Reinforcement Learning with Sparse Bellman Error Extrapolation for Infinite-Horizon Approximate Optimal Tracking

MAX Greene¹, PATRYK DEPTULA², SCOTT NIVISON³, WARREN DIXON¹

¹Dept. of Mechanical and Aerospace Engineering, Univ. of Florida
²The Charles Stark Draper Laboratory, Inc.
³Munitions Directorate, Air Force Research Laboratory

Under Review TAC, Fall 2020
Problem Formulation

Dynamical System

Given a control affine nonlinear dynamical system:

\[\dot{x}(t) = f(x(t)) + g(x(t))u(t) \]

Control Objective (Regulation Case)

Design a controller, \(u(t) \), which minimizes a cost function:

\[J(x, u) = \int_0^\infty (x(\tau)^T Qx(\tau) + u(\tau)^T Ru(\tau))d\tau \]

Cost-to-Go

Optimal value function:

\[V^*(x) = \min_{u(\tau) \in U} \int_t^\infty (x(\tau)^T Qx(\tau) + u(\tau)^T Ru(\tau))d\tau \]
Hamilton Jacobi Bellman Equation

Hamilton Jacobi Bellman (HJB) equation:

\[0 = \nabla_x V^*(x) (f(x) + g(x)u^*(x)) + x^T Q x + u^*(x)^T R u^*(x) \]

Optimal Controller

From solving the HJB equation:

\[u^*(x) = -\frac{1}{2} R^{-1} g(x)^T (\nabla_x V^*(x))^T \]

- Cannot solve HJB analytically
- Approximate the Value Function \((V^*)\)
 - Stone Weierstrass Theorem
 - Neural Networks
Approximate Optimal Solution

Optimal Value Function and Optimal Control Policy:

\[
V^*(x) = W^T \sigma(x) + \varepsilon(x) \quad u^*(x) = -\frac{1}{2} R^{-1} g(x)^T (\nabla_x \sigma(x)^T W + \nabla_x \varepsilon(x)^T)
\]

Unknown: Neural weights \(W \rightarrow \hat{W}_c, \hat{W}_a \)

\(\hat{W}_a \): Actor weight
\(\hat{W}_c \): Critic weight

Value Function and Optimal Control Policy Approximation

\[
\hat{V}(x, \hat{W}_c) = \hat{W}_c^T \sigma(x) \quad \hat{u}(x, \hat{W}_a) = -\frac{1}{2} R^{-1} g(x)^T (\nabla_x \sigma(x)^T \hat{W}_a)
\]

Bellman Error (BE): Residual from HJB

\[
\hat{\delta}(x, \hat{W}_c, \hat{W}_a) \triangleq \nabla_x \hat{V}(x, \hat{W}_c) \left(f(x) + g(x)\hat{u}(x, \hat{W}_a) \right) + \hat{u}(x, \hat{W}_a)^T R \hat{u}(x, \hat{W}_a) + x^T Q x
\]
Weight Update Laws using R-MBRL

\[\dot{\hat{W}}_c(t) = -\eta_c \Gamma(t) \frac{\omega(t)}{\rho(t)} \hat{\delta} + \eta_c \sum_{j=1}^{N_j} \frac{\omega_i(t)}{\rho_i(t)} \hat{\delta}_i(t) \]

\[\dot{\Gamma}(t) = \left(\lambda \Gamma(t) - \frac{\eta_c \Gamma(t) \omega(t) \omega^T(t) \Gamma(t)}{\rho(t)} \right) - \Gamma(t) \eta_c \sum_{j=1}^{N_j} \frac{\omega_i(t) \omega_i^T(t)}{\rho_i(t)} \hat{\delta}_i(t) \]

\[\dot{\hat{W}}_a(t) = -\eta_c \left(\hat{W}_a(t) - \hat{W}_c(t) \right) - \eta_a \hat{W}_a(t) + \frac{\eta_c G_{\sigma i}^T(t) \hat{W}_a(t) \omega(t)^T}{4 \rho(t)} \hat{W}_c(t) \]

\[+ \left(\frac{\eta_c}{4 N_j} \sum_{i=1}^{N_j} \frac{G_{\sigma i}^T(t) \hat{W}_a(t) \omega_i(t)}{\rho_i(t)} \hat{\delta}_i(t) \right) \hat{W}_c(t) \]
• Separate operating domain
• Bellman error extrapolation contained to segment
• Smaller history stack
• Switches depending on region
• Introduces discontinuities
Simulation Results

