic
programming method is implemented to approximate the value
function in a local neighborhood of the agent. By performing local
approximations, prior knowledge of the locations of avoidance
regions is not required. To alleviate the a priori knowledge of the
number of avoidance regions in the operating domain, an extension
is provided that modifies the value function approximation. The
developed feedback-based motion planning strategy guarantees
uniformly ultimately bounded convergence of the approximated
control policy to the optimal policy while also ensuring the agent
remains outside avoidance regions. Simulations are included to
demonstrate the preliminary development for a kinematic unicycle
and generic nonlinear system. Results from three experiments
are also presented to illustrate the performance of the developed
method, where a quadcopter achieves approximate optimal regu-
lation while avoiding three mobile obstacles. To demonstrate the
developed method, known avoidance regions are used in the first
experiment, unknown avoidance regions are used in the second
experiment, and an unknown time-varying obstacle directed by a
remote pilot is included in the third experiment.

Index Terms—Data-based control, learning and adaptive
systems, motion and path planning, neural and fuzzy control,
optimization and optimal control.

I. INTRODUCTION

MANY challenges exist for real-time navigation in un-
certain environments. To operate safely in an uncertain
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environment, an autonomous agent must identify and react to
possible collisions. In practice, challenges come from limita-
tions in computational resources, sensing, communication, and
mobility. Hence, robot navigation, motion planning, and path
planning continues to be an active research area (cf., [1] and
references therein).

Because motion and path-planning strategies need to account
for environmental factors with various uncertainties, they can
be divided into two groups—global and local approaches [2].
Global planners seek the best trajectory by using models of the
entire environment, are computed before a mission begins, and
tend to provide high-level plans (cf., [3]–[7]). Local planners
(sometimes referred to as reactive methods) plan only a few time
steps forward based on limited knowledge using sensory data;
hence, they have the advantage of providing optimal feedback if
the agent is forced off of its original path, but they may need to
be recomputed online (cf., [7]–[10]). Since complex operating
conditions present significant navigation, guidance, and control
challenges (i.e., agents’ dynamics, obstacles, disturbances, or
even faults), online feedback-based control/guidance algorithms
with online learning and adaptation capabilities are essential for
replanning and execution in dynamically changing and uncer-
tain environments. Constrained optimization methods can be
leveraged to generate guidance/control laws for agents oper-
ating in complex environments. However, agents often exhibit
nonlinear dynamics and navigate in environments with uncer-
tain dynamics or constraints, which makes the determination
of analytical solutions to constrained optimization problems
difficult. Traditional guidance/control solutions exploit numer-
ical methods to generate approximate optimal solutions. For
instance, approaches may use pseudoscpectral methods, they
may solve the Hamilton–Jocobi–Bellman (HJB) equation offline
via discretization and interpolation, or viscosity solutions can
be solved offline before a mission begins (cf., [3], [11]–[14]).
Such results may provide performance guarantees; however, nu-
merical nonlinear optimization problems are typically computa-
tionally expensive (often preventing real-time implementation),
especially as the dimension of the system increases. Generally,
numerical methods are unable to consider uncertainty in the
dynamics or environment, and are ill suited for dynamically
changing environments because new guidance/control solutions
would need to be recalculated offline in the event of a change
in the environment. Such challenges motivate the use of ap-
proximate optimal control methods that use parametric function
approximation techniques capable of approximating the solution
to the HJB online (cf., [15]–[26]).
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Further complicating the task of optimal motion planning are
agent actuator constraints and state constraints (e.g., static or
mobile avoidance regions) often present en route to an objective.
Certain avoidance regions may remain undiscovered until they
fall into a given detection range. The concept of avoidance
control was introduced in [7] for two-player pursuit-evasion
games. However, results such as [9], [10], and [27]–[29] have
used navigation functions for low-level control with collision
avoidance in applications, such as multiagent systems. Other
results, such as [30]–[32] have considered collision avoidance
in multiagent systems with limited sensing by using bounded
avoidance functions in the controller which are only active when
agents are within a defined sensing radius. The results in [9] and
[28]–[32] do not consider optimal controllers, and in certain
cases do not consider control constraints. Compared to such
results which do not consider optimality, work such as [33]
utilizes unbounded avoidance functions to explicitly compute
optimal controllers for cooperative avoidance for multiagent
systems. Moreover, results such as [34]–[36], develop sets of
feasible states along with safe controllers using reachability
methods such as [14] by developing differential games between
two players. Moreover, results such as [37]–[41] approach col-
lision avoidance problems through the use of collision cones
in conjunction with other methods based on engagement ge-
ometry between two point objects. In such works, dynamically
moving objects are modeled by quadric surfaces and collision
conditions are derived for dynamic inversion-based avoidance
strategies between agents. Despite the progress, the results
in [33] rely on explicitly computed controllers, which are un-
known when the optimal value function is unknown, and while
results such as [37]–[40] establish a framework for providing
collision cones, they are still combined with methods which
may not necessarily be optimal, cf., [41]. However, although
results such as [14] and [34]–[36] provide optimality guarantees,
they rely on numerical techniques, which tend to be compu-
tationally intensive, and need to be resolved when conditions
change.

Over the last several years, model predictive control (MPC)
has gained attention for its capability to solve finite horizon opti-
mal control problems in real-time (cf., [8], [42]–[45]). Moreover,
MPC has been applied in a plethora of optimization problems;
MPC is known for handling complex problems, such as of mul-
tiobjective problems, point-to-point trajectory generation prob-
lems, and collision avoidance (cf., [8], [42]–[45]). Specifically,
works such as [8] consider multiobjective MPC frameworks for
autonomous underwater vehicles with different prioritized ob-
jectives where the main objective is path convergence, while the
secondary objective is different (i.e., speed assignment, which
can be sacrificed at times in lieu of better performance on path
convergence), or the objective is purely trajectory generation,
such as [42] and [43], where the goal is point-to-point trajec-
tory generation (i.e., offline multiagent trajectory generation or
trajectory generation for constrained linearized agent models).
Unlike, the aforementioned MPC results, results such as [44]
and [45] take advantage of MPC’s ability for fast optimization
to combine it with other methods when considering collision
avoidance problems. Although MPC has shown to be effective

in motion/path planning and obstacle avoidance problems, the
system dynamics are generally considered to be discretized and
at each time-step, a finite horizon optimal control problem needs
to be solved where a sequence of control inputs is generated.
Even in the absence of obstacles, MPC methods generally do
not yield an optimal policy over the complete trajectory since
new solutions need to be recomputed at the end of each time
horizon. Specifically, limited horizon methods, such as MPC,
often require linear dynamics (cf., [42], [43]) or at least known
dynamics (cf., [8], [42]–[45]). Since in practice, the environment
and agents are prone to uncertainties, motivation exists to use
parametric methods, such as neural-networks (NNs), to approx-
imate optimal controllers online in continuous state nonlinear
systems.

In recent years, approximate dynamic programming (ADP)
has been successfully used in deterministic autonomous control-
affine systems to solve optimal control problems [15]–[18],
[46], [47]. By utilizing parametric approximation methods, ADP
methods approximate the value function, which is the solution
to the HJB and is used to compute the online forward-in-time
optimal policy. Input constraints are considered in [19]–[21]
by using a nonquadratic cost function [48] to yield a bounded
approximate optimal controller.

For general nonlinear systems, generic basis functions, such
as Gaussian radial basis functions, polynomials, or universal
kernel functions are used to approximate the value function.
One limitation of these generic approximation methods is that
they only ensure an approximation over a compact neighborhood
of the origin. Once outside the compact set, the approximation
error tends to either grow or decay depending on the selected
functions. Consequently, in the absence of domain knowledge,
a large number of basis functions, and hence, a large number of
unknown parameters, are required for value function approxi-
mation. A recent advancement in ADP utilizes computationally
efficient state-following (StaF) kernel basis functions for local
approximation of the value function around the current state,
thereby reducing the number of basis functions required for
sufficient value function approximation [22], [49]–[51]. The
authors in [49] utilized the StaF approximation method to de-
velop an approximate optimal online path planner with static
obstacle avoidance. However, the development in [49] used a
transitioning controller which switched between the approxi-
mate controller and a robust controller when the obstacles where
sensed.

Inspired by advances in [22]–[26], [49], and [50], an approxi-
mate local optimal feedback-based motion planner is developed
in this article that considers input and state constraints with
mobile avoidance regions. The developed method differs from
numerical approaches, such as [15]–[26], or MPC approaches,
such as [42] and [43], because this article provides an online
closed-loop feedback controller with computational efficiency
provided by the local StaF approximation method. Moreover,
the agent’s trajectory is not computed offline, but instead the
agent adjusts its trajectory online when it encounters an obsta-
cle. Compared to works such as [9] and [28]–[32], which do
not consider optimality, the controller designed in this article
is based on an optimal control formulation that provides an
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approximate optimal control solution. In addition, unlike [49]
and other path planners, this method tackles the challenge of
avoiding dynamic avoidance regions within the control strategy
without switching between controllers. Since the StaF method
uses local approximations, it does not require knowledge of un-
certainties in the state space outside an approximation window.
Local approximations of the StaF kernel method can be applied
when an agent is approaching avoidance regions represented
as (n− 1)-spheres, not known a priori, in addition to state
and system constraints. Because the avoidance regions become
coupled with the agent in the HJB, their respective states must be
incorporated when approximating the value function. Hence, a
basis is given for each region which is zero outside of the sensing
radius but is active when the avoidance region is sensed. In
applications, such as station keeping of marine craft (e.g., [52]),
knowledge of the weights for an avoidance region may provide
useful information, as the approximation of the value function
can be improved every time the region is encountered. To prevent
collision, a penalizing term is added to the cost function which
guarantees that the agent stays outside of the avoidance regions.
A Lyapunov-based stability analysis is presented and guarantees
uniformly ultimately bounded convergence while also ensuring
that the agent remains outside of the avoidance regions. This
work extends from the preliminary results in [53]. Unlike the
preliminary work in [53], this article provides a unique value
function representation and approximation, the actor update law
is modified, and a more detailed stability analysis is included.
The significance of this work over [53], is the mathematical
development that considers an uncertain number of avoidance
regions by transforming the autonomous value function approxi-
mation into a nonautonomous approximation. Because time does
not lie on a compact set, it cannot be used in the StaF NNs, a
transformation is performed so that a bounded signal of time is
leveraged in the NNs. Moreover, experimental validations are
presented to illustrate the performance of the developed path
planning strategy.

