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\/ ’ We solve convex optimization problems

* Problem

« We are interested in solving convex optimization problems in a
distributed, asynchronous way.

Problem Statement

Given an objective function L : R™ - R,
minimize L(x), x € R
across N agents while requiring
(i) only one agent updates any entry of the decision variable x, and
\(ii) agents require only sporadic information sharing from others. /

 Applications

Machine Learning Robotics Networks
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\ /2 :
e N\ / systems framework is necessary and advantageous
2 Qr ,

« Real-world problems require a hybrid approach.

« Robotics is one example where physical motion occurs in continuous
time while communications occur at specific instants in time.

* To account for the sporadic nature of communications,
communication events are modeled using discrete time.

‘\"
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A hybrid systems framework provides advantages during
analysis.

* The framework comes with many tools for showing stability and
convergence.

» Hybrid systems also tend to provide robustness, which is especially
beneficial in asynchronous or contested environments.
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%,\’/ ’ Approach: Impose assumption on objective function

« We impose the following assumption on the objective function L.

The function L is
« twice continuously differentiable,

« [-strongly convex for some positive f3,
K. and K-smooth (VL is K-Lipschitz).

J

« This is a common assumption in multiagent optimization that allows us to
consider a large number of convex problems.

» For example, convex quadratic problems where 8 and K are easily
determined.
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e \'.'/ ’ Approach: Distribute gradient descent across agents
&
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In the centralized case, we would use x = —VL(x).

We make this multi-agent where agent i is responsible for updating the i-th
block of x, denoted by x; € R™. With constant communications, agent i

would then have the update x; = —V;L(x), where V;:= %.

To account for sporadic communications, agents store the most recently
communicated values in a separate variable n € R™.

We then implement a “sample and hold” methodology whose dynamics
take the form x; = —V;L(n).

X1 —V,L(n)
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’%,\/ , proach: Model communications with a shared timer

« Communications are modeled through a

. . “Sample and Hold” Communications
shared timer, 7, that has the following
. Comm. Comm. Comm.
dynamics: ; 5 :
7= —1, T e [OaTmax]a TmaxT
T+ S [Tmin7 Tmax]; & = O, ! '
T s

where 7,,,;;, and 7,,,4, are some positive Tnin 1
real numbers.

Continuous Time, t
* When 7 reaches zero, all agents update = =

n € R"™ with their current state values, x; :
(for agent 1), and 7 is reset to a value
within the range [T, Tmax]- _

« Agents then use 1 in their continuous /
state updates. 5 . :

Contlnuous Tlme,

X values are assigned ton when =0
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Framework: Define dynamics and communications

« Agent i has three variables on board, (i, 7, 7), which we define as state ¢;.

« Between communication events, agent i updates both x; and = while 1 does
not change. Thus, ¢;’s continuous-time dynamics may be written as

éi — [ ‘ = l ‘: $i € XIREX[0, T
T —1

« Communication events are triggered when 7 = 0: x; stays the same, 7 is
updated with values from all agents, and 7 is reset. This is formally

modeled as

UF
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ybrid Framework: Formal definition of a hybrid system

Definition of a Hybrid System

A hybrid system H has data (C, f, D, G) that takes the general form
x = f(x), X E
xtecq, X €D

where the vector x is the system’s state.

f defines the flow map and continuous-time dynamics for which  is the . G is the
Qet—valued jump map which captures the system’s discrete behavior for the jump set D. /

* Our subsystem definition meets the requirements of a hybrid system:

A VL) N .
&= | = 0 , & € RMXR™X[0, Trpaxl- &7 =
3 =1 T

Flow map Flow set Jump map Jump set

« However, we want to create a single, combined hybrid system that
captures the states of all agents for analysis.

+
Xi

n*
+

Xi
€ [ X ], & € RMxR™x{0}.

Tmin» Tmax
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‘%,\\/ 1d Framework: Combined hybrid system for analysis
Qr ’

« Towards a combined hybrid system, we
define two new variables:
z1 = col(xq, ..., xy),

 We then define the state of the combined
hybrid system as @ Y,
f — (Z]_; ) T)' T

 This leads to the hybrid system ' = (C, f, D, G) given by

o [# —VL(z;)
§ = ]:[ ]:f(f)r §EC = R"XR"X[0, 7,4,/
LT —1

Tmin, Tmax]

2 Zq
&t = e[ ]:G, § €D :=R"XR"'X{0}
|
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,\/ ’ Analysis: Defining solutions and their properties

 Solutions to H are denoted by ¢ = (qbzl, bz, qu), '/V
which we parameterize by (t,j) € R.oXN where t o) bt fazts
denotes the ordinary (continuous) time and j Y
denotes the jump (discrete) time. 1 Z

j

* Under Assumption 1* and an upper bound on 7,,,,, a nontrivial solution
exists from every initial pointin C U D. Additiona(ﬁcy, every maximal
solution ¢ to the hybrid system H is complete and not Zeno.

« Takeaway: there are no theoretical obstructions to running this algorithm for arbitrarily
long periods of time.

« We say that ¢ has converged when it reaches the set A defined as
A=1{=(21,2,,T) €EC:VL(z,) =0 € R", 2z, =21, T € [0, Trygrl}
= {x"}x{x"}X[0, Trmaxl,
where x* is the unique fixed point of VL and thus, the unique minimizer of L.

« For some vector v, we define |v| 4 as the distance between the vector v and
the set A.

