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Many modern clinical practices involve percutaneous needle insertion. This thesis focuses

on modeling and automation aspects related to robotic needle insertion. Medical robotics may

offer methods for improving such practices. The first contribution is the development of a

controller to ensure that a needle tip tracks a trajectory beginning in a non-contact position

and ending within viscoelastic tissue. Through employment of a sliding mode controller and a

neural network (NN), the controller guarantees semi-global asymptotic tracking of the desired

trajectory. The second contribution is the development of a controller to ensure that a needle

tip mounted on a slave robot tracks the trajectory given by the surgeon manipulating the

master robot, in the presence of uncertainties in the user and environment forces. The control

development leads to semi-global asymptotic tracking of the desired trajectory using a sliding

mode controller and a NN. Lyapunov-based stability analysis and simulations are provided to

demonstrate the performance of the control designs throughout the thesis.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Problem Statement

Medical robotics has gained popularity over the last decade. Indeed, surgeons all around

the world use manipulators to perform surgical procedures. The development of these pro-

cedures are motivated by and have improved due to the rapid advancement of minimally

invasive procedures [1–4]. Automated and teleoperated systems have the potential to improve

the safety and effectiveness of surgeries by enhancing visualization, decreasing bleeding and

transfusion rates, and speeding recovery [5].

Many clinical practices involve percutaneous needle insertions. Minimally invasive percuta-

neous procedures include biopsies [6] and brachytherapy [7] but needle insertion is also used for

procedures such as blood sampling [8], neurosurgery [9], and others. In these procedures, one

or several needles penetrate into the patient’s body to reach the planned target.

While automated or teleoperated needle insertion systems can lead to various advantages,

several issues must be considered including: the lack of visibility of the target, the difficult

access to the target, and restricted maneuverability with the tool. For instance, the target

may be close to a sensitive organ mandating the need for extra caution and high precision.

Targeting error can occur due to imaging limitations, target uncertainties due to physiological

or patient motion, human errors due to fatigue or hand tremor, tissue deformation and needle

deflection [10]. The efficiency of such a medical treatment is very often linked to the accuracy

of the needle insertion and to the control of the insertion force. The desired accuracy depends

on the application and usually ranges from millimeter to micro-millimeter. Given such accuracy

demands, robotic and teleoperated systems have become increasingly popular tools to assist

medical personnel.

1.2 Literature Review

The modeling of needle insertion force into soft tissue can facilitate accurate surgical sim-

ulations and robotic technologies applied to percutaneous therapy. The development of such
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models has been the topic of many studies [11–17]. Knowledge of forces during needle inser-

tion can help to identify and model different tissue types. Human biological tissues are known

to exhibit nonlinear properties and consist of inhomogeneous structures. The Hunt-Crossley

model [18] has been confirmed as being suitable for describing the properties of viscoelastic

tissues [19], especially when small deformations are involved [20]. Hunt and Crossley showed

that it is possible to obtain a behavior that is in better agreement with the physical intuition

if the damping coefficient is made dependent on the body’s relative penetration. Nevertheless,

some studies presume a linear tissue model, especially for computational performance [21].

One of the key issues is that the insertion force varies from one patient to another. For the

same tissue, the insertion force can be different depending on the age, the gender, or the body

mass of the patient. Even for one patient, the insertion force needed for one tissue can vary,

for example, if the tissue is diseased. Moreover, acquiring data from biological tissues and

developing appropriate models for application in simulation or robot-assisted surgery is difficult

due to tissue deformation, inhomogeneity, nonlinearity, and opacity [22–24]. As a result, it is

necessary to design the needle insertion force so that it accounts for the uncertainty in tissue

composition.

In medical robotics, a teleoperated system consists of a slave robot which tracks the

motion of a master robot commanded by a surgeon, often with the assistance of medical

imaging. Many clinical applications benefit from teleoperated systems. Example procedures

ranges from tele-echography [25, 26] to minimally invasive surgery [1, 4, 5, 27, 28]. Teleoperated

systems have the ability to reduce the morbidity of clinical procedures by improving the sterile

field, decreasing bleeding, and reducing recovery time. However, since the clinician is removed

from direct contact with the patient, research efforts have focused on methods to provide

improved force reflection, compensate for robotic/tissue uncertainties, and improve the stability

and passivity of the system.

The goal of teleoperation systems is to achieve passivity and transparency while maintain-

ing stability. Passivity is related to energy dissipation, a passive system consumes energy and

10



does not produce energy. To achieve ideal transparency, the slave robot has to exactly repro-

duce the position trajectory of the master manipulator, and the master robot has to accurately

display the environment force to the human. Many bilateral control architectures have been

developed to reach these two aims [29–33]. Linear circuit theory [34] and linear robust control

theory [35, 36] have been studied in the past. Some works have also been done for nonlinear

systems using adaptive control [37–40], however these designs need exact model knowledge.

Some previous works highlighted the stability and safe operation of the teleoperator using the

passivity concept as in [36, 41–43]. The method proposed in [44] makes the teleoperated sys-

tem passive using fictitious energy storage. Researches that aim to achieve ideal transparency

usually require knowledge about the environment inputs as in [35], or estimate the impedance

of the slave robot as in [45]. In [46], an adaptive controller is designed for teleoperated systems

with parametric uncertainties in the master and slave robots dynamics. Time delay may also

be an issue. In [47], a bilateral teleoperator provides robust stability against constant delay but

does not guarantee position tracking.

1.3 Outline and Contributions

Chapter 1 serves as an introduction, that provides motivation, problem statement,

literature review, and contributions of the thesis.

Chapter 2 provides a background discussion on soft tissue deformation. This chapter

presents also a novel needle insertion force modeling for viscoelastic tissue. The force modeling

is designed as the sum of a stiffness force, a friction force, and a cutting force [48]. These

three forces are carefully chosen to be as close to the reality as possible. The stiffness force is

designed using the Hunt-Crossley model. The friction force is modeled as in [49]. The cutting

force is modeled as a constant.

Chapter 3 details the design of an automated controller that ensures semi-global asymp-

totic tracking of a trajectory for which the needle tip moves from a non-contact position into

viscoelastic tissue. The study is based on previous works [50–52], where the objective was

to design a controller for a robot interacting with an uncertain Hunt-Crossley viscoelastic
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environment and undergoing a non-contact to contact transition but the robot did not go into

the viscoelastic environment.

Chapter 4 describes the development of a teleoperated controller to ensure that a needle

tip mounted on a slave robot tracks the trajectory given by the surgeon manipulating the

master robot, and going from a non-contact position into viscoelastic tissue. The study

is based on a previous work [53], where the objective was to design two controllers for a

teleoperator system that targets coordination of the master and slave manipulators and

passivity of the overall system. As in [53], there is no need to know the user and environment

forces in this paper. However, the control development used in [53] is not applicable in the

case of a discontinuous needle insertion force. Then, the controller is designed using a sliding

mode term and neural network method.