Notation

In the following development, R denotes the set of real num-
bers, Rn and Rn×m denote the sets of real n-vectors and n×m
matrices, and R≥a and R>a denote the sets of real numbers
greater than or equal to a and strictly greater than a, respectively,
where a ∈ R. The n× n identity matrix, column vector of ones
of dimension j, and the zeros matrix or dimension m× n are
denoted by In, 1j , and 0m×n, respectively; hence, if n = 1,
0m×n reduces to a vector of zeros. The partial derivative of k
with respect to the state x is denoted by ∇k(x, y, . . .), while the
transpose of a matrix or vector is denoted by (·)T . For a vector
ξ ∈ Rm, the notation Tanh(ξ) ∈ Rm and sgn(ξ) ∈ Rm are de-
fined as Tanh(ξ) � [tanh(ξi), . . . , tanh(ξm)]T and sgn(ξ) �
[sgn(ξi), . . . , sgn(ξm)]T , respectively, where tanh(·) denotes
the hyperbolic tangent function and sgn(·) denotes the signum
function. The notation U [a, b]1n×1 denotes a n-dimensional
vector selected from a uniform distribution on [a, b], and 1n×m

denotes a n×m matrix of ones.

II. PROBLEM FORMULATION

Consider an autonomous agent with control-affine nonlinear
dynamics given by

ẋ(t) = f (x(t)) + g (x(t))u(t) (1)

for all t ∈ R≥t0 , where x : R≥t0 → Rn denotes the state, f :
Rn → Rn denotes the drift dynamics, g : Rn → Rn×m denotes
the control effectiveness, u : Rt≥t0 → Rm denotes the control
input, and t0 ∈ R≥0 denotes the initial time. In addition, consider
dynamic avoidance regions with nonlinear dynamics given by

żi(t) = hi (zi(t)) (2)

for all t ∈ R≥t0 ,where zi : Rt≥t0 → Rn denotes the state of the
center of the ith avoidance region andhi : Rn → Rn denotes the
drift dynamics for the ith zone in M � {1, 2, . . . ,M}, where
M is the set of avoidance regions in the state space Rn.1 The
dynamics in (2) are modeled as autonomous and isolated systems
to facilitate the control problem formulation. The representation
of the dynamics in (2) would require that complete knowledge
of the dynamics over the entire operating domain are used.
However, motivated by real systems where agents may only
have local sensing, it is desired to only consider the zone inside
a detection radius. Therefore, to alleviate the need for the HJB to
require knowledge of the avoidance region dynamics outside of
the agents’ ability to sense the obstacles, the avoidance regions
are represented as

żi(t) = Fi (x(t), zi(t))hi (zi(t)) (3)

for all t ∈ R≥t0 . In (3), Fi : Rn × Rn → [0, 1] is a smooth tran-
sition function that satisfies Fi(x, zi) = 0 for ‖x− zi‖ > rd
and Fi(x, zi) = 1 for ‖x− zi‖ ≤ r̄, where rd ∈ R>0 denotes
the detection radius of the system in (1), and r̄ ∈ (ra, rd) where
ra ∈ R>0 denotes the radius of the avoidance region. From the
agent’s perspective, the dynamics of the obstacles do not affect
the agent outside of the sensing radius.

Remark 1: In application, a standard practice is to enforce
a minimum avoidance radius to ensure safety [30], [31]. In
addition, the detection radius rd and avoidance radius rs depend
on the system parameters such as the maximum agent velocity
limits.

Assumption 1: The number of dynamic avoidance regions
M is known; however, the locations of the states of each region
is unknown until it is within the sensing radius of the agent.
Section VII presents an approach to alleviate Assumption 1.

Assumption 2: The drift dynamics f , hi, and control effec-
tiveness g are locally Lipschitz continuous, and g is bounded
such that 0 < ‖g(x(t))‖ ≤ g for all x ∈ Rn and all t ∈ R≥t0

where g ∈ R>0. Furthermore, f(0) = 0, and∇f : Rn → Rn ×
Rn is continuous.

Assumption 3: The equilibrium points zei for the obstacles
given by the dynamics in (3) lie outside of a ball of radius rd
centered at the origin. That is, the origin is sufficiently clear of
obstacles. Furthermore, obstacles do not trap the agent, meaning

1The terms avoidance regions and obstacles are used interchangeably.
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Fig. 1. Augmented regions around each avoidance region.

the obstacles do not completely barricade the agent in the sense
that the agent has a free, unblocked, path to the goal location.
Moreover, the agent is assumed to be sufficiently agile to be able
to outmaneuver the moving obstacles. Specifically, the obstacle
velocities must be appropriately equal or less than the agent for
the agent to have capability to avoid the obstacle in general.

Remark 2: Assumption 3 limits pathological scenarios
where obstacle avoidance is not possible. Specifically, scenarios
may arise where obstacles move faster than the agent. In such
scenarios, it may be infeasible for agents using this method, or
other existing approaches, to avoid the obstacle without collid-
ing. However, given an upper bound on the obstacles velocities,
the sensing radius can be sized large enough for the agent to
respond accordingly.

Remark 3: To facilitate the development, letd : Rn × Rn →
R denote a distance metric defined as d(v, w) � ‖v − w‖ for
v, w ∈ Rn. Moreover, the centers of the avoidance regions,
shown in Fig. 1, are augmented with the following.2

1) The total detection set is defined as D = ∪i∈MDi, where

Di = {x ∈ Rn | d (x, zi) ≤ rd} .
2) The total conflict set is defined as W = ∪i∈MWi, where

Wi = {x ∈ Rn | ra < d (x, zi) ≤ r} .
3) The total avoidance set is Ω = ∪i∈MΩi, where each local

avoidance region is

Ωi = {x ∈ Rn | d (x, zi) ≤ ra} .
Furthermore, the avoidance region and agent dynamics can

be combined to form the following system:

ζ̇(t) = F (ζ(t)) +G (ζ(t))u(t) (4)

for all t ∈ R≥t0 , where ζ = [xT , zT1 , . . . , z
T
M ]T ∈ RN ,

N = (M + 1)n and

F (ζ) =

⎡
⎢⎢⎢⎣

f(x)
F1 (x, z1)h1 (z1)

...
FM (x, zM )hM (zM )

⎤
⎥⎥⎥⎦ G (ζ) =

[
g(x)

0Mn×m

]
.

2The size of the regions also depends on the dynamics of the obstacles.

The goal is to simultaneously design and implement a con-
troller u which minimizes the cost function

J (ζ, u) �
∫ ∞

t0

r (ζ (τ) , u (τ)) dτ (5)

subject to (4) while obeying supt(ui) ≤ μsat ∀i = 1, . . . ,m,
where μsat ∈ R>0 is the control effort saturation limit. In (5),
r : RN × Rm → [0,∞] is the instantaneous cost defined as

r (ζ, u) = Qx(x) +

M∑
i=1

si (x, zi)Qz (zi) + Ψ(u) + P (ζ)

(6)
where Qx, Qz : Rn → R≥0 are user-defined positive definite
functions that penalize the agent and obstacle states. The Qz(zi)
term in (6) only influences the cost when the obstacles are
sensed. The smooth scheduling function si : Rn × Rn → [0, 1]
that allows the avoidance region states in the detection radius to
be penalized, satisfies si = 0 for ‖x− zi‖ > rd and si = 1 for
‖x− zi‖ ≤ r̄. In (6),Ψ : Rm → R is a positive definite function
penalizing the control input u, defined as

Ψ(u) � 2
m∑
i=1

[∫ ui

0

(
μsatri tanh

−1

(
ξui

μsat

))
dξui

]
(7)

where ui is the ith element of the control u, ξui
is an integration

variable, and ri is the diagonal elements which make up the
symmetric positive definite weighting matrixR ∈ Rm×m where
R � diag{R}, and R � [r1, . . . , rm] ∈ R1×m [19], [21], [48].
The selection of the input penalizing function in (7) is motivated
such that a bounded form of control policy can be derived from
the HJB [48]. Moreover, tanh(·) is used in (7) because it is a
continuous one-to-one real-analytic function, tanh(0m) = 0m,

and tanh−1(
ξui

μsat
) is monotonically increasing. The function

P : RN → R in (6), called the avoidance penalty function, is
a positive semidefinite compactly supported function defined as

P (ζ) �
M∑
i=1

⎛
⎜⎝min

⎧
⎪⎨
⎪⎩
0,

d (x, zi)
2 − r2d(

d (x, zi)
2 − r2a

)2

⎫
⎪⎬
⎪⎭

⎞
⎟⎠

2

. (8)

Remark 4: The avoidance penalty function in (8) is zero
outside of the compact set D, and yields an infinite penalty
when ‖x− zi‖ = ra for any i ∈ M. Other penalty/avoidance
functions can be used; see [33] for a generalization of avoidance
functions. The avoidance penalty function in (8) modifies the
one found in [33], which studies a generalization of avoidance
penalty functions. Since the term in the denominator has quartic
growth compared to only quadratic growth, the function in (8)
is scaled differently compared to the one found in [33]. Other
growth factors can also be used which affect the rate at which
the agent penalizes the avoidance regions once it detects them.