*L is twice continuously differential, f-strongly convex, and K-smooth.
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Stability Analysis: Choosing a Lyapunov Function

Lyapunov Function

V() = (L(z) — L) + (L(zy) — L(x)’

where & = (z4,2,,7) € X, L is the objective function, and x* is the unique fixed point of VL.

 Central to our analysis is choosing a Lyapunov function that is bounded
above and below by K, comparison functions.

Lemma 5: Comparison Functions

There exist a4, a, € Ky, such that a1 (|¢|4) < V(&) < ay (|€].4) forallé € C U D U G(D).
In particular, for all s > 0, @; and «a, are given by
ﬁZ KZ

a,(s) = Es“‘ and a,(s) = 754 ,

\ where [ is the strong convexity constant of L and K is the Lipschitz constant of VL. J

« Both comparison functions are used as both V (¢) and —V (§) are upper
bounded or may be written as a function of the distance from A.

K. Hendrickson, D. Hustig-Schultz, M. Hale, & R.G. Sanfelice. (2021). Asynchronous Distributed Gradient Descent with
Exponential Convergence Rate via Hybrid Methods, Under Review. arXiv preprint: https://arxiv.org/abs/2104.10113
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alysis: Preliminary result under initialization condition

Proposition 2:

Let Assumption 1 hold and consider the hybrid system #. Choose 7,,,;;, and 7,4, Such

2
that 0 < Tyuin < Thax < 3/%, where [ is the strong convexity constant of L and K is the

Lipschitz constant of VL. For each solution ¢ such that ¢, (0,0) = ¢,,(0,0), for all (¢,)) €
dom ¢, the following is satisfied

K,
6t < j%ﬁ exp (= t) 160,01
\ where A = B2(1 — 2t mgK) — TmarK3 > 0and B = (1 — 2t,4.K) € (0,1). /

o |d(t,j)|.4 < constant * exp(— *t)|¢(0,0)| 4 for all (¢,j) € dom ¢.

- When agents agree on their initialization value, i.e., when ¢, (0,0) =
¢,,(0,0), exponential stability holds for all time (&, j).

« While this initialization condition holds in some contexts, some situations
preclude such agreement at initialization.

K. Hendrickson, D. Hustig-Schultz, M. Hale, & R.G. Sanfelice. (2021). Asynchronous Distributed Gradient Descent with
Exponential Convergence Rate via Hybrid Methods, Under Review. arXiv preprint: https://arxiv.org/abs/2104.10113
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Stability Analysis: Global exponential stability

Theorem 1: Global Exponential Stability

Let Assumption 1 hold and consider the hybrid system #. Choose 7,,,;;, and 7,4, Such

2
that 0 < Tyuin < Trax < 3/%, where [ is the strong convexity constant of L and K is the

Lipschitz constant of VL. For each solution ¢ and for all (¢,j) € dom ¢ such thatj > 1,
the following is satisfied

8 K,
e ﬁﬁ exp (-

AB
L t) 16001,

\ where 4 = 2(1 — 27,0 K) — Tmax K2 > 0 and B = (1 — 274,.K) € (0,1). J

o |p(t,j)|4 < constant * exp(— constant x t)|¢(0,0)| 4 for all j > 1.

- Exponential stability holds for all solutions, regardless of initialization,
after the first jump.

K. Hendrickson, D. Hustig-Schultz, M. Hale, & R.G. Sanfelice. (2021). Asynchronous Distributed Gradient Descent with
Exponential Convergence Rate via Hybrid Methods, Under Review. arXiv preprint: https://arxiv.org/abs/2104.10113
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Stability Analysis: Simulations illustrate main results

minimize L(x) = %xTQx + bTx

across N=n agents where Q is a n x n symmetric, positive definite

matrix and b is in R".

« We first compared convergence for
different initial values of ¢, and
¢,, when using five agents.

When agents agree on initial conditions
(Trial 1), there was a consistent decrease
in the distance to the minimizer, even at -
jumps.

When agents disagree on initial
conditions (Trial 2), it’s possible that the
distance from the minimizer will
increase during the first jump. The
%ystem then behaves in an exgonentially

ecreasing manner, with the difference
between the two trial results decreasing
over time.
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Stability Analysis: Simulations illustrate main results

e 1
minimize L(x) = ExTQx + bTx

across N=n agents where Q is a n x n symmetric, positive definite

matrix and b is in R".

» We varied the network size from 5
agents to 100, 500, 1,000, and 5,000
agents.

Effect of Network Size on Convergence Rate
T T T T T

5 Agents ]
100 Agents | 4
500 Agents | J
1000 Agents |
5000 Agents | 3

« We chose to initialize ¢, and ¢,,
with the same values for all the trials.

« As shown in the figure, even
drastically changing the network size
did not significantly impact the
convergence.

Distance Between lterations
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\'.'/ , Summary of presentation
&

* Summary

UF

« We're interested in solving convex optimization problems in a
distributed way for which a hybrid systems framework is intuitive and
beneficial.

« We distribute a gradient descent update law among agents with
communications governed by a shared timer.

« We define the hybrid subsystems as well as a combined hybrid system
for analysis.

« We use Lyapunov stability analysis to show global exponential stability
for our hybrid system.

« Simulation results confirm our analysis and the scalability of our
model.
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\\/ Plans for future work
- ’

« Heterogeneous timers

« Each agent will use a separate timer for communication events.

 When an agent’s timer reaches zero, they will retrieve updates from all
other agents.

« Thus, agents will then have a different versions of n that they use in
updates.

L) - e

 Set constraints on x
 This adds the requirement that x be in some set X € R".

 This will lead to different dynamics and a need to exclude certain
pathological hybrid phenomena.
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