Chapter 5 gives some concluding comments and recommendations for future work.
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CHAPTER 2
NEEDLE INSERTION FORCE DESIGN

2.1 Soft Tissue Deformation

Realistic modeling of soft tissue deformation during needle insertion can be used and

improved for training and planning to reduce errors between desired and actual placement of

the needle tip. This modeling is complex because of the inhomogeneous, nonlinear, anisotropic,

elastic and viscous properties of soft tissue. To determine and understand these properties, it

is essential to do some measurements on soft tissue [54]. Many ultrasonic methods have been

developed for measuring biomechanical properties of soft tissues [55,56].

Skin and soft tissue exhibit particular properties [57, 58]. The characteristic substances of

this kind of tissue are the collagen, elastin and ground substance [59]. At small strains, elastin

confers stiffness to the tissue and stores most of the strain energy. The collagen fibers are

comparatively inextensible and are usually loose. Soft tissues have the potential to undergo

big deformations and still come back to the initial configuration when unloaded. The nonlinear

stress-strain relationship results in force not being linearly proportional to displacement [60].

For computational efficiency, however, many researchers assume a simple linear tissue model.

2.2 Needle Insertion Force Modeling

The force modeling used in this study is inspired by [48], where an experimental procedure

for acquiring data from ex vivo tissue is given and the needle insertion force is designed as the

sum of a stiffness force, a friction force, and a cutting force. In this study, the stiffness force is

designed using the nonlinear viscoelastic Hunt-Crossley model. The friction force is modeled as

in [49]. This model offers an accurate representation of nonlinear friction effects. The cutting

force required to slice through tissue is modeled as a constant depending on the needle size

and on the tissue properties [48].

A needle insertion procedure can be divided into three stages. The first stage is a

free-space motion and occurs before the needle touches the tissue. The second stage is the

needle-tissue viscoelastic interaction and occurs when x (t) ∈ R, the position of the robot
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Figure 2-1. Needle insertion steps

end-effector at the needle tip, ranges between xt (t) ∈ R, the position of the viscoelastic tissue,

and xm (t) ∈ R, the position of the maximally deformed tissue surface before puncture. The

last stage is the insertion through the tissue, which occurs when x (t) is greater than xm (t).

The dynamics of the tissue depends on forces from surrounding tissue and organs, physiological

movements, etc., which result in the evolution of xt (t) over time. Figure 2-1 illustrates each

stage.

The force fneedle (x, ẋ) is discontinuous because of the transition between needle-tissue

contact and insertion through the tissue. The needle insertion force can be modeled as [48]

14



fneedle , Λ1fstiffness + Λ2ffriction + Λ2fcutting, (2–1)

where Λ1 (x, xt, xm) and Λ2 (x, xm) ∈ R are functions which switch at contact and perforation,

respectively, defined as

Λ1 ,


1 xt ≤ x ≤ xm

0 otherwise

, Λ2 ,


1 xm < x

0 otherwise

.

2.2.1 Stiffness Force

The stiffness force corresponds to a viscoelastic interaction between the tissue and the

needle tip [61]. This interaction occurs before the puncture. The needle compresses the soft

tissue until the puncture of the surface. In (2–1), the stiffness force fstiffness (x, ẋ) ∈ R is

described by the Hunt-Crossley model as [18]

fstiffness , λδn + µδ̇δn, (2–2)

where λ ∈ R is the unknown contact stiffness of the viscoelastic mass, µ ∈ R is the unknown

damping coefficient, n ∈ R is the unknown Hertzian compliance coefficient, and δ (t) ∈ R is

the local deformation of the tissue, defined as

δ , x− xt. (2–3)

The viscoelastic force fstiffness (x, ẋ) depends on the local deformation of the tissue, while the

position of the tissue is the sum of the deformation and the position of the tissue under the

pressure of physiological motion or needle tip.
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2.2.2 Friction Force

The friction force occurs inside the tissue after the puncture and along the needle shaft.

Friction is a natural phenomenon that can be found in many mechanical applications however

its modeling is not entirely understood. In (2–1), the friction force ffriction (ẋ) ∈ R is modeled

according to [49] as

ffriction , γ1 (tanh (γ2ẋ)− tanh (γ3ẋ)) + γ4 tanh (γ5ẋ) + γ6ẋ, (2–4)

where γi ∈ R, for i = 1, 2, ...6, are unknown positive constants. The model in (2–4) exhibits

the following properties:

1. it is symmetric about the origin,

2. it has a static coefficient of friction, given by γ1 + γ4,

3. it includes the Stribeck effect, given by tanh (γ2ẋ)− tanh (γ3ẋ),

4. it has a viscous dissipation term, given by γ6ẋ,

5. it has a Coulombic friction coefficient in the absence of viscous dissipation, given by

γ4 tanh (γ5ẋ).

See [49] and [62] for further details.

2.2.3 Cutting Force

Also in (2–1), the cutting force fcutting ∈ R represents the force required for the needle

to penetrate into the tissue. This force only depends on the needle size and on the tissue

properties and is defined as

fcutting , c, (2–5)

where c ∈ R is a unknown positive constant.

Remark 2.1. In many needle insertion applications, the different parameters of the stiffness

force, friction force and cutting force, defined previously in (2–2), (2–4) and (2–5), have to be

known. The identification of the needle insertion force can be performed before the operation

16



using ex vivo tests as in [48]. For a medical intervention, ex vivo tests can not be done on a

patient but these parameters can be determined during the intervention. In [11], an approach

for estimating needle force is given but it is not easily applicable for medical procedures

because of the need to put markers on the surface. [22] describes an online estimation to

determine Hunt-Crossley parameters. For the control analysis developed in the following

chapters, these parameters are assumed to be uncertain.
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CHAPTER 3
ROBOTIC NEEDLE INSERTION INTO VISCOELASTIC TISSUE

This chapter describes the development of an automated controller to ensure that a

needle tip tracks a desired trajectory beginning in a non-contact position and ending within

viscoelastic tissue.

3.1 Dynamic Model

The dynamic model for a one-degree-of-freedom translation robot interacting with a

viscoelastic environment is

M (x) ẍ+ h (x) + fneedle (x, ẋ) = F. (3–1)

In (3–1), x (t) , ẋ (t) , ẍ (t) ∈ R denote the planar Cartesian position, velocity, and acceleration

of the robot end-effector at the needle tip, respectively, M (x) ∈ R denotes the uncertain

inertia, h (x) ∈ R denotes uncertain conservative forces, fneedle (x, ẋ) ∈ R, introduced

in Chapter 2, denotes the interaction force between the robot at the needle tip and the

viscoelastic tissue during the needle insertion procedure, and F (t) ∈ R denotes the force

control input.

Remark. This study has been developed for a one-degree-of-freedom translation robot but

could be extended to the resolution of a redundancy manipulators problem [63].

The following property and assumptions are applied in the control development.