Assumption 4: There exist constants q
x
, qx, qz, qz ∈ R>0

such that q
x
‖x‖2 ≤ Qx(x) ≤ qx‖x‖2 for all x ∈ Rn, and

q
z
‖zi‖2 ≤ Qz(zi) ≤ qz‖zi‖2 for all zi ∈ Rn and i ∈ M.
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The infinite-horizon scalar value function for the optimal
value function, denoted by V ∗ : RN → R≥0, is expressed as

V ∗ (ζ) = min
u(τ)∈U |τ∈R≥t

∫ ∞

t

r (ζ (τ) , u (τ)) dτ (9)

where U ⊂ Rm denotes the set of admissible inputs. For the
stationary solution, the HJB equation, which characterizes the
optimal value function is given by

0 =
∂V ∗ (ζ)

∂ζ
(F (ζ) +G (ζ)u∗ (ζ)) + r (ζ, u∗ (ζ))

=
∂V ∗ (ζ)

∂x
(f(x) + g(x)u∗ (ζ))

+

M∑
i=1

∂V ∗ (ζ)
∂zi

(Fi (x, zi)hi (zi)) + r (ζ, u∗ (ζ)) (10)

with the condition V ∗(0) = 0, where u∗ : RN → Rm is the
optimal control policy. Taking the partial derivative of (10) with
respect to u∗(ζ), setting it to zero (i.e., u∗(ζ) is the minimizing
argument) and solving for u∗(ζ) results in

u∗ (ζ) = −μsatTanh

(
R−1G (ζ)T

2μsat
(∇V ∗ (ζ))T

)
. (11)

The HJB in (10) uses both the agent and avoidance region
dynamics.3 However, because each avoidance region is modeled
as in (3), the terms that include them are zero when the regions
are not detected; hence, they do not affect the HJB. Furthermore,
the analytical expression in (11) requires knowledge of the
optimal value function. However, the analytical solution for
the HJB, i.e., the value function, is not feasible to compute in
general cases. Therefore, an approximation is sought using a
neural network approach.

III. VALUE FUNCTION APPROXIMATION

Recent developments in ADP have resulted in computation-
ally efficient StaF kernels to approximate the value function [22].
To facilitate the development let χ ⊂ RN be a compact set, with
x and all zi in the interior ofχ. Based on the StaF method in [22]
and [50], after adding and subtracting a bounded avoidance
function Pa(ζ), the optimal value function and controller can
be approximated as

V ∗(y) = Pa(y) +W (y)Tσ (y, c (ζ)) + ε (ζ, y) (12)

u∗(y) = − μsat Tanh

(
R−1G(y)T

2μsat

×
(
∇Pa(y)

T +∇σ (y, c (ζ))T W (ζ)

+∇W (ζ)T σ (y, c (ζ)) +∇ε (y, ζ)T
))

(13)

where c(ζ) ∈ (Br(ζ))
L are centers around the current concate-

nated state ζ, L ∈ Z>0 is the number of centers, and y ∈ Br(ζ)

3The following Lyapunov-based stability analysis indicates that the states
ζ(t) remain outside of Ω, i.e. ζ(t) /∈ Ω. Hence, the gradient is never taken over
the discontinuity.

where Br(ζ) is a small compact set around the current state
ζ ∈ χ. In (12), W : χ → RL is the continuously differentiable
ideal StaF weight function that changes with the state dependent
centers, ε : χ → R is the continuously differentiable bounded
function reconstruction error, and σ : χ → RL is a concatenated
vector of StaF basis functions such that

σ (ζ, c (ζ)) =

⎡
⎢⎢⎢⎣

σ0 (x, c0(x))
s1 (x, z1)σ1 (z1, c1 (z1))

...
sM (x, zM )σM (zM , cM (zM ))

⎤
⎥⎥⎥⎦ (14)

where σ0(x, c0(x)) : Rn → RPx and σi(zi, ci(zi)) : Rn →
RPzi for i ∈ M are strictly positive definite, continuously
differentiable StaF kernel function vectors, ci : Rn → Rn for
i ∈ {0, 1, . . . ,M} are state-dependent centers, and the dimen-
sion of the concatenated vector of StaF basis functions σ is
L = Px +

∑M
i=1 Pzi . The formation of the vector of basis func-

tions in (14) allows for certain weights of the approximation to be
constant when the agent and no-entry zones are not in the detec-
tion regions. This formulation introduces a sparse-like approach
because the basis functions that correlate to the no-entry zones
are off due to the scheduling function si,when they are outside of
the detection regions. Hence, approximation of the value func-
tion is only influenced by the no-entry zones when they are in the
detection regions Di. However, the optimal value function and
controller are not known in general; therefore, approximations
V̂ : RN × RN × RL → R and û : RN × RN × RL → Rm are
used where

V̂
(
y, ζ, Ŵc

)
� Pa(y) + ŴT

c σ (y, c (ζ)) (15)

û
(
y, ζ, Ŵa

)
� − μsat Tanh

(
R−1G(y)T

2μsat

×
(
∇σ (y, c (ζ))T Ŵa +∇PT

a (y)
))

. (16)

In (15) and (16), V̂ and û are evaluated at a point y ∈ Br(ζ)
using StaF kernels centered at ζ, while Ŵc, Ŵa ∈ RL are the
weight estimates for the ideal weight vector W . In actor-critic
architectures, the estimates V̂ and û replace the optimal value
function V ∗ and optimal policy u∗ in (10) to form a residual
error δ : RN × RN × RL × RL → R known as the Bellman
error (BE), which is defined as

δ
(
y, ζ, Ŵc, Ŵa

)
� ∇V̂

(
y, ζ, Ŵc

)(
F (y)

+G(y)û
(
y, ζ, Ŵa

))
+ r

(
y, û
(
y, ζ, Ŵa

))
. (17)

The aim of the actor and critic is to find a set of weights which
minimize the BE for all ζ ∈ RN .

Remark 5: Unlike the function P, which is not finite when
‖x− zi‖ = ra, for any i ∈ M, the function Pa satisfies Pa = 0
when x, zi /∈ Di for each i ∈ M, and for all 0 ≤ P (ζ) ≤
P a, and ‖∇Pa(ζ)‖ ≤ ‖∇Pa‖ for all ζ ∈ RN . An example
of Pa(ζ) includes Pa(ζ) �

∑M
i=1 Pa,i(x, zi) where Pa,i �

(min{0, ‖x−zi‖2−r2d
(‖x−zi‖2−r2a)

2+rε
})2 for rε ∈ R>0, or see [30]–[32] for

other examples of bounded avoidance functions.
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IV. ONLINE LEARNING

To implement the approximations online, at a given time
instance t, the BE δt : R≥0 → R is evaluated as

δt(t) � δ
(
ζ(t), ζ(t), Ŵc(t), Ŵa(t)

)
(18)

where ζ denotes the state of the system in (4) starting at initial
time t0 with initial condition ζ0, while Ŵc(t) and Ŵa(t) denote
the critic weight and actor weight estimates at time t, respec-
tively. The controller which influences the state x(t) ⊂ ζ(t) is

u(t) = û
(
ζ(t), ζ(t), Ŵa(t)

)
. (19)

Simulation of experience is used to learn online by extrap-
olating the BE to unexplored areas of the state space [22],
[23]. Off-policy trajectories {xk : Rn × R≥0 → Rn}Nk=1 are
selected by the critic such that each xk maps the current state
x(t) to a point xk(x(t), t) ∈ Br(x(t)). The extrapolated BE
δk : R≥0 → R for each ζk takes the form

δk(t) = ŴT
c (t)ωk(t) + ωPk(t) + r (ζk(t), ûk(t)) (20)

where ζk = [xT
k , Z(t) ]T

ωPk(t) � ∇Pa (ζk(t))

(
F (ζk(t))

+G (ζk(t)) û
(
ζk(t), ζ(t), Ŵa(t)

))

ωk(t) � ∇σ (ζk(t), c (ζ(t)))

(
F (ζk(t))

+G (ζk(t)) û
(
ζk(t), ζ(t), Ŵa(t)

))

and the extrapolated policies are

ûk(t) � − μsat Tanh

(
R−1G (ζk(t))

2μsat

×
(
∇σ
(
ζk(t), c (ζ(t))

)T
Ŵa(t) +∇PT

a (ζk(t))
))

.

(21)

The concurrent learning-based least squares update laws are
designed as

˙̂
Wc(t) = − Γ(t)

(
kc1ω(t)

ρ(t)
δ(t) +

kc2
N

N∑
k=1

ωk(t)

ρk(t)
δk(t)

)

(22)

Γ̇(t) = βΓ(t)− kc1Γ(t)
ω(t)ωT (t)

ρ2(t)
Γ(t)

− kc2
N

Γ(t)
N∑

k=1

ωk(t)ω
T
k (t)

ρ2k(t)
Γ(t), Γ (t0) = Γ0.