• Linear Quadratic Tracking (LQT)

\[
\dot{x} = \begin{bmatrix}
-x_1 + x_2 \\
\frac{1}{2}x_1 - \frac{1}{2}x_2
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} u \\
x_d = \begin{bmatrix}
4 \sin(t) \\
4 \cos(t) + 4 \sin(t)
\end{bmatrix}
\]

• Analytical solution known
• Non-sparse basis outside of box
• \(\sigma(\zeta) = [e_1^2, e_1 e_2, e_1 x_d, e_2^2, e_2 x_d, e_2 x_d^2]^T\)
• Sparse basis inside of box
• \(\sigma(\zeta) = [e_1^2, e_1 e_2, 0, 0, e_2^2, e_2 x_d, e_2 x_d^2]^T\)
• Dynamics approximated with neural network
Simulation Results

NN System ID Weights

Control Policy

Critic/Actor Weights

- $\hat{\theta}_1(t)$
- $\hat{\theta}_2(t)$
- $\hat{\theta}_3(t)$
- $\hat{\theta}_4(t)$

- Optimal Control Policy
- Estimated Optimal Control Policy

- $\hat{w}_c(t)$
- $\hat{w}_e(t)$

- Time (s)
- Time (s)
Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>Standard Model-Based ADP</th>
<th>SS Model-Based ADP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Computation Time (10 trials) (s)</td>
<td>120.40</td>
<td>25.90</td>
</tr>
<tr>
<td>Integral of Error ($\int_0^{150}</td>
<td></td>
<td>e(\tau)</td>
</tr>
<tr>
<td>5% Rise Time (s)</td>
<td>33.33</td>
<td>44.29</td>
</tr>
<tr>
<td>RMS Steady State Error (s)</td>
<td>$6.92 \cdot 10^{-3}$</td>
<td>$5.57 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>
Model-based Reinforcement Learning for Optimal Feedback Control of Switched Systems

Max Greene1, Moad Abudia2, Rushikesh Kamalapurkar2, Warren Dixon1

1Dept. of Mech. and Aerospace Engineering, Univ. of Florida
2Dept. of Mech. and Aerospace Engineering, Oklahoma State Univ.

To Appear, Conf. on Decision and Control (CDC), December 2020
• Theorem 1: Subsystem Stability Analysis

 \[V_{L,i}(r_i, t) = V_i^*(x) + \frac{1}{2} \tilde{W}_{c,i}^T \Gamma_i^{-1} \tilde{W}_{c,i} + \frac{1}{2} \tilde{W}_{a,i}^T \tilde{W}_{a,i} \]

 \[\dot{V}_{L,i}(r_i, t) \leq \frac{\Lambda_i}{\alpha_{2,i}} V_{L,i}(r_i, t) + l_i \]

 • System state \(x \), weight estimation errors \((\tilde{W}_c, \tilde{W}_a) \), and control policy \(u(t) \) is Uniformly Ultimately Bounded

 • Exponential convergence to a region \(V_{L,i}(r_i, t) \leq \frac{2l_i \alpha_{3,i}^2}{\Lambda_i \alpha_{1,i}^2} \).
Theorem 2

• When switching from $i = 1 \rightarrow 2$, there is a jump between the multiple Lyapunov functions.

\[
V_{L,1}(r_1, t) = V_1^*(x) + \frac{1}{2} \tilde{W}_{c,1}^T \Gamma_1^{-1} \tilde{W}_{c,1} + \frac{1}{2} \tilde{W}_{a,1}^T \tilde{W}_{a,1}
\]

\[
V_{L,2}(r_2, t) = V_2^*(x) + \frac{1}{2} \tilde{W}_{c,2}^T \Gamma_2^{-1} \tilde{W}_{c,2} + \frac{1}{2} \tilde{W}_{a,2}^T \tilde{W}_{a,2}
\]

Switching causes discrete jumps in these values.