Property 1. The following relationships are valid for all ξ ∈ R [64]:

ξtanh (ξ) ≥ tanh (ξ)2 , (3–2)

|tanh (ξ)| ≤ 1. (3–3)

Assumption 3.1. The robot, tissue, and maximal tissue surface positions, x (t), xt (t),

and xm (t), introduced in Chapter 2, and the corresponding velocities, ẋ (t) and ẋt (t), are
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measurable. Further, it is assumed that the robot trajectory x (t) is bounded due to the

geometry of the robot.

Remark 3.1. The position of the maximally deformed tissue surface before puncture xm (t) can

be measured using the technique described in [65].

Assumption 3.2. The local deformation of the viscoelastic material during contact δ (x, xt),

defined in (2–3), is assumed to be bounded; hence, δn can be upper bounded as

δn ≤ δ̄n,

where δ̄n ∈ R is a known positive bounding constant.

Assumption 3.3. The damping constant µ, in (2–2), is assumed to be upper bounded as

µ ≤ µ̄,

where µ̄ ∈ R is a known positive bounding constant.

3.2 Control Development

3.2.1 Control Objective

The control objective is to ensure that the one-degree-of-freedom translation robot

tracks a desired position, denoted by xd (t) ∈ R, which begins in free space and ends within

the viscoelastic tissue. The controller is designed such that the force required to achieve

this objective is bounded by an arbitrary small value, which is desired for procedural safety.

A position tracking error and a filtered tracking error are designed to quantify the control

objective as

e , xd − x, (3–4)

r , ė+ αe, (3–5)
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where e (t) ∈ R represents the position error at the needle tip, r (t) ∈ R is a filtered tracking

error that facilitates the subsequent control development, and α ∈ R is a positive constant

control gain.

3.2.2 Closed-Loop Error System

Premultiplying the filtered tracking error r (t) in (3–5) by the robot inertia matrix M (x),

taking the time derivative of the resulting expression, and using (3–1) and (3–4) yields the

following open-loop robot error system:

Mṙ = Ṁė+Mẍd + h+ fneedle − F + Ṁαe+Mαė− Ṁr. (3–6)

Using the definition of the needle force fneedle defined in (2–1), (2–2), (2–4), and (2–5), the

expression in (3–6) becomes

Mṙ = f + Ṁė+ Λ2γ1 (tanh (γ2ẋ)− tanh (γ3ẋ)) + Λ2γ4 tanh (γ5ẋ) (3–7)

+ Λ2γ6ẋ+ Λ2c− F + Ṁαe− Ṁr,

where f (t) ∈ R is an auxiliary nonlinear and discontinuous function defined as

f ,Mẍd +Mαė+ h+ Λ1
(
λδn + µδ̇δn

)
. (3–8)

Based on the universal function approximation property and results from [66] for approximation

of jump functions, the discontinuous function f (t) in (3–8) can be approximated by a three-

layer (input, hidden, and output) neural network (NN) as

f = W T
1 σ

(
V T

1 y
)

+W T
2 ϕ

(
V T

2 y
)

+ ε (y) , (3–9)

where the NN input y (t) is defined as y (t) =
[

1 xt x e r δ δδ̇

]T
∈ R7, W1, W2 ∈

R(N+1) and V1, V2 ∈ R7×N are ideal NN weights, N ∈ R is the number of hidden layer neurons

of the NN, σ
(
V T

1 y
)

= σ ∈ RN+1 is a sigmoid activation function, ϕ
(
V T

2 y
)

= ϕ ∈ RN+1 is
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Figure 3-1. Multilayer neural network for jump function approximation.

a sigmoid jump approximation function, and ε (y) ∈ R is the functional reconstruction error

of the NN. The weights V2 are known, given by the designer and depending on the location

of the jumps. Figure 3-1 shows the augmented multilayer neural network for jump function

approximation. The subsequent stability analysis indicates that, provided some sufficient gain

conditions are satisfied, if y (0) is in a compact set, then y (t) remains in a compact set ∀t.

Property 2. (Boundedness of the Ideal Weights) The ideal weights are assumed to exist and

to be bounded by known positive values so that

‖Vi‖2
F = tr(V T

i Vi) ≤ V̄iB,

‖Wi‖2
F = tr(W T

i Wi) ≤ W̄iB,

where i = 1, 2, V̄iB and W̄iB are positive constants, ‖·‖F is the Frobenius norm of a matrix,

and tr(·) is the trace of a matrix.

The estimate for f (t), denoted as f̂ (t) ∈ R, is defined as

f̂ , Ŵ T
1 σ

(
V̂ T

1 y
)

+ Ŵ T
2 ϕ

(
V T

2 y
)
, (3–10)
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where Ŵ1 (t) , Ŵ2 (t) ∈ R(N+1) and V̂1 (t) ∈ R7×N are the estimates of the ideal weights and

are generated by integrating the adaptive update laws

˙̂
W1 = proj

(
Γw1σ̂r − Γw1σ̂

′V̂ T
1 yr

)
, (3–11)

˙̂
V1 = proj

(
Γv1yrŴ

T
1 σ̂
′
)
,

˙̂
W2 = proj (Γw2ϕr) ,

where Γw1, Γw2 ∈ R(N+1)×(N+1) and Γv1 ∈ R(7×7) are constant, positive definite, diagonal,

gain matrices, σ̂′ ∈ R(N+1)×N denotes the partial derivative of σ̂ = σ
(
V̂ T

1 y
)
with respect to

its argument, and proj (·) denotes a smooth projection operator [67, 68]. Based on the fact

that Ŵ1 (t) and Ŵ2 (t) are bounded by the projection operator, and σ (·) and ϕ (·) are bounded

activation functions, then f̂ (t) can be upper bounded as

∣∣∣f̂ ∣∣∣ ≤ κ, (3–12)

where κ ∈ R is a known positive constant.

Based on (3–7) and the subsequent stability analysis, the robot control force input is

designed as

F = f̂ + kptanh (ωe) + βsgn (r) , (3–13)

where kp, ω, β ∈ R are positive constant control gains. The smooth saturation function

tanh (·) in (3–13) is used to saturate the terms in the controller to limit the control force

during contact and penetration. Using (3–3), (3–12), and the NN projection bounds in [64],

the control force in (3–13) can be bounded as

|F |∞ ≤ κ+ kp + β.

Using (3–9), (3–10), and (3–13), the expression in (3–7) can be rewritten as
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Mṙ = W T
1 σ +W T

2 ϕ+ ε (y)− Ŵ T
1 σ̂ − Ŵ T

2 ϕ− kptanh (ωe) (3–14)

− βsgn (r) + Ṁė+ Λ2γ1 (tanh (γ2ẋ)− tanh (γ3ẋ))

+ Λ2γ4 tanh (γ5ẋ) + Λ2γ6ẋ+ Λ2c+ Ṁαe− Ṁr.