(23)

Furthermore, in (22) and (23) ρ(t) � 1 + γ1ω(t)
Tω(t), ρk(t) �

1 + γ1ωk(t)
Tωk(t) are normalizing factors, kc1,kc2, γ1 ∈ R>0

are adaptation gains, β ∈ R>0 is a forgetting factor, and

ω(t) � ∇σ
(
ζ(t), c (ζ(t))

)(
F (ζ(t))

+G (ζ(t)) û
(
ζ(t), ζ(t), Ŵa(t)

))
.

The policy weights are updated to follow the critic weights using
the actor update law designed as

˙̂
Wa(t) = −Γa

(
ka1

(
Ŵa(t)− Ŵc(t)

)
+ ka2Ŵa(t)

+ kc1Ga1(t)
ωT (t)

ρ(t)
Ŵc(t)

+
kc2
N

N∑
k=1

Ga1,k(t)
ωT
k (t)

ρk(t)
Ŵc(t)

)
(24)

where ka1, ka2 ∈ R>0 are adaptation gains, Γa ∈ RL×L is a
positive definite constant matrix, and

Ga1(t) � μsat∇σ (ζ(t), c (ζ(t)))G (ζ(t))

×
(
Tanh

(
1

ku
ˆ̄D(t)

)
− Tanh

(
R−1

2μsat

ˆ̄D(t)

))

Ga1,k(t) � μsat∇σ (ζk(t), c (ζ(t)))G(ζk(t))

×
(
Tanh

(
1

ku
ˆ̄Dk(t)

)
− Tanh

(
R−1

2μsat

ˆ̄Dk(t)

))

where ku ∈ R>0 is a constant, ˆ̄D(t) � GT (ζ(t))(∇σT (ζ(t),

c(ζ(t)))Ŵa(t) +∇PT
a (ζ(t))), and ˆ̄Dk(t) � GT (ζk(t))(∇σT

(ζk(t), c(ζ(t)))Ŵa(t) +∇PT
a (ζk(t))). Similar to the prelim-

inary work in [53], a projection-based update law for the
actor weight estimates can be used to simplify the stabil-

ity analysis. In such a case, (24) would become ˙̂
Wa(t) =

proj{−Γaka1(Ŵa(t)− Ŵc(t))}, where proj{·} denotes a
smooth projection operator which bounds the weight estimates,
see [54, Ch. 4] for details of the projection operator.

Remark 6: Rather than extrapolating the entire state vector
of the system, as designed in [22], [23], and [51], only the con-
trolled states, i.e., the agent’s states, are extrapolated to perform
simulation of experience. Compared to experience replay results
such as [21], which record a history stack of prior input–output
pairs, the simulation of experience approach in this result only
uses extrapolated states within a time-varying neighborhood of
the current agent state. This is motivated by the StaF approx-
imation method, which only provides a sufficient approxima-
tion of the value function a neighborhood of the current agent
state.

V. STABILITY ANALYSIS

For notational brevity, time dependence of functions are
henceforth suppressed. Define W̃c � W − Ŵc and W̃a � W −
Ŵa as the weight estimation errors, and let ‖(·)‖ � supπ∈Bξ

‖(·)‖, where Bξ ⊂ χ× RL × RL is a compact set. Then, the
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BEs in (18) and (20) can be expressed as

δt = −ωT W̃c +GT
a1W̃a +GT

a2W̃a +Δ(ζ)

δk = −ωT
k W̃c +GT

a1,kW̃a +GT
a2,kW̃a +Δk (ζ) .

The terms Ga2 and Ga2k are defined as Ga2 � μsat∇σG

(sgn( ˆ̄D)− Tanh( 1
ku

ˆ̄D)) and Ga2,k � μsat∇σkGk(sgn(
ˆ̄Dk)−

Tanh( 1
ku

ˆ̄Dk)). The functions Δ, Δk : RN → R are uniformly

bounded over χ such that the residual bounds ‖Δ‖, ‖Δk‖
decrease with decreasing ‖∇W‖ and ‖∇ε‖.4

To facilitate the analysis, the system states x and selected
states xk are assumed to satisfy the following inequalities.

Assumption 5: There exists constants T ∈ R>0 and
c1, c2, c3 ∈ R≥0, such that

c1IL ≤ 1

N

N∑
k=1

ωk(t)ω
T
k (t)

ρ2k(t)

c2IL ≤
∫ t+T

t

(
1

N

N∑
k=1

ωk (τ)ω
T
k (τ)

ρ2k (τ)

)
dτ ∀t ∈ R≥t0

c3IL ≤
∫ t+T

t

(
ω (τ)ωT (τ)

ρ2 (τ)

)
dτ ∀t ∈ R≥t0

where at least one of the constants c1, c2, or c3 is strictly
positive [22].

In general, c1 can be made strictly positive by sampling
redundant data, i.e, choosing N 
 L, and c2 can be made
strictly positive by sampling extrapolated trajectories at a high
frequency. Generally, c3 is strictly positive provided the system
is persistently excited (PE), which is a strong assumption that
cannot be verified online. Since only one constant has to be
strictly positive, ωk can be selected such that c1 > 0 or c2 > 0,
since ωk is a design variable. Unlike the strong PE given by the
third inequality in Assumption 5, the first two inequalities can
be verified online.

Remark 7: Instead of injecting potentially destabilizing
dither signals into the physical system to satisfy the PE con-
dition, virtual excitation can be obtained by using the sample
states. Specifically, the sample states xk(t) can be selected from
a sampling distribution, such as a normal or uniform distribution,
or they can be selected to follow a highly oscillatory trajectory.

Lemma 1: Provided Assumption 5 is satisfied and λmin

{Γ−1
0 } > 0, the update law in (23) ensures that the least squares

gain matrix Γ satisfies

ΓIL ≤ Γ(t) ≤ ΓIL (25)

where the bounds Γ and Γ are defined as

Γ =
1(

λmax

{
Γ−1
0

}
+ kc1+kc2

4γ1β

)

Γ =
1

min
{
(kc1c3 + kc2 max {c1T, c2}) , λmin

{
Γ−1
0

}}
e−βT

4For an arbitrary function φ, φk is defined as φk � φ(ζk(t)).

where λmin{·}, λmax{·} denote the minimum and maximum
eigenvalues, respectively [22].

To facilitate the analysis, consider a candidate Lyapunov
function VL : RN+2L × R≥t0 → R given by

VL(Y, t) = V ∗ (ζ) +
1

2
W̃T

c Γ−1(t)W̃c

+
1

2
W̃T

a Γ−1
a W̃a +

1

2

M∑
i=1

zTi zi (26)

where V ∗ is the optimal value function, and Y = [ζT , W̃T
c ,

W̃T
a ]T . Since the optimal value function is positive definite,

using (25) and [55, Lemma 4.3], (26) can be bounded as

νl (‖Y ‖) ≤ V (Y, t) ≤ νl (‖Y ‖) (27)

for all t ∈ R≥t0 and for all Y ∈ Rn+1+2˜L, where νl, νl :
R≥0 → R≥0 are class K functions. To facilitate the following
analysis, let νl : R≥0 → R≥0 be a class K function such that

νl (‖Y ‖) ≤ q

2
‖x‖2 + q

z

4

M∑
i=1

si (x, zi) ‖zi‖2

+

(
ka1 + ka2

8

)∥∥∥W̃a

∥∥∥
2

+
kc2c

8

∥∥∥W̃c

∥∥∥
2

(28)

and let c ∈ R>0 be a constant defined as

c � β

2kc2Γ
+

c1
2
. (29)

The sufficient conditions for the subsequent analysis are given
by

ka1 + ka2
2

≥ max

{
ϕac,

‖∇W‖GR

λmin {Γa} ‖∇σT ‖
}

(30)

kc2c ≥ ϕac (31)

1

2
q
z
≥ Lz (32)

ν−1
ι (ι) < ν−1

ι (νι (ξ)) (33)

where Lz is the Lipschitz constant such that ‖hi(zi)‖ ≤ Lz‖zi‖
satisfying assumption (2) and ϕac ∈ R>0 is defined in the
appendix.

Theorem 1: Consider the augmented dynamic system (4) and
the dynamic systems in (1) and (3). Provided Assumptions 1–5
are satisfied along with the sufficient conditions in (30)–(33),
then system state ζ(t), input u(t), and weight approximation
errors W̃a and W̃c are Uniformly Ultimately Bounded (UUB);
furthermore, states ζ(t) starting outside of Ω remain outside
of Ω.

Proof: Consider the Lyapunov function candidate in (26).
The time derivative is given by

V̇L = V̇ ∗ + W̃T
c Γ−1

(
Ẇ − ˙̂

Wc

)
+ W̃T

a Γ−1
a

(
Ẇ − ˙̂

Wa

)

− 1

2
W̃T

c Γ−1Γ̇Γ−1W̃c +
M∑
i=1

zTi (Fihi) .
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Using the chain rule, the time derivative of the ideal weights Ẇ
can be expressed as

Ẇ = ∇W (F +Gu) . (34)

Substituting in (22)–(24) with (34) yields

V̇L = ∇V ∗F +∇V ∗Gu+

M∑
i=1

zTi (Fihi)

+ W̃T
c Γ−1

(
kc1Γ

ω

ρ
δt +

kc2
N

Γ

N∑
k=1

ωk

ρk
δk

)

+ W̃T
a ka1

(
Ŵa − Ŵc

)
+ W̃T

a ka2Ŵa(t)

+ W̃T
a

(
kc1Ga1

ωT

ρ
− kc2

N

N∑
k=1

Ga1,k
ωT
k

ρik

)
Ŵc(t)

+
(
W̃T

c Γ−1 + W̃T
a

)
∇W (F +Gu)− 1

2
W̃T

c Γ−1

×
(
βΓ− kc1Γ

ωωT

ρ2
Γ− kc2

N
Γ

N∑
k=1

ωkω
T
k

ρ2k
Γ

)
Γ−1W̃c.