Scales by const. due to quadratic value fcn. assumption.

Largest UUB Region

"Jump"
Theorem 2:

The system consisting of a family of subsystems, each with control affine dynamics and a properly designed dwell-time, τ, ensures that x, $\tilde{W}_{c,i}$ and $\tilde{W}_{a,i}$ $\forall i$ will converge to a neighborhood of the origin in the sense that $V_{L,i}(r_i, t) \leq V_{L,B}$ for all $t \geq T$; where $V_{L,B} \in \mathbb{R}$ is the maximum ultimate bound for all subsystems, and $T \in \mathbb{R}$ is the time required to reach the ultimate bound $V_{L,B}$; provided a minimum dwell-time τ^* is satisfied.
F-16 longitudinal dynamics

- [Stevens, Lewis, Johnson, 2016]

Explore further connection with Ben Dickenson (AFRL/RW), regarding reconfigurable aircraft munition that extend wings, retract wings

<table>
<thead>
<tr>
<th>Dynamic Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1, Unaltered Model</td>
<td>[\dot{x} = \begin{bmatrix} -1 & 0.9 & -0.002 \ 0.8 & -1.1 & -0.2 \ 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} u]</td>
</tr>
<tr>
<td>Mode 2, Altered Model</td>
<td>[\dot{x} = \begin{bmatrix} -0.8 & 0.2 & -0.01 \ 0.6 & -1.3 & -0.1 \ 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} u]</td>
</tr>
<tr>
<td>Mode 3, Altered Model</td>
<td>[\dot{x} = \begin{bmatrix} -1 & 0.5 & -0.02 \ 0.9 & -0.8 & -0.4 \ 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} u]</td>
</tr>
</tbody>
</table>
• Switch between multiple dynamical systems
 • Arbitrary switching sequence
 • Satisfies minimum dwell-time condition

• Switching Sequence
 • {1,2,3,1,3,2}
Switched System ADP

![Graphs showing time evolution of state variables and value functions for Switched System ADP.]

- **Left Graph:**
 - \(\hat{W}_{1,1}(t) \) (red)
 - \(\hat{W}_{1,2}(t) \) (blue)
 - \(\hat{W}_{1,3}(t) \) (green)
 - Time range: 0 to 30 seconds

- **Right Graph:**
 - \(\hat{V}_n(x) \) (red)
 - \(V_n^*(x) \) (dashed blue)
 - Approximate Value Function
 - Optimal Value Function
 - Time range: 0 to 30 seconds

Incorporating feedback control schemes and graphical representations to visualize the system's performance over time.
Lyapunov-Based Real-Time and Iterative Adjustment of Deep Neural Networks

R. Sun, M. L. Greene, D. M. Le, Z. I. Bell, G. Chowdhary, W. E. Dixon

1Univ. of Florida, 1AFRL/RW, 2Univ. of Illinois Urbana-Champaign

Under Review, IEEE Control Systems Letters
DNN-Based Adaptive Control

Multiple Timescale Learning

- Offline & Real-time Data
 - Offline-Slow Learning
 - Inner-Layer Training
 - Real-time Learning
 - Analysis-based Outer-Layer Training

Reference Input

Closed-Loop Controller

Dynamic System

Output
• Van der Pol Oscillator
• Trained with 600s of simulation data
• Transient response is fast relative to the overall timescale
Trained on identical dynamics
Trained on similar dynamics (different coefficients) - transfer learning
No offline training. Inner-layer DNN weights are randomly initialized.