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Control Stack Control view Modeling view
Long-horizon ﬁfl ¢
views ,0 ~ 0\
[ Tactical Planner J Short-horizon
l views
Continuous/discrete | s = AT g(x(t),h(t))dt—l—AT||x(t)||2dt,
[ Low-level Control J control with min fy(z,(t)) + fu(za(t))
l constraints s.t. zp(t) = za(t), ur(t) = up(t),
[ Vehicle J r e

Adding Resiliency

[ICRA213, ICRA21b, ICRA20
]

[Automatica21*, TII21, TASE21¥,
]

[ICML21*, TCPS20, ACC20,
AUT21b*, AUT21,

Our Goal: Add resiliency to controls across different/all levels of the autonomy stack
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e Controller

®
T
e Attacker UAV%?’

GPS
aims to perform a given task in an unknown stochastic environment Q i g %
has a perfect knowledge of the current state
has an intrusion-detection system (IDS) that monitors anomalies
can detect attacks only when the IDS raises an alarm

Operator

Adversary

aims to prevent the controller from performing the given task

has a perfect knowledge of the current state, the controller strategy and the IDS mechanism
can attack on actuators unless detected

tends to stay stealthy
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Secure Planning Objective

* Problem:
* For agiven task and the IDS mechanism, learn an optimal
controller strategy resilient to stealthy attacks on actuators [ — — — — — -~
#I Winning Condition (@) ]I { Environment (G) ]
 Three-Step Solution [1]: - — )
* Model the problem as a zero-sum SG § with —_—— —{ 1; ——————— & _—— _NI
an LTL winning condition ¢ capturing #l Product Game with Return Objective (G*, G)
. | ¢’ ||
the controller task \ ),
e the DS mechanism i _______
* the behavior of stealthy attackers f - —

Reinforcement Learning
* Reduce the LTL objective argmax, min,, Pr,,(G = ¢) L

) | ] d
to a return objective: @

argmax, min, E, , [G<2< ] { Strategy ]

argmax, min, E, ,, [Z Vir(i)]
i=0

* Learn an optimal controller strategy using a model-free RL

[1] A. K. Bozkurt, Y. Wang, and M. Pajic. “Secure Planning Against Stealthy Attacks via Model-Free Reinforcement Learning”. ICRA, 2021, accepted.
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* @PTASK:

e LTL specification of the given task

e Surveillance Example:
PTasg=00 region; A OO0 region,

* Pips:
* LTL specification of the intrusion detection system
* A reachability specification satisfied when an attack is detected
e Attacks can be detected only after reaching the high-alert mode triggered by the anomalies
* Counting-Based IDS Example:
Ops = © (anomaly A O(anomaly A OOSTattack))
* Two consecutive anomalies triggers the high-alert mode
* The attacks can be detected during the high-alert mode

* Winning Condition: ¢ = @|ps V @TasK"

* =@ = =@ps N @745k reflects the behavior of stealthy attackers
 Being detected results in losing the game; thus, the attacker always stays hidden
 The only way for the attacker to win to prevent the controller performing the task
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» Satisfaction of @1aqk:

* The task needs to be performed even after the attacker is eliminated

* An attack could prevent performing the task even if it is detected
* Safety Example:

QTasg=0—unsafe

* Recovering from an unsafe state is not possible; although being
eliminated the attacker should win the game

* Allowing for a single attack:

* @ps can be easily modified to capture such cases
* An attack after a detected attack satisfies @pg
e Counting-Based IDS Example:

®1ps =0 (anomaly AQO (anomaly A OO0 (attack )))

* Being eliminated is equivalent to not attacking after a detected attack



RL Framework for LTL
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* Reduction Steps:
* LTL-> Automaton
* Product Game Construction
* Reduction from Parity to Return
* Model-free Learning

e Parity to Return | (Multiple Rewards Discount Factors) [2]:
.« Pr,(GX E@*) = r<,1)i—r>r(}+ IEMIV[Z;?‘;O(]_[;zl I‘cp(sg})))R(p(sé))]

k—Col X
° R(p(Sx) =Ty olor(s )1{Color(sx) is even}
k—Col X
. F¢(Sx) —1_ r(p Color(s™)