Using (6) with (10), (18)–(21), Young’s inequality, and Lemma
1, the Lyapunov derivative can be bounded as

V̇L ≤ − q
x
‖x‖2 − q

z

2

M∑
i=1

si (x, zi) ‖zi‖2

− 2

(
ka1 + ka2

8

)∥∥∥W̃a

∥∥∥
2

− 2

(
kc2c

8

)∥∥∥W̃c

∥∥∥
2

−
[∥∥∥W̃c

∥∥∥
∥∥∥W̃a

∥∥∥
]
⎡
⎢⎣

kc2c

2
−ϕac

2

−ϕac

2

ka1 + ka2
4

⎤
⎥⎦
⎡
⎣
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥

⎤
⎦

− q
z

2

M∑
i=1

si (x, zi) ‖zi‖2 +
M∑
i=1

zTi (Fihi) + ι

where ι ∈ R>0 is the positive constant defined in the appendix.
Using (28), (30), and (31), the Lyapunov derivative reduces to

V̇L ≤ − νl (‖Y ‖)− (νl (‖Y ‖)− ι)

− q
z

2

M∑
i=1

si (x, zi) ‖zi‖2 +
M∑
i=1

zTi (Fihi) .

For the case when x, zi /∈ D ∀i ∈ M, the avoidance
region dynamics in (3) can be used conclude that,
q
z

2

∑M
i=1 si(x, zi)‖zi‖2 +

∑M
i=1 z

T
i (Fihi) = 0; therefore

V̇L ≤ −νl (‖Y ‖)− (νl (‖Y ‖)− ι) .

Provided the sufficient conditions in (30), (31), and (33) are met,
then

V̇L ≤ −νl (‖Y ‖) , ∀Y ∈ χ ∀ ‖Y ‖ ≥ ν−1
l (ι) .

For the case when ζ ∈ W, Assumption 2 is used to conclude
that

V̇L ≤ − νl (‖Y ‖)− (νl (‖Y ‖)− ι)

− q
z

2

M∑
i=1

si (x, zi) ‖zi‖2 +
∑
i∈M

Lz ‖zi‖2 .

Using the fact that infx,zi∈Wi
si(x, zi) = 1 for any i ∈ M, and

provided the sufficient conditions in (30)–(33) hold,

V̇L ≤ −νl (‖Y ‖) ∀ ‖Y ‖ ≥ ν−1
l (ι) . (35)

Hence, (26) is nonincreasing.
If ‖x− zi‖ → ra for some i ∈ M, then P (ζ) → ∞, and

V ∗(ζ) → ∞. If V ∗(ζ) → ∞ then VL(Y ) → ∞. Since this is
a contradiction to (26) being nonincreasing, then ∀ζ(t0) /∈ Ω,
ζ(t) /∈ Ω ∀t ≥ t0. Hence, V ∗(ζ) is finite and ∇V ∗(ζ) exists for
all ‖x− zi‖ �= ra.

After using (27), (33), and (35), [55, Th. 4.18] can be invoked
to conclude that Y is uniformly ultimately bounded such that
lim supt→∞ ‖Y (t)‖ ≤ νι

−1(νι(ν
−1
ι (ι))). Since Y ∈ L∞, it fol-

lows that ζ, W̃c, W̃a ∈ L∞. Since W is a continuous function of
ζ, W ◦ ζ ∈ L∞. Hence, Ŵa, Ŵc ∈ L∞ which implies u ∈ L∞.
�

Remark 8: The sufficient condition in (30) can be satisfied
by increasing the gain ka2 and selecting a gain Γa such that
λmin{Γa} is large. This will not affect the sufficient conditions
in (31) and (32). Selecting extrapolated trajectories xk such that
c is sufficiently large will aid in satisfying (31) without affecting
(30) or (32). In addition, selecting StaF basis such that ‖∇σ‖ is
small will help satisfy the conditions in (30) and (31). To satisfy
the sufficient condition in (32) without affecting (30) or (31),
it suffices to select a function Qz according to Assumption 4
such that q

x
is larger than the Lipschitz constant Lz . Provided

the StaF basis functions are selected such that ‖ε‖, ‖∇ε‖, and
‖∇W‖ are small, and ka2 and c are selected to be sufficiently
large, then the sufficient condition in (33) can be satisfied.

Remark 9: The value function V ∗ is dependent on the no-
entry zone states, and since it is used as a candidate Lyapunov
function, (26) is also dependent on the states zi. Therefore,
through proper construction of (6), it is shown in Theorem 1
that since VL is nonincreasing there is no collision between
the agent x and no-entry zones zi. Other than Assumptions 2
and 3, there is no restriction on the movement of the obstacles.
Rather, the states of the obstacles are included in the candidate
Lyapunov function because the controlled agent must move
such that collision is avoided, making the candidate Lyapunov
function nonincreasing.

VI. SIMULATIONS

A. Mobile Robot

To demonstrate the developed approach in Sections II–V, a
simulation is provided for unicycle kinematic equations, where
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TABLE I
INITIAL CONDITIONS AND PARAMETERS SELECTED FOR THE

MOBILE ROBOT SIMULATION

f(x(t)) = 03×1 and

g(x(t)) =

⎡
⎣
cos(x3(t)) − sin(x3(t)) 0
sin(x3(t)) cos(x3(t)) 0

0 0 1

⎤
⎦ .

Three heterogeneous no-entry zones are considered with oscilla-
tory linear dynamics; the third state was selected to be stationary
for each no-entry zone for the entirety of the simulation. The
function Fi(x, zi) is selected as

Fi (x, zi) =

⎧
⎪⎪⎨
⎪⎪⎩

0, ‖x− zi‖ > rd

Ti (x, zi) , rd ≥ ‖x− zi‖ > r̄

1, ‖x− zi‖ ≤ r̄

(36)

where Ti(x, zi) � 1
2 + 1

2 cos(π(
‖x−zi‖−r̄

rd−r̄ )) with the smooth
scheduling function si(x, zi) = Fi(x, zi), and Pa(ζ) is se-
lected as Pa(ζ) = 0. For value function approximation, the
StaF basis σ0(x, c(x)) = [k0,1, k0,2, k0,3, k0,4 ]

T is used

where k0,i � k(x, ci(x)) = ex
T (x+0.05di) − 1, i = 1, 2, 3, 4,

and the offsets are selected as d1 = [1, 0, 0 ]T , d2 =
[−0.333, 0.943, 0 ]T , d3 = [−0.333, −0.471, 0.471 ]T , and
d4 = [−0.333, −0.471, −0.471 ]T . The StaF basis σi for each
obstacle is selected to be the same as the agent, except that
the state changes from x to zi. To perform BE extrapola-
tion, five points are selected at random each time step from
a 0.05ν(x(t))× 0.05ν(x(t)) uniform distribution centered at

the current state, where ν(x(t)) � x(t)T x(t)
1+x(t)T x(t)

. The initial critic
and actor weights and gains are selected as Wc(0) = Wa(0) =
0.4 × 116×1,Γc(0) = 300 × I16, andΓa = I16.Table I summa-
rizes the selected parameters.

B. Results

Figs. 2(a) and (b) shows that the agent and policy con-
verge while detecting and navigating around the no-entry zones.
Specifically, Fig. 2(b) shows that the agent’s policy changes
when the agent detects each no-entry zone shown in Fig. 2(e),
and hence, modifies the agent’s trajectory shown in Fig. 2(f).
Fig. 2(c) and (d) shows that the critic and actor weights for
value function approximation remain bounded. However, they
can not be compared to the ideal values since they are unknown
due to the StaF nature of the function approximation method.

Fig. 2. States, control policy, and weight estimates are shown in addition to
the distances between the agent and each avoidance region center and the agent’s
phase space portrait. Fig. 2(a) shows that the agents states converge to the origin.
The input, shown in Fig. 2(b), causes the agent to steer off course as shown by the
trajectory change of x2 in Fig. 2(a). The distance between the agent’s center and
each avoidance region is shown in Fig. 2(e); the solid horizontal line represents
ra = 0.1, and the two dashed horizontal lines represent rd = 0.6 and r = 0.55,
respectively. (a) The agent states. (b) The agent approximate optimal input. (c)
The critic weight estimates. (d) The actor weight estimates. (e) The distance
between the agent and avoidance regions. (f) The phase space portrait for x1(t)
and x2(t) of the agent.

C. Nonlinear System

In addition to the mobile robot simulation, a simulation for a
nonlinear system is performed with system dynamics (see [56,
Ch. 5.2]) given by

f (x(t)) =

⎡
⎢⎣

−x1(t) + x2(t),( − 1
2x1(t)

− 1
2x2(t)

(
1− (cos (2x1(t)) + 2)2

)
)
⎤
⎥⎦

and

g (x(t)) =

[
sin (2x1(t)) + 2, 0,

0, cos (2x1(t)) + 2

]
.