Using the Taylor series expansion [66], the term σ̃ = σ − σ̂ can be written as

σ̃ = σ̂′Ṽ1
T
y +O

(
Ṽ1

T
y
)2
,

where W̃1 (t) ∈ R(N+1) and Ṽ1 (t) ∈ R7×N are estimate errors of the ideal weights and are

defined as

W̃1 = W1 − Ŵ1, Ṽ1 = V1 − V̂1, W̃2 = W2 − Ŵ2.

After some algebraic manipulations, the expression in (3–14) can be expressed as

Mṙ = W̃ T
1 σ̂ + Ŵ T

1 σ̂
′Ṽ T

1 y − W̃ T
1 σ̂
′V̂ T

1 y + W̃ T
2 ϕ+ ∆− kptanh (ωe) (3–15)

− βsgn (r)− 1
2Ṁr − kr − e,

where k ∈ R is a positive constant, the state vector z ∈ R2 is defined as z (e, r) ,[
e (t) r (t)

]T
, and ∆ (z) ∈ R is defined as

∆ = W̃ T
1 σ̂
′V T

1 y +W T
1 O

(
Ṽ T

1 y
)2

+ ε (y) + Λ2γ1 (tanh (γ2ẋ)− tanh (γ3ẋ)) (3–16)

+ Λ2γ6ẋ+ Ṁė− 1
2Ṁr + Λ2γ4 tanh (γ5ẋ) + Λ2c+ Ṁαe+ kr + e.

Using (3–11), (3–16), and [69], an upper bound for ∆ (z) can be determined as

|∆| ≤ ζ + ρ (‖z‖) ‖z‖ , (3–17)
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where ρ (·) ∈ R is a positive, globally invertible function, and ζ ∈ R is a known positive

constant.

3.3 Stability Analysis

Theorem 3.1. The controller given in (3–13) ensures semi-global tracking in the sense that

e (t)→ 0 as t→∞,

provided control gains are selected sufficiently large (see the subsequent stability analysis).

Proof. Let D ⊂ R3 be a domain containing v (t) = 0, where v (t) ∈ R3 is defined as

v (t) ,
[
zT (t)

√
Q (t)

]T
, (3–18)

and the auxiliary function Q (t) ∈ R is defined as

Q (t) , 1
2tr

(
Ṽ T

1 Γ−1
v1 Ṽ1

)
+ 1

2tr
(
W̃ T

1 Γ−1
w1W̃1

)
+ 1

2tr
(
W̃ T

2 Γ−1
w2W̃2

)
.

Since Γ1v, Γw1 and Γw2 are constant, symmetric, and positive definite matrices, it is straight-

forward that Q (t) ≥ 0.

Let V (v, t) : D × [0,∞) → R be a Lipschitz continuous regular positive definite function

defined as

V ,
1
2Mr2 + 1

2e
2 + kp

ω
ln (cosh (ωe)) +Q, (3–19)

which satisfies the following inequalities:

U1 (v) ≤ V (v, t) ≤ U2 (v) ,

where the continuous positive definite functions U1 (v) , U2 (v) ∈ R are defined as

U1 (v) , η1 ‖v‖2 , U2 (v) , η2 ‖v‖2 , (3–20)

where η1, η2 ∈ R are known positive constants.
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The differential equations of the closed loop dynamics given in (3–15) are continuous

except in sets {v |x = xt} and {v |r = 0}. Using Filippov’s differential inclusion [70], the

existence of solutions can be established for v̇ = f (v), where f (v) ∈ R3 denotes the right-

hand side of the closed-loop error signals. Under Filippov’s framework, a generalized Lyapunov

stability theory can be used to establish strong stability of the closed-loop error system. The

generalized time derivative of (3–19) exists almost everywhere (a.e.), and V̇ (v) ∈a.e. ˙̃V (v)

where
˙̃V = ∩

ξ∈∂V (v)
K
[
ṙ ė 1

2Q
− 1

2 Q̇

]T
,

where ∂V is the generalized gradient of V (v) [71], K [·] is defined as [72,73]

K [f ] , ∩
δ>0

∩
µΥ=0

c̄of (B (x, δ)−Υ) ,

where ∩
µΥ=0

denotes the intersection of all sets Υ of Lebesgue measure zero, c̄o denotes convex

closure, and B (x, δ) = {u ∈ R3 |‖u− v‖ < δ}. Since V (v) is a Lipschitz continuous regular

function

˙̃V = ∇V TK
[
ṙ ė 1

2Q
− 1

2 Q̇

]T
(3–21)

⊂
[
Mr e kp

ω
tanh (ωe) 2Q 1

2

]T
K
[
ṙ ė 1

2Q
− 1

2 Q̇

]T
.

Using (3–5), (3–11), and (3–15), the expression in (3–21) becomes

˙̃V ⊂ r∆− β |r| − kr2 − αe2 − tanh (ωe) kpαe. (3–22)

Using (3–2) and (3–17), the expression in (3–22) can be upper bounded as

˙̃V
a.e.
≤ ρ (‖z‖) |r| ‖z‖ − (β − ζ) |r| − kr2 − αe2 − kpα

ω
|tanh (ωe)|2 . (3–23)

Let the control gain k in (3–15) be defined as

k , k1 + k2, (3–24)
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where k1, k2 ∈ R are known positive constants. Using (3–24) and the gain condition

β > ζ,

the expression in (3–23) can be upper bounded as

˙̃V
a.e.
≤ −

(
k1r

2 − ρ (‖z‖) r ‖z‖
)
− k2r

2 − αe2. (3–25)

Completing the squares on the term in parentheses in (3–25) yields

˙̃V
a.e.
≤ ρ (‖z‖)2

4k1
‖z‖2 − k2r

2 − αe2. (3–26)

The expression in (3–26) can be further upper bounded as

˙̃V
a.e.
≤ −λ ‖z‖2 + ρ (‖z‖)2

4k1
‖z‖2 , (3–27)

where λ = min {k2, α} is a known positive constant. Finally, given the gain condition

λ >
ρ (‖z‖)2

4k1
,

the expression in (3–27) becomes
˙̃V
a.e.
≤ −U (v) , (3–28)

where U (v) = ϑ ‖z‖2, for some positive constant ϑ ∈ R, is a continuous positive semi-definite

function such that

D ,
{
v ∈ R3 | ‖v‖ ≤ ρ−1

(
2
√
λk1

)}
.

The expressions in (3–19) and (3–28) can be used to show that V (v, t) ∈ L∞; hence,

e (t) , r (t), and Q (t) ∈ L∞ in D. Given that e (t) , r (t) ∈ L∞ in D, it can be proven that

ė (t) ∈ L∞ in D from (3–5). Since e (t) , r (t) ∈ L∞ in D, the assumption that xd (t) , ẋd (t)
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exist and are bounded can be used to conclude that x (t) , ẋ (t) ∈ L∞ in D. Similarly, it can be

shown that ṙ (t) ∈ L∞ in D. Since ė (t) , ṙ (t) ∈ L∞ in D, the definitions for U (v) and z (t)

can be used to prove that U (v) is uniformly continuous in D.