* Parity to Return Objectives Il (Priority Reward Machines) [3]:
. (0e] l *
* Pr,,(GF E @) = eql)l_r)%J,IEu,v [Zi=o(1 — grp) R<p(5(xi)'9(i))]
* &, PRM transition probability

* 0(i: PRM state
* Rj:PRM reward

(
|
|
|
|
|
|
\

{ Environment (G) ]

/"__@

{ Automaton(A,,) ]

AV Vi

— — — —

N

N

Product Game with Parity Objective (G*, ¢™)

7

V4

Product Game with Return Objective (G, G)

N

e Ee—— S E——— —— —

L

Reinforcement Learning
{ Strategy ]

[2] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. “Model-Free Reinforcement Learning for Stochastic Games with Linear Temporal Logic Objectives”. ICRA, 2021, accepted.
[3] A. K. Bozkurt, Y. Wang, and M. Pajic. “Learning Optimal Strategies for Temporal Tasks in Stochastic Games”. 2021, submitted.
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Case Studies: Grid Worlds

 Grid World
 The agent (i.e., the controller) can take four actions: North, South, East, West
 The agent moves in the intended direction w.p. 0.8 and sideways w.p. 0.2
* The attacker can override the controller action
* A movement is called an anomaly if it is not in the intended direction

w.p. 0.8 (intended direction)

T

w.p. 0.1 w.p. 0.1
* IDS:

* Two consecutive anomalies triggers the high-alert mode for the next two time steps

P1ps =0 (anomaly NO) (anomaly A O0=1(attack A OOattack)))
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Case Study I: Surveillance

* Task:
* Repeatedly visit a b and a c cell
* Eventually reach a safe region labeled with d and do not leave

(pTASK=D<>b A O0c A 0Od

(a) The controller strategy from b to c and  (b) The controller and the attacker strate- (c) The controller and the attacker strate-
the labels of the cells gies from b to ¢ before any anomaly gies from b to c after one anomaly
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Case Study ll: Sequencing

* Task:
* Repeatedly visit a b and a c cell
* Eventually reach a safe region labeled with d and do not leave

Prask=0 (b A 0(c AO(d A 0e))) AO-a

4 5 6 1 8 5 6 7 8
0 1 & ‘3 W ‘'S w § '8
i o « o e | « €« « «
0 0.53 032 032 0.31 031 0.31 ) B
[ ; 1 vl s 214 |« | 3
1-080 0.76 0.60 0.27 0.16 0.22 031 0.31 031
| m e Tt
2 0.69 0.27 0.14 0.04 0.09 021 031 0.31 t ¢ ¢ Y
» - -
3 043 024 0.04 000 0.04 011 024 0.31 @ LA ) vy
*
4 D.77 029 0.14 0.04 0.09 022 031 0.32 viiov g Y vy
» > “« <«
5 0.28 0.18 022 0.32 032 0.32 ¢ ¢ v | v
“© ¢ o o « N ¢ «  «
6 0.62 035 034 0.33 0.‘:152 0.32 i d

() Thi conkiollesstintias o diosand (b) The controller and the attacker strate- (c) The controller and the attacker strate-
thelabalsof thaicells 8y gies from d to e right after an anomaly hap- gies from d to e right after an alarm is
pens raised
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UAV Model
pl =uav| xg = x5 + Ax(d)
Muav d € Ayay pl := adt
Adversary Model

pl = adv
2y =2+ M) |
Mady pl:=as

GPS %
Signal

9 Targef

Operator

-
UAV%O$ g

Off-the-shelf model checkers do NOT support hidden variables
Strategies CANNOT be synthesized based on hidden information
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Delayed Actions Representation
2 2 2 2 | 2 ‘ 2 ’ 2 . UAV Model Advisory System Model

i pl=uav| xg = xg + Ax(d)
N . NE L .. ’ w ! . |’ NWI . T ! <p>1 @ fiy! dg =d pl=as
0 ‘ ’ 0 0 0 0 0 Muyay @ € Auav

pl:=uav
4 4 4 4 4 4 » Adversary Model

Bisimulation relation Ma |
: z 2 2 2 2 4_ 2 .

update

pl:=uav

=R A

pl:= adv

fail
pl = uav

! ‘ N «H w |l ' <p>i._ e | |