Three heterogeneous obstacles are considered. The first
and second obstacles were designed to converge to ze1 =
[−0.8, 0.5 ]T and ze2 = [−0.1, −1.1 ]T , respectively, while
the third obstacle oscillated around ze3 = [0, 0 ]T at a radius
of 1.13. The functions Fi(x, zi), si(x, zi), and Pa(ζ) are
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TABLE II
INITIAL CONDITIONS AND PARAMETERS SELECTED FOR THE

NONLINEAR SYSTEM SIMULATION

selected to be the same as the mobile robot simulation.
The basis used for value function approximation for the
agent is selected as σ0(x, c(x)) = [kσ,1, kσ,2, kσ,3 ]

T , where

kσ,i � kσ(x, ci(x)) = ex
T (x+0.005ν(x(t))di) − 1, i = 1, 2, 3

where ν(x(t)) is defined in the mobile robot simulation and the
offsets are selected as d1 = [0, 1 ]T , d2 = [−0.866, −0.5 ]T ,
d3 = [0.866 −0.5 ]T . Moreover, the basis used for the each
obstacles is selected to be the same as for the agent. A single
point was selected from a 0.005ν(x(t))× 0.005ν(x(t)) uniform
distribution centered at the current state and is used to perform
BE extrapolation. A projection algorithm was used on the
actor weight estimates. Table II shows the selected parameters,
while the initial actor, critic weights, and least-squares
gains are selected as Wc(0) = Wa(0) = 0.4 × 112×1,
Γc(0) = 1000 × I12, and Γa = I12, the selected parameters are
shown in the table.

D. Results

Fig. 3(a) and (b) shows that the agent and policy converge
to the origin. However, when a no-entry zone comes into the
sensing radius of the agent, shown in Fig. 3(e), the input in
Fig. 3(b) steers the agent off course. This is seen by the change
in the agent’s trajectory and is shown in Fig. 3(f). Moreover,
when the agent senses the no-entry zones, their basis is turned
ON and the corresponding actor and critic weights are updated
as seen in Fig. 3(c) and (d). It is seen that the weights remain
bounded. Similar to the previous simulation, the weights can not
be compared to the ideal values since they are unknown.

VII. EXTENSION TO UNCERTAIN NUMBER OF AVOIDANCE

REGIONS AND UNCERTAIN SYSTEMS

In Section II–V, the HJB in (10) required the number of no-
entry zones in the operating domain to be known, which may
not always be available. In this section, an extension is provided
which alleviates the need to know how many no-entry zones are
in the operating domain. Furthermore, by adding and subtracting
Pa(x, Z), the following value function is introduced:

V ∗ (x(t), Z(t)) = Pa (x(t), Z(t)) + V # (x(t), Z(t)) (37)

where V #(x(t), Z(t)) is an approximation error of the opti-
mal value function. Furthermore, the function V #(x, Z) can
be interpreted as time-varying map V #

t : Rn × R≥t0 such that

Fig. 3. States, control policy, and weight estimates for the nonlinear system
simulation are shown in addition to the distances between the agent and each
avoidance region center and the agent’s phase space portrait. Fig. 3(a) shows that
the agents states converge to the origin, but go off course when obstacles are
sensed. Fig. 3(b) shows the input for the agent, which acts abruptly as obstacles
are sensed. The distance between the agent’s center and each avoidance region
is shown in Fig. 3(e); the solid horizontal line represents ra = 0.1, and the
two dashed horizontal lines represent rd = 0.7 and r = 0.5, respectively. (a)
The agent states. (b) The agent approximate optimal input. (c) The critic weight
estimates. (d) The actor weight estimates. (e) The distance between the agent
and avoidance regions. (f) The phase space portrait for x1(t) and x2(t) of the
agent.

V #
t (x, t) = V #(x, Z) [57]. Therefore, (37) is rewritten as

V ∗ (x(t), Z(t)) = Pa (x(t), Z(t)) + V #
t (x(t), t) . (38)

The optimal controller u∗ is admissible; hence, the value func-
tion V ∗(x, Z) is finite and x, Z /∈ Ω. Therefore, Pa(x, Z) is
continuous for x, Z /∈ Ω, hence (38) can be approximated via
the StaF approximation method. However, because time does
not lie on a compact domain, V #

t can not be approximated
directly using time as an input to the NN. To address this
technical challenge, the mapping φ : R≥t0 → [0, α], α ∈ R>0

is introduced such that V #
t (x(t), t) = V #

t (x(t), φ−1(κ)) =
V #
κ (x(t), κ) where κ = φ(t). Now, κ lies on a compact set

and the function V #
κ (x, κ) can be approximated using the StaF

method as

V ∗ (x(t), Z(t)) = Pa (x(t), Z(t))

+WT
(
ζ#(t)

)
σ
(
y(t), c

(
ζ#(t)

))
+ ε

(
y(t), ζ#(t)

)
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with σ(ζ#, c(ζ#)) = [ σ0(x,c0(x))
s0(x)σ1(κ,c1(κ))

], where ζ# � [xT , κ]T ,

y � [yTx , yκ]
T ∈ Br(ζ#), and s0 : Rn → [0, 1] is a smooth

function such that s0(02×1) = 0.
Moreover, sincePa(x, Z) =

∑
i∈M Pa,i(x, zi) is designed to

be a bounded positive semidefinite symmetric function, it fol-
lows that ∂Pa,i(x,z1,...,zm)

∂x = −∂Pa,i(x,z1,...,zm)
∂zi

for all i ∈ M;
hence, the HJB is represented as

0 = r(x, Z, u) +
∂V #

κ

(
ζ#
)

∂ζ#
(
F#

(
ζ#
)
+G#

(
ζ#
)
u
)

+
M∑
i=1

∂Pa,i

∂x
(f(x) + g(x)u− Fi (x, zi)hi (zi)) (39)

where F#(ζ#) � [ f(x)T , ∂κ
∂t

]T , and G#(ζ#) � [g(x)T ,

0m×1]
T .The HJB in (39) requires the knowledge of the uncertain

dynamics f(x) and hi(zi). Using a NN approximator, the time
derivative of Pa is written as

Ṗa =
M∑
i=1

∂Pa,i

∂x
(f(x) + g(x)u− Fi (x, zi)hi (zi))

= Yp(x, Z)θ + εp(x, Z)

where Yp : Rn × RMn → R1×lp is a selected basis such that
Yp(x, Z) = 01×lp when ‖x− zi‖ > rd, for all i ∈ M, θ ∈ Rlp

is an unknown weight, and εp : Rn × RMn → R is the unknown
function approximation error. Likewise the agent drift dynamics
can be represented as f(x(t)) = Yf (x(t))Ξ + εf (x(t)) with
Yf : Rn → Rn×lf being a known basis, Ξ ∈ Rlf an unknown
weight, and εf : Rn → Rn the function approximation error.5

Assumption 6: There exists constants εp, εf , Yf , Yp, θ, Ξ ∈
R>0 such that supζ∈χ ‖Yp(x, Z)‖ ≤ Yp, supζ∈χ ‖εp(x, Z)‖ ≤
εp, supx∈χ ‖Yf (x)‖ ≤ Y f , supx∈χ ‖εf (x)‖ ≤ εf , ‖θ‖ ≤ θ,
and ‖Ξ‖ ≤ Ξ [23], [58].

Using the estimates Ŵc, Ŵa, θ̂, and Ξ̂ in (39), the approxi-
mate BE δ̂ : Rn+1 × Rn+1 × RN × RL × RL × Rlf+lp → R
is defined as

δ̂
(
y, ζ#, Z, Ŵc, Ŵa, θ̂, Ξ̂

)
� Yp (yx, Z) θ̂

+ω#
(
y, ζ#, Z, Ŵa, Ξ̂

)T
Ŵc+r

(
yx, Z, û

(
y, ζ#, Z, Ŵa

))

(40)

where ω#(y, ζ#, Z, Ŵa, Ξ̂) � ∇σ(y, c(ζ#))(Y #(y)Ξ̂# +
G#(y)û(y, ζ#, Z, Ŵa)), Y #(y) � [Yf (yx)

T , ∂yκ

∂t
]T ,

Ξ̂# � [ Ξ̂
01×1

0lf×1

1
], and

û
(
y, ζ#, Z, Ŵa

)
� −μsat Tanh

(
1

2μsat
R−1G#T (y)

×
(
∇PT

a (yx, Z) +∇σT
(
y, c
(
ζ#
))

Ŵa

))
(41)

where ∇Pa(yx, Z)� [∂Pa(yx,Z)
∂x , ∂Pa(yx,Z)

∂κ ]=[∂Pa(yx,Z)
∂x , 0].

Using δ̂, the instantaneous BEs and approximate policies

5If the agent dynamics f(x(t)) are assumed to be single integrator dynamics
such that f(x(t)) = 0n×1, system identification for the agent is not necessary.

in (18)–(21) are redefined as δt(t) � δ̂(ζ#(t), ζ#(t), Z(t),

Ŵc(t), Ŵa(t), θ̂(t), Ξ̂(t)), δk(t)� δ̂(ζ#k (t), ζ#(t), Z(t), Ŵc(t),

Ŵa(t), θ̂(t), Ξ̂(t)), u(t) � û(ζ#(t), ζ#(t), Z(t), Ŵa(t)), and
ûk(t) � û(ζ#k (t), ζ#(t), Z(t), Ŵa(t)), respectively.