Let S ⊂ D denotes a set defined as follows:

S ,

{
v (t) ⊂ D

∣∣∣∣∣U2 (v (t)) < η1

(
ρ−1

(
2
√
λk1

))2
}
.

[74] can now be invoked to state that

‖z (t)‖2 → 0 as t→∞ ∀ v (0) ∈ S. (3–29)

Based on the definition of v (t) in (3–18), (3–29) can be used to show that

|e (t)| → 0 as t→∞ ∀ v (0) ∈ S.

3.4 Simulation Results

The developed controller is simulated for a system whose dynamic model is given by

mẍ+ bẋ+ fneedle (x, ẋ) = F,

where F (t) and fneedle (x, ẋ) are introduced in 3–1, m = 0.152 kg, b = 1.426N · s · m−1,

which correspond to the needle insertion robot described in [75]. The different position and

parameter values are chosen to agree with a direct insertion into the liver. The initial needle

tip position is supposed to be at x = 0 for t = 0. For sake of simplicity, it is assumed that

the tissue position xt does not depend on time and its value is fixed to xt = 20mm. The

position of the maximally deformed tissue surface before puncture is chosen as xm = 36mm,

which means that the needle progresses 16 mm while in contact with the liver before the

puncture occurs. The desired position is chosen as xd = 60mm, which correspond to 40mm

into the liver. Figure 3-2 shows the choice of the different positions for that simulation. The
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Figure 3-2. Positions for the simulation

parameters for fstiffness (x, ẋ), ffriction (ẋ), and fcutting, introduced in Chapter 2, are chosen as

λ = 0.2N ·m−1, µ = 5.5N · s ·m−2, n = 1.5, γ1 = γ4 = 0.1N, (3–30)

γ2 = γ3 = γ5 = 0.2 s ·m−1, γ6 = 0.5N · s ·m−1, c = 0.94N.

The parameters in (3–30) are selected using results from experiments on liver [48, 65]. The

controller gains introduced in (3–13) and the control gain α introduced in (3–5) are selected as

kp = 5, ω = 1, β = 2, α = 10.

The number of hidden layer neurons for the NN is chosen as N = 15, and the NN weight

updation gains are selected as

Γw1 = Γw2 = 5I16, Γv1 = 5I5,

where Ip ∈ Rp×p denotes the identity matrix.

Figure 3-3 shows the position of the needle tip x (t), which asymptotically approaches the

desired position xd = 60mm. Then, the error goes to zero as time goes to infinity as shown

in Figure 3-4. During the first stage, between 0 and 20mm or between 0 and 54ms, the

force between the needle and the tissue is equal to zero because the needle does not touch the

tissue yet as it can be seen on Figures 3-5 and 3-6. Then, between 20mm and the maximally
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Figure 3-3. Position of the needle tip x (t).

deformed tissue at 36mm, the needle force increases, as the needle contacts the tissue; the

needle force is then equal to the Hunt-Crossley force. The maximum force (3.6N) is followed

by a sudden drop in force as the needle punctures the tissue and now only needs to overcome

the friction and cutting forces, which are smaller than the tissue stiffness force. The last stage

is the insertion through the tissue to reach the target.
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Figure 3-4. Position tracking error e (t).
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Figure 3-5. Needle force fneedle as a function of time.
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Figure 3-6. Needle force fneedle as a function of the needle tip position x (t).
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CHAPTER 4
TELEOPERATED ROBOT FOR NEEDLE INSERTION INTO VISCOELASTIC TISSUE

This chapter describes the development of a controller to ensure that a needle tip

mounted on a slave robot tracks the trajectory given by the surgeon manipulating the master

robot. The trajectory moves from a non-contact position into viscoelastic tissue.

4.1 Dynamic Model

The dynamic model for a one-degree-of-freedom translation master and a one-degree-of-

freedom translation slave robot is described by

γ (T1 + F1) = γ (M1 (q1) q̈1 + h1 (q1)) , (4–1)

T2 − F2 = M2 (q2) q̈2 + h2 (q2) . (4–2)

In (4–1) and (4–2), γ ∈ R denotes a positive adjustable power scaling term, qi (t) , q̇i (t) , q̈i (t) ∈

R denote the robot end-effector position, velocity, and acceleration, respectively, ∀i = 1, 2

where i = 1 denotes the master manipulator and i = 2 denotes the slave manipulator,

Mi (qi) ∈ R denotes the inertia, hi (qi) ∈ R denotes conservative forces, Ti (t) ∈ R denotes

the force control input, F1 (t) ∈ R denotes the user input force, and F2 (t) ∈ R denotes the

force input from the environment, i.e., the interaction force between the robot and the tissue

during the needle insertion. The force F2 (t) is discontinuous because of the transition between

needle-tissue contact and insertion through the tissue.

Assumption 4.1. The position qi (t) and the velocity q̇i (t) are measurable.

Assumption 4.2. The user force F1 (t) and the environment force F2 (t) are bounded.

Assumption 4.3. The dynamic models of the two robots are known.
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4.2 Control Development

4.2.1 Control Objective and Model Transformation

The first control objective is to ensure that the slave robot tracks the master robot

position, which goes from a free-space position into a viscoelastic tissue, in the following sense:

q2 (t)→ q1 (t) as t→∞.

Energetic passivity is important to ensure the robot interacts with the tissue in a stable and

safe manner. Then, the other objective is to ensure that the system remains passive with

respect to the scaled user and environmental power in the sense that [76]
ˆ t

t0

(γq̇1 (τ)F1 (τ)− q̇2F2 (τ)) dτ ≥ −c, (4–3)

where c ∈ R is a positive constant which depends on the initial condition, and γ was

introduced in (4–1). The equation in (4–3) means that the energy produces by the slave robot

can not be bigger than the sum of the energy from the master robot and the initial energy in

the system. An auxiliary control objective is employed to ensure the passivity objective, in the

sense that [41]

q1 (t) + q2 (t)→ xd2 (t) as t→∞, (4–4)

where xd (t) =
[
xd1 (t) xd2 (t)

]T
∈ R2 is a desired bounded trajectory.

To facilitate the subsequent development, a globally invertible transformation is defined

that encodes both the coordination and the passivity objectives, i.e.,

x , Sq +

 xd1

0

 , (4–5)

where x (t) ,
[
x1 (t) x2 (t)

]T
∈ R2, q (t) ,

[
q1 (t) q2 (t)

]T
∈ R2, and S ∈ R2×2 is

defined as follows:

S ,

 1 −1

1 1

 , S−1 ,
1
2

 1 1

−1 1

 . (4–6)
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Based on (4–5), the dynamic model given in (4–1) and (4–2) can be expressed as

M̄ (x) ẍ− M̄ (x)

 ẍd1

0

+ h̄ (x) = T̄ (t) + F̄ (t) , (4–7)

where

M̄ (x) , S−T

 γM1 0

0 M2

S−1 ∈ R2×2, (4–8)

h̄ (x) , S−T

 γh1

h2

 ∈ R2,

T̄ (t) , S−T

 γT1

T2

 ∈ R2,

F̄ (t) ,

 F̄1

F̄2

 = S−T

 γF1

−F2

 ∈ R2. (4–9)

Property 3. The subsequent development is based on the property that M̄ (x), defined in

(4–8), is a positive definite and symmetric matrix in the sense that

m̄1 ‖ξ‖2 ≤ ξTM̄ (x) ξ ≤ m̄2 ‖ξ‖2 , (4–10)

where ξ ∈ R2, and m̄1, m̄2 ∈ R are positive constants.

A position tracking error e1 (t) ∈ R2 and a filtered tracking error e2 (t) ∈ R2 are designed

to quantify the control objective as

e1 , x− xd, (4–11)

e2 , ė1 + α1e1, (4–12)

where α1 ∈ R is a positive constant control gain, and xd (t) ∈ R2 is introduced in (4–4).

Based on the definition of x (t) in (4–5) and e1 (t) in (4–11), it is clear that if ‖e1‖ → 0 as
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t→∞ then q2 (t)→ q1 (t) and q1 (t) + q2 (t)→ xd2 (t) as t→∞ . To ensure that the system

remains passive as defined in (4–4), the desired trajectory xd (t) is generated by the following

expression

M̄ẍd +BT ẋd +KTxd + 1
2M̄ẋd = F̂ , (4–13)

where BT , KT ∈ R represent positive constants, M̄ ∈ R2×2 is introduced in (4–8), and

F̂ ∈ R2 is a subsequently designed force estimator.

4.2.2 Closed-Loop Error System

Premultiplying the second time derivative of the tracking error e1 (t) in (4–11) by the

robot inertia matrix M̄ (x), and using the system dynamics (4–7) and the desired trajectory

dynamics (4–13), the open-loop robot error system can be written as

M̄ë1 = T̄ + F̄ + M̄

 ẍd1

0

− h̄− F̂ +BT ẋd +KTxd + 1
2M̄ẋd. (4–14)

Based on the assumption of exact model knowledge of the robot dynamics and the subsequent

stability analysis, the robot control input T̄ (t) is designed as

T̄ , −M̄

 ẍd1

0

+ h̄−BT ẋd −KTxd −
1
2M̄ẋd − M̄α1e1 (4–15)

− βsgn (e2)− 1
2e

T
2

˙̄Me2,

where β ∈ R is a positive constant control gain. Using (4–15), (4–14) can be written as

M̄ë1 = F̄ − F̂ − M̄α1e1 − βsgn (e2)− 1
2e

T
2

˙̄Me2. (4–16)

Using (4–16) and the time derivative of the filtered tracking error e2 (t), (4–12) becomes

M̄ė2 = F̄ − F̂ − βsgn (e2)− 1
2e

T
2

˙̄Me2. (4–17)
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Based on the universal function approximation property and results from [66] for approximation

of jump functions, the discontinuous force F̄ (t), defined in (4–9), can be approximated by a

three-layer (input, hidden, and output) neural network (NN) as

F̄ = W T
1 σ

(
V T

1 y
)

+W T
2 ϕ

(
V T

2 y
)

+ ε (y) , (4–18)

where the NN input y (t) is defined as y (t) =
[

1 xT eT1 eT2

]T
∈ R7, W1, W2 ∈ R(N+1)×2

and V1, V2 ∈ R7×N are ideal NN weights, N ∈ R is the number of hidden layer neurons of the

NN, σ
(
V T

1 y
)

= σ ∈ RN+1 is a sigmoid activation function, ϕ
(
V T

2 y
)

= ϕ ∈ RN+1 is a sigmoid

jump approximation function, and ε (y) ∈ R2 is the functional reconstruction error of the NN.

The weights V2 are known, given by the designer and depend on the location of the jumps.

The subsequent stability analysis indicates that, provided some sufficient gain conditions are

satisfied, if y (0) is in a compact set, then y (t) remains in a compact set ∀t.

Property 4. (Boundedness of the Ideal Weights) The ideal weights are assumed to exist and

to be bounded by known positive values so that

‖Vi‖2
F = tr(V T

i Vi) ≤ V̄iB,

‖Wi‖2
F = tr(W T

i Wi) ≤ W̄iB,

where V̄iB and W̄iB are positive constants for i = 1, 2,‖·‖F is the Frobenius norm of a matrix,

and tr(·) is the trace of a matrix.

The estimate for F̄ (t), denoted as F̂ (t) ∈ R2, is defined as

F̂ , Ŵ T
1 σ

(
V̂ T

1 y
)

+ Ŵ T
2 ϕ

(
V T

2 y
)
, (4–19)

where Ŵ1 (t) , Ŵ2 (t) ∈ R(N+1)×2 and V̂1 (t) ∈ R7×N are the estimates of the ideal weights and

are generated by integrating the adaptive update laws
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˙̂
W1 , proj

(
Γw1σ̂e

T
2 − Γw1σ̂

′V̂ T
1 ye

T
2

)
, (4–20)

˙̂
V1 , proj

(
Γv1ye

T
2 Ŵ

T
1 σ̂
′
)
,

˙̂
W2 , proj

(
Γw2ϕe

T
2

)
,

where Γw1, Γw2 ∈ R(N+1)×(N+1) and Γv1 ∈ R(7×7) are constant, positive definite, diagonal,

gain matrices; σ̂′ ∈ R(N+1)×N denotes the partial derivative of σ̂ = σ
(
V̂ T

1 y
)
with respect to

its argument, and proj (·) denotes a smooth projection operator [67, 68]. Based on the fact

that Ŵ1 (t) and Ŵ2 (t) are bounded by the projection operator, and σ (·) and ϕ (·) are bounded

activation functions, then F̂ (t) can be upper bounded as

∥∥∥F̂∥∥∥ ≤ κ, (4–21)

where κ ∈ R is a known positive constant. Using (4–15), (4–18), and (4–19), the expression in

(4–17) can be rewritten as

M̄ė2 = W T
1 σ +W T

2 ϕ+ ε (y)− Ŵ T
1 σ̂ − Ŵ T

2 ϕ− βsgn (e2)− 1
2e

T
2

˙̄Me2. (4–22)

The estimate errors of the ideal weights W̃1 (t) ∈ R(N+1)×2, Ṽ1 (t) ∈ R7×N , and W̃2 ∈

R(N+1)×2 are defined as

W̃1 = W1 − Ŵ1, Ṽ1 = V1 − V̂1, W̃2 = W2 − Ŵ2.