Assumption 7. [22], [23]: There exists a compact set Θ ⊂
Rlp+lf , known a priori, which contains the unknown param-
eter vectors θ and Ξ. Let X̃ � [Ξ̃T , θ̃T ]T = [(Ξ − Ξ̂)T , (θ −
θ̂)T ]T and X̂ = [Ξ̂T , θ̂T ]T denote the total concatenated vector
of parameter estimate errors and parameter estimates, respec-
tively. The estimates X̂ : R≥t0 → Rlp+lf are updated based on
switched update laws of the form

˙̂
X(t) = fXs

(
X̂(t), t

)
, X̂ (t0) ∈ Θ (42)

where s ∈ N is the switching index with {fXs : Rlp+lf ×
R≥t0 → Rlp+lf }s∈N being a family of continuously differen-
tiable functions. There exist a continuously differentiable func-
tion Vθ : Rlp+lf × R≥t0 → R≥0 that satisfies

νθ

(∥∥∥X̃
∥∥∥
)
≤ Vθ

(
X̃, t

)
≤ νθ

(∥∥∥X̃
∥∥∥
)

(43)

∂Vθ

(
X̃, t

)

∂X̃

(
−fXs

(
X̃(t), t

))
+

∂Vθ

(
X̃, t

)

∂t

≤ −Kθ

∥∥∥X̃
∥∥∥
2

+D
∥∥∥X̃
∥∥∥ (44)

for all t ∈ R≥t0 , s ∈ N, and X̃ ∈ Rlp+lf . In (43), νθ, νθ :
R≥0 → R≥0 are class K functions. In (44), Kθ ∈ R>0 is an
adjustable parameter, D ∈ R>0 is a positive constant, and the
ratio D

Kθ
is sufficiently small.6

Remark 10: If f(x(t)) = 0n×1, then Y #(y) and Ξ̂# sim-
plify to Y #(y) � [ 0lf×n,

∂yκ

∂t
]T and Ξ̂# � [

0lf×1

01×1

0lf×1

1
], re-

spectively. Furthermore, Ξ does not need to be estimated for
single integrator dynamics and the concatenated systems then
reduce to X̃ � θ̃ and fXs(X̂(t), t) � fθs(θ̂(t), t).

The conditions (43) and (44) in Assumption 7 imply that
Vθ can be used as a candidate Lyapunov function to show the
parameter estimates θ̂ and Ξ̂ converge to a neighborhood of
the true values. Update laws using CL-based methods can be
designed to satisfy Assumption 7; examples of such update laws
can be found in [59]–[62]. The main result for the extension to
systems with uncertainties and an unknown number of avoidance
regions uses Vθ + VL as a candidate Lyapunov function and is
summarized in the following theorem.

Theorem 2: Provided Assumptions 2–7 along with the suf-
ficient conditions in (30)–(33) are satisfied, and StaF kernels
are selected such that ∇W , ε, ∇ε, are sufficiently small, then
the update laws in (22)–(24) with (41), δt(t), and δk(t) ensure
that the state x and input u(t), and weight approximation errors
W̃a, W̃c, θ̃, Ξ̃ are UUB; furthermore, states x(t), zi(t) starting
outside of Ω remain outside of Ω.

Proof: The proof is a combination of Assumption 7 with
Theorem 1 by using VL + Vθ as a candidate Lyapunov function;
hence, the proof is omitted to alleviate redundancy. �

6The positive constant D can possibly depend on the parameter Kθ .
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VIII. SIMULATION-IN-THE-LOOP EXPERIMENTS

In Section VI, simulations where performed to demonstrate
the developed approach. To demonstrate the robustness of the
developed method, experiments are performed on a quadcopter
avoiding virtual obstacles. Specifically, three experiments are
conducted to demonstrate the ability of an aerial vehicle to be
autonomously regulated to the origin while avoiding dynamic
avoidance regions. For each experiment, a Parrot Bebop 2.0
quadcopter is used as the aerial vehicle. The developed quad-
copter controller requires feedback of its and the obstacle’s
position and orientation (pose). The pose of the quadcopter is
obtained by a NaturalPoint, Inc. OptiTrack motion capture sys-
tem at 120 Hz. Using the robotic operating system (ROS) Kinetic
framework and the bebop_autonomy package developed by [63]
running on Ubuntu 16.04, the control policies are calculated
for the quadcopter. The control policy is communicated from a
ground station which broadcasts velocity commands at 120 Hz
over the 5-GHz Wi-Fi channel. The developed control policy is
implemented as a velocity command to the quadcopter. While
this allows an effective demonstration of the underlying strategy,
improved performance could be obtained by implementing the
policies through acceleration commands that do not rely on the
onboard velocity tracking controller. Such an implementation
could also have additional implications due to input constraints
for acceleration commands.

The experiments are performed using two-dimensional (2-D)
Euclidean coordinates (without the inclusion of altitude) for
the state x(t) for ease of experimental execution and imple-
mentation. However, since the development does not restrict
the state dimension, experiments can also be extended to use
3-D Euclidean coordinates. All three experiments use simplified
quadcopter dynamics represented by (1) with f(x(t)) = 02×1

and g(x(t)) = I2 so that ẋ = u, where, without a loss of gen-
erality, x(t) ∈ R2 is the composite vector of the 2-D Euclidean
coordinates, with respect to the inertial frame and u ∈ R2 are
velocity commands broadcast to the quadcopter. A supplemen-
tary video of the experiment accompanies this article, available
for download7 (included in the submitted files). For the first two
experiments, virtual spheres are used as the dynamic avoidance
regions. The virtual spheres, which evolve according to linear
oscillatory dynamics, are generated using ROS via Ubuntu on
the ground station. The positions of the virtual spheres in the
inertial frame are used in the designed method to interact with
the vehicle, only when each position is within the detection
radius of the quadcopter. The supplementary video shows how
the quadcopter interacts with the virtual spheres. For the third
experiment, one of the virtual spheres is replaced by a remotely
controlled (i.e., human-piloted) quadcopter.

A. Experiment One

The first experiment is performed using the method devel-
oped in Sections II–V. Three virtual avoidance regions are
generated using heterogeneous oscillatory linear dynamics. The
functions Fi(x, zi), si(x, zi) = Fi(x, zi), are selected to be

7[Online]. Available: http://ieeexplore.ieee.org

TABLE III
INITIAL CONDITIONS AND PARAMETERS SELECTED FOR THE EXPERIMENT

the same as in Section VI while Pa(ζ) is selected to be

Pa(ζ) =
∑M

i=1(min{0, ‖x−zi‖2−r2d
(‖x−zi‖2−r2a)

2+rε
})2. For value func-

tion approximation, the agent is selected to have the StaF basis
σ0(x, c(x)) = [xT c1(x), x

T c2(x), x
T c3(x)]

T , where ci(x) =
x+ ν(x)di, i = 1, 2, 3, where ν(x) is redefined as ν(x) �
0.5xT x
1+xT x

and the offsets are selected as d1 = [0, −1 ]T , d2 =

[0.866, −0.5 ]T , and d3 = [−0.866, −0.5 ]T . The StaF basis
σi for each obstacle is selected to be the same as the agent, except
that the state changes from x to zi. Assumption 5 discussed
how the extrapolated regressors ωk are design variables. Thus,
instead of using input–output data from a persistently exciting
system, the dynamic model can be used and evaluated at a single
time-varying extrapolated state to achieve sufficient excitation.
It was shown in [22, Sec. 6.3] that the use of a single time-varying
extrapolated point results in improved computational efficiency
when compared using a large number of stationary extrapolated
states. Motivated by this insight, at each time a single point
is selected at random from a 0.2ν(x(t))× 0.2ν(x(t)) uniform
distribution centered at the current state. The initial critic and
actor weights and gains are selected as Wc(0) = U [0, 4]112×1,
Wa(0) = 112×1, Γc(0) = I12, and Γa = I12, and the selected
parameters are shown in Table III.

B. Experiment Two

The second experiment is performed using the extension in
Section VII and similar to experiment one, three virtual avoid-
ance regions are generated with heterogeneous oscillatory linear
dynamics. The agent has the same basis σ0(x) as the first exper-
iment, while the basis σ1(κ, c(κ)) is selected as σ1(κ, c(κ)) =
[κT c1(κ), κ

T c2(κ), ]
T , where κ = φ(t) � 0.25

0.01t+1 and ci(κ) =
κ+ ν(κ)di, i = 1, 2 where ν(κ) is the same function as in the
first experiment except evaluated at κ and the offsets are selected
as d1 = 0.25, and d2 = 0.05. For the total basis σ(ζ#, c(ζ#)),
the function s0(x) is selected as s0(x) =

ν(x)
0.5 . The initial critic

and actor weights and adaptive gains are selected as as Wc(0) =
U [0, 4]15×1,Wa(0) = 15×1, andΓa = I5.The rest of the param-
eters are selected to remain the same as in the first experiment and
are shown in Table III. Since the agent dynamics are modeled as
single integrator dynamics with f(x(t)) = 02×1, system identi-
fication was not performed on the agent. However, to approxi-
mate θ in Section VII, the ICL method in [62, Sec. IV.B] was
utilized with the basis Yp(x, Z) = Tanh(V T

p ∇Pa(yx, Z)T ),
where Vp = U [−5, 5]13×10 is a constant weight matrix. To keep
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the weight estimates bounded, a projection algorithm was used
similar to [62, Sec. IV.B] and the update laws were turned OFF

when no avoidance regions were sensed. Not performing system
identification on the agent reduces redundancy in parameter
identification because the unknown weight θ in the function
in the time derivative of Pa is already being approximated.
Furthermore, as stated in Footnote 5, if the agent is implemented
using single integrator dynamics, then system identification can
be ignored on the agent drift dynamics f(x(t)).