Using the Taylor series expansion [66], the estimate error of the activation σ̃ ∈ RN+1, defined

as σ̃ = σ − σ̂, can be written as

σ̃ = σ̂′Ṽ1
T
y +O

(
Ṽ1

T
y
)2
. (4–23)

Using (4–23) and the expression in (4–22), the closed-loop error system can be written as
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M̄ė2 = W̃ T
1 σ̂ + Ŵ T

1 σ̂
′Ṽ T

1 y − W̃ T
1 σ̂
′V̂ T

1 y + W̃2
T
ϕ+ ∆− βsgn (e2) (4–24)

− 1
2e

T
2

˙̄Me2 − ke2 − e1,

after some algebraic manipulations. The state vector z ∈ R4 is defined as z (e1, e2) ,[
e1 (t) e2 (t)

]T
. In (4–24), k ∈ R is a positive constant, and ∆ (z) ∈ R2 is defined as

∆ , W̃ T
1 σ̂
′V T

1 y +W T
1 O

(
Ṽ1

T
y
)2

+ ε (y) + ke2 + e1. (4–25)

Using (4–20), (4–25), and [69], an upper bound for ∆ (z) can be determined as

‖∆‖ ≤ ζ + ρ (‖z‖) ‖z‖ , (4–26)

where ρ (·) ∈ R is a positive, globally invertible, nondecreasing function, and ζ ∈ R is a known

positive constant.

4.3 Stability Analysis

Theorem 4.1. The controller given in (4–15) ensures semi-global asymptotic tracking in the

sense that

q2 (t)→ q1 (t) as t→∞,

provided control gains are selected sufficiently large (see the subsequent stability analysis).

Proof. Let D ⊂ R5 be a domain containing v (t) = 0, where v (t) ∈ R5 is defined as

v (t) ,
[
zT (t)

√
Q (t)

]T
, (4–27)

and the auxiliary function Q (t) ∈ R is defined as

Q (t) , 1
2tr

(
Ṽ T

1 Γ−1
v1 Ṽ1

)
+ 1

2tr
(
W̃ T

1 Γ−1
w1W̃1

)
+ 1

2tr
(
W̃ T

2 Γ−1
w2W̃2

)
.
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Since Γ1v, Γw1, and Γw2 are constant, symmetric, and positive definite matrices, it is straight-

forward that Q (t) ≥ 0.

Let V (v, t) : D× [0,∞)→ R be a Lypschitz continuous, regular, positive definite function

defined as

V ,
1
2e

T
2 M̄e2 + 1

2e
T
1 e1 +Q, (4–28)

which satisfies the following inequalities:

U1 (v) ≤ V (v, t) ≤ U2 (v) ,

where the continuous positive definite functions U1 (v) , U2 (v) ∈ R are defined as

U1 (v) , η1 ‖v‖2 , U2 (v) , η2 ‖v‖2 , (4–29)

where η1, η2 ∈ R are known positive constants.

The differential equations of the closed loop dynamics given in (4–22) are continuous

except in sets {v |x = xt} and {v |e2 = 0}. Using Filippov’s differential inclusion [70], the

existence of solutions can be established for v̇ = f (v), where f (v) ∈ R5 denotes the right-

hand side of the closed-loop error signals. Under Filippov’s framework, a generalized Lyapunov

stability theory can be used to establish strong stability of the closed-loop error system. The

generalized time derivative of (4–28) exists almost everywhere (a.e.), and V̇ (v) ∈a.e. ˙̃V (v)

where
˙̃V = ∩

ξ∈∂V
K
[
ė2 ė1

1
2Q
− 1

2 Q̇

]T
,

where ∂V is the generalized gradient of V (v) [71], K [·] is defined in [72] and [73] as

K [f ] , ∩
δ>0

∩
µΥ=0

c̄of (B (x, δ)−Υ) ,

where ∩
µΥ=0

denotes the intersection of all sets Υ of Lebesgue measure zero, c̄o denotes convex

closure, and B (x, δ) = {u ∈ R3 |‖u− v‖ < δ}. Since V (v) is a Lipschitz continuous regular
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function,

˙̃V = ∇V TK
[
ė2 ė1

1
2Q
− 1

2 Q̇

]T
, (4–30)

⊂
[
M̄e2 e1 2Q 1

2

]T
K
[
ė2 ė1

1
2Q
− 1

2 Q̇

]T
.

Using (4–12), (4–20), and (4–22), the expression in (4–30) becomes

˙̃V ⊂ eT2 ∆− β ‖e2‖ − keT2 e2 − α1e
T
1 e1. (4–31)

Using (4–26), the expression in (4–31) can be upper bounded as

˙̃V
a.e.
≤ ρ (‖z‖) ‖e2‖ ‖z‖ − (β − ζ) ‖e2‖ − k ‖e2‖2 − α1 ‖e1‖2 . (4–32)

Let the control gain k in (4–22) be defined as

k , k1 + k2, (4–33)

where k1, k2 ∈ R are known positive constants. Using (4–33) and the gain condition

β > ζ,

the expression in (4–32) can be upper bounded as

˙̃V
a.e.
≤ −

(
k1 ‖e2‖2 − ρ (‖z‖) ‖e2‖ ‖z‖

)
− k2 ‖e2‖2 − α1 ‖e1‖2 . (4–34)

Completing the squares on the term in parentheses in (4–34) yields

˙̃V
a.e.
≤ ρ (‖z‖)2

4k1
‖z‖2 − k2 ‖e2‖2 − α1 ‖e1‖2 . (4–35)

The expression in (4–35) can be further upper bounded as
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˙̃V
a.e.
≤ −λ ‖z‖2 + ρ (‖z‖)2

4k1
‖z‖2 , (4–36)

where λ = min {k2, α1} is a known positive constant. Finally, given the gain condition

λ >
ρ (‖z‖)2

4k1
,

the expression in (4–36) becomes
˙̃V
a.e.
≤ −U (v) , (4–37)

where U (v) = µ ‖z‖2, for some positive constant µ ∈ R, is a continuous positive semi-definite

function in the domain

D ,
{
v ∈ R5 | ‖v‖ ≤ ρ−1

(
2
√
λk1

)}
.

The expressions in (4–28) and (4–37) can be used to show that V (v, t) ∈ L∞; hence,

e1 (t) , e2 (t), and Q (t) ∈ L∞ in D. Given that e1 (t) , e2 (t) ∈ L∞ in D, it can be proven

that ė1 (t) ∈ L∞ in D from (4–12). Since e1 (t) , e2 (t) ∈ L∞ in D, the assumption that

xd (t) , ẋd (t) exist and are bounded can be used to conclude that x (t) , ẋ (t) ∈ L∞ in D and

q (t) , q̇ (t) ∈ L∞ in D using (4–5). Similarly, it can be shown that ė2 (t) ∈ L∞ in D. Since

ė1 (t) , ė2 (t) ∈ L∞ in D, the definitions for U (v) and z (t) can be used to prove that U (v) is

uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,

{
v (t) ⊂ D

∣∣∣∣∣U2 (v (t)) < η1

(
ρ−1

(
2
√
λk1

))2
}
.

[74] can now be invoked to state that

‖z (t)‖2 → 0 as t→∞ ∀ v (0) ∈ S. (4–38)

Based on the definition of v (t) in (4–27), (4–38) can be used to show that

‖e1 (t)‖ → 0 as t→∞ ∀ v (0) ∈ S.
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Using (4–5) and (4–11), the control development ensures that

q2 (t)→ q1 (t) as t→∞ ∀ v (0) ∈ S.

Theorem 4.2. The controller given in (4–15) ensures that the teleoperated system is passive

with respect to the scaled user and environmental power.

Proof. See [53].

4.4 Simulation Results

In this section, simulation results are given for two different user input forces to demon-

strate the performance of the controller given in (4–15). The master and slave system

dynamics are simulated using the following model

mq̈1 + bq̇1 = T1 − F1,

mq̈2 + bq̇2 = T2 − fneedle (q2, q̇2) ,

where T1 (t) and T2 (t) are introduced in (4–1) and (4–2), m = 0.152 kg, b = 1.426N · s ·m−1,

which correspond to the needle insertion robot described in [75]. The needle insertion force

fneedle (q2, q̇2) is simulated using the design described in Chapter 2, where the needle insertion

force is the sum of a stiffness force, a friction force, and a cutting force. As in Chapter 3, the

different positions and parameter values are chosen to agree with a direct insertion into the

liver. The initial positions are q1 = 0mm and q2 = −20mm for t = 0. The tissue position is

fixed to 200mm from the origin. The position of the maximally deformed tissue surface before

puncture is 216mm, which means that the needle progresses 16 mm while in contact with

the liver before the puncture occurs. The parameters for the desired trajectory introduced in

(4–13) are chosen as

BT = 15, KT = 2.
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The number of hidden layer neurons for the NN is chosen as N = 15, and the NN weight

updation gains are selected as

Γw1 = Γw2 = 30I16, Γv1 = 30I5,

where Ip ∈ Rp×p denotes the identity matrix. For the first simulation, the user input force

F1 (t), which corresponds to the force provided by the surgeon on the master robot, is given by

a sinusoidal force as

F1 = 15 sin (1.1t) .

This simulation does not have a practical meaning because it would mean that the surgeon

inserts the needle into a patient, removes it and inserts it again. However, this user trajectory

was simulated to demonstrate the performance of the controller under some arbitrary motion.

Figure 4-1 shows the master position q1 (t) and the slave position q2 (t). As shown in Figure

4-2, the error between these two position goes to zero as time goes to infinity. The passivity

objective, introduced in (4–4), is met when the trajectory of q1 (t) + q2 (t) follows the desired

trajectory xd2 which can be seen in Figure 4-3 and 4-4.

For the second simulation, the user force F1 (t) is simulated as

F1 = 8.

Figures 4-5 and 4-6 show the position tracking between the master robot position q1 (t) and

the slave robot position q2 (t). The passivity objective can be seen in Figures 4-7 and 4-8. In

Figure 4-9 and 4-10, the needle force fneedle is given as a function of time and position of the

needle tip, respectively. It can be seen that during the first stage the force between the needle

and the tissue is equal to zero because the needle does not touch the tissue yet. Then, the

needle force increases to reach a maximum force which is followed by a sudden drop in force as

the needle punctures the tissue and now only needs to overcome the friction and cutting forces.
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Figure 4-1. Trajectory for master and slave robots for F1 = 15 sin (1.1t).
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Figure 4-2. Position error between master and slave robot for F1 = 15 sin (1.1t).
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Figure 4-3. Desired trajectory xd2 and position of q1 + q2 for F1 = 15 sin (1.1t).
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Figure 4-4. Error between the desired trajectory xd2 and q1 + q2 for F1 = 15 sin (1.1t).
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Figure 4-5. Trajectory for master and slave robots for F1 = 8.

Figure 4-6. Position error between master and slave robot for F1 = 8.
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Figure 4-7. Desired trajectory xd2 and position of q1 + q2 for F1 = 8.
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Figure 4-9. Needle force fneedle as a function of time for F1 = 8.
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Figure 4-10. Needle force fneedle as a function of the needle tip position for F1 = 8.
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CHAPTER 5
CONCLUSION

5.1 Summary of Results

In Chapter 2, a discussion on soft tissue deformation is provided. The needle insertion

force modeling for viscoelastic tissue is presented as the sum of a Hunt-Crossley stiffness force,

a friction force, and a constant cutting force.

In Chapter 3, a one-degree-of-freedom translation robot controller is designed to asymp-

totically track a desired trajectory going from a non-contact position into a viscoelastic tissue.

The needle force is designed considering that the viscoelastic tissue model is the sum of a

stiffness force, a friction force, and a cutting force. A sliding mode controller combined with

a multi-layer NN is used to ensure asymptotic tracking. A Lyapunov-based stability analysis is

provided to prove the semi-global asymptotic tracking. The efficacy of the proposed controller

is demonstrated through simulations.

In Chapter 4, a controller is designed to permit a needle insertion slave robot to asymptot-

ically track the position of the master robot going from a non-contact position into a tissue. A

globally invertible transformation is defined to show stability and passivity. A Lyapunov-based

stability analysis is provided to prove the semi-global asymptotic tracking. Simulation results

demonstrate that the position tracking and the passivity objective are met.

Medical robotics research has become an important tool to assist the development of

advanced medicine and high precision surgery. Different methods have been studied to insert a

needle considering the constraints imposed by the physiological properties of a patient, but also

to give haptic feedback, to reduce human errors due to fatigue or hand tremor, and to develop

medical simulators to train medical students and surgeons for surgical procedures. Robotic

needle insertion can lead to safer and more accurate needle insertions.

5.2 Recommendations for Future Work

In this study, undesired bending of the needle during insertion is not take into considera-

tion. A bevel tip and tissue deformations can cause the needle to bend during insertion when
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using a flexible needle. In clinical practices, a deviation of the needle from the desired path of-

ten reduces the effectiveness of the procedures. Experimentally, sensors or imaging devices can

be used to acquire data and then control the needle position using rotation and translation.

To improve the controller developed in Chapter 3 and 4, an accurate design for the

position of the viscoelastic tissue could be used. The dynamics of the tissue depends on

forces from surrounding tissue and organs, and physiological movements as heart beating or

breathing. In these chapters, it is only supposed that the position of the tissue depends on

time but a specific dynamics is not used. A detailed study of physiological movements could

give information about the tissue movement and then it could be applied for the controller

development to get a more accurate result. The goal is to be in perfect conformity with the

physiological movements but an easier approach could be to employ a mass-spring dynamic.

In Chapter 4, no special care is given for time delay. Time delay affects the performance

of dynamic system. Some mechanisms and control strategies can be applied to these systems

to compensate for them. For a medical application, there is no real need to compensate

for time delay in practice if master and slave robots are close to each other and are directly

connected. For a long distance surgery it is fundamental to develop a controller which

guarantees stability independent of the delay.
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