C. Experiment Three

The third experiment is performed using the extension in
Section VII where the first avoidance region, denoted by the
state z1 and represented by another Parrot Bebop quadcopter,
is flown/controlled manually by hand. The virtual avoidance
regions with states z2 and z3 are simulated as in the previous
experiments. The radii were changed to rd = 1.0, r̄ = 0.7, and
ra = 0.45 meters (m) to reduce the chance of the quadcopters
colliding, the gains qx, qz where changed to qx = diag{0.5, 0.5}
and qz = diag{3.0, 3.0}, and the rest of the parameters remained
the same as in the second experiment.

D. Results

The first experimental validation for the development in
Sections II–V are shown in Figs. 4 and 5. Fig. 4(a) and (b) shows
that the agent, as well as the agent’s control policy, remains
bounded around the origin. Fig. 4(b) shows that the control of
the agent is bounded by 0.5m

s even in the presence of the mobile
avoidance regions. The input does not converge to zero because
of aerodynamic disturbances, when the quadcopter reaches the
origin. The critic and actor weight estimates remain bounded and
converge to steady-state values, as shown in Fig. 4(c) and (d).
However, because of the StaF nature of the StaF approximation
method, the ideal weights are unknown; hence the estimate
cannot be compared to their ideal values. Even though the agent
enters the detection region as shown by Figs. 4(e) and 5(a), the
developed method drives the agent away from the avoidance
regions and toward the origin. When encountering avoidance
region z2 between the 8th and 12th seconds, the agent was able to
maneuver around the avoidance region without collision despite
multiple encounters with it because the avoidance region was
moving close to the origin and obstructing the path. Moreover,
Fig. 6(a) shows the change in velocity when the agent encounters
the avoidance region.

The second and third experiments were performed to validate
the development in Section VII with the results shown in Figs. 5–
8. Specifically, the second experiment was performed using sim-
ilar conditions and parameters as in the first experiment. Fig. 5(b)
shows that the agent is capable of adjusting its path when it
encounters the avoidance regions and the agent is regulated to
the origin without colliding with the avoidance regions, while
Fig. 6(b) shows the relative velocities between the agent and
each avoidance region. The approximate value function and total
cost for the first two experiments are shown in Fig. 7. Both
experiments resulted in similar costs and approximate value
functions. Specifically, Fig. 7(a) shows that the approximate

Fig. 4. States, control policy, and weight estimates are shown in addition
to the distances between the agent and each avoidance region center for the
first experiment. Fig. 4(a) shows that the agents states converge to a close
neighborhood of the origin. When the agent detects the avoidance regions, the
commanded input, shown in Fig. 4(b), causes the agent to steer off course as
shown by the change in the trajectory of x2 in Fig. 4(a). The distance between
the center of the agent and each avoidance region is shown in Fig. 4(e); the
two dashed horizontal lines represent the detection radius and conflict radius
denoted by rd = 0.7 m and r = 0.45 m, respectively, while the solid horizontal
line represents the radius of the avoidance region denoted by ra = 0.2 m.
(a) The agent states. (b) The agent approximate optimal input. (c) The critic
weight estimates. (d) The actor weight estimates. (e) The distance between the
agent and avoidance regions.

value function remains positive and converges to zero when the
agent reaches the origin.

Furthermore, the third experiment extends the second exper-
iment further by substituting one of the autonomous avoidance
regions for a nonautonomous one. Specifically, a manually con-
trolled avoidance region is used, which is controlled to approach
the agent throughout the experiment. Figs. 5(c)–8 show the
results of the experiment. In Fig. 5(c), the agent is forced away
from the direction of the origin, but still manages to redirect
itself without colliding with the avoidance regions. The relative
velocity for the third experiment is shown in Fig. 6(c), which
changes abruptly as each avoidance regions is sensed. The ap-
proximate value function and total cost for the third experiment
are also shown in Fig. 7. Since one of the avoidance regions was
remotely controlled, its trajectory was nonautonomous; hence,
the agent’s trajectory differed when interacting with it and the
applied control policy did not saturate as much compared to
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Fig. 5. Phase-space portrait for the agent and the positions of the agent and
avoidance regions for each experiment. In each figure, the left plot shows the
agent’s phase-space portrait where the green circle is the agent’s final position.
The plots on the right of each figure show the agent’s and avoidance regions
positions at certain time instances where the diamond represents the agent
state and the circles represent the avoidance regions. (a) The agent phase-space
portrait (left) and the positions of the agent and avoidance regions (right) for
the first experiment. (b) The agent phase-space portrait (left) and positions of
the agent and avoidance region (right) for the second experiment. (c) The agent
phase-space portrait (left) and positions of the agent and avoidance region (right)
for the third experiment.

the first experiment, resulting in a smaller total cost. Fig. 8(a)
shows that the agent is regulated to the origin and that its state is
adjusted online in real time by the input, as shown in Fig. 8(b),
when it encounters the avoidance regions. The input remains
bounded by the controller saturation of 0.5 m

s and converges
to a small bounded residual of the origin. The estimates of
the unknown weights θ are shown in Fig. 8(c), which remain
bounded, but since the ideal basis is unknown and the ideal
weights are unknown, the estimates cannot be compared to the
actual weights. Fig. 8(d) shows the distance between the agent
and each avoidance region center, and shows that the agent does
not get within ra of the avoidance regions. Moreover, as soon
as the agent gets within r̄ of the avoidance region, it moves
away from zi.Additionally, when the agent detects the avoidance
region, i.e., ‖x− zi‖ ≤ rd, the control policy is adjusted, which
can be seen from Fig. 8(b) and (d). Moreover, the critic and
actor weights estimates using the transformation in Section VII
are shown in Fig. 8(e) and (f), respectively. The figures show
that the estimates remain bounded and converge to steady-state
values. Similar to the first experiment, the ideal weights are
unknown, thus the weight estimates cannot be compared to the
ideal weights.

Fig. 6. Relative velocities for each experiment. The relative velocities were
numerically computed and filtered using a moving average filter with a window
size of ten time-steps. In each figure, the blue line represents the relative velocity
of the first state and the red line represents the relative velocity of the second
state for each obstacle (i.e., ẋ1(t)− żi,1(t) and ẋ2(t)− żi,2(t) for i = 1, 2, 3,
respectively). (a) Relative velocities for z1 (left), z2 (middle), and z3 (right)
for the first experiment. (b) Relative velocities for z1 (left), z2 (middle), and
z3 (right) for the second experiment. (c) Relative velocities for z1 (left), z2
(middle), and z3 (right) for the third experiment.

Fig. 7. Approximate value functions and total costs for the three experiments.
(a) Approximate value function. (b) Total cost.

The results in Figs. 4–8 show that the developed method is
capable of handling uncertain dynamic avoidance regions while
regulating an autonomous agent. The agent locally detects the
avoidance regions and then adjusts its path online. While exper-
iments one and two used radii selected as rd = 0.7, r = 0.45,
ra = 0.2 meters, the radii in experiment three were increased to
rd = 1.0, r̄ = 0.7, and ra = 0.45 m, respectively. The increase
in radii was because one of the obstacles moved at a higher
relative velocity, and a larger distance was required to enable the
agent to avoid collision. The optimal selection of the size of the
detection region (e.g., as a function of the maximum agent speed,
the obstacle relative velocity, and the sensing rate) including
detection radii changing with relative agent and avoidance region
velocities remains a subject for future research.
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Fig. 8. States, control policy, and weight estimates of the agent are shown in
addition to the distances between the agent and each avoidance region center for
the third experiment. (a) The agent states. (b) The agent approximate optimal
input. (c) The estimates of θ. (d) The distance between the agent and avoidance
regions. (e) The critic weight estimates. (f) The actor weight estimates.

IX. CONCLUSION

In this article, an online approximate motion planning strategy
in the presence of mobile avoidance regions was developed.
Because the avoidance regions need to only be known inside
a detection radius, they were modeled using local dynamics.
Since the avoidance regions were coupled with the agent in the
HJB, the basis of the approximation also used the avoidance
region state when approximating the value function. Because the
states were not always known, a scheduling function was used
to turn-OFF the basis, which then stopped updating the weight
approximations for the avoidance regions when they were not
detected. Theorem 1 showed the UUB of the states and that
the states of the coupled system remain outside of the avoid-
ance set. An extension to systems with uncertain dynamics and
an unknown number of avoidance regions was presented, and
Theorem 2 summarized the overall stability for the system
with uncertainties. Simulations and three experiments were
performed that demonstrated successful implementation of the
developed motion planning and avoidance region evasion strat-
egy.

Some possible topics of future research include—determining
the size of the avoidance region based on the sampling rate
of nearby obstacles, investigating the use of collision cones

(cf., [39], [40]) instead of spherical-shaped avoidance regions,
investigating methods to alleviate Assumption 3, and extending
the developed approach to multiple agents which cooperate but
avoid other mobile obstacles. Investigating the relationships
between the speed of the agent and avoidance regions and the
respective sensing radius including dynamically changing radii
also remains a topic for future research.

Moreover, in the presence of uncertainty, it is unclear how
to develop a finite-time convergent update law. However, re-
cent developments, such as [64] and [65], could potentially
provide insight into developing finite-time approximate optimal
controllers. In addition, during the learning phase of adaptive
systems, it is difficult to ensure safety guarantees are met,
especially in safety-critical systems. Results such as [66]–[68]
could provide insight into designing RL constrained approaches
with safety specifications for motion planning. Such investi-
gations into finite-time and safety-critical approximate optimal
controllers are subjects of future research.

APPENDIX A
STABILITY ANALYSIS CONSTANTS

In Section V, the positive constants ι, ϕac ∈ R>0 are
introduced, which are defined as ι � ι2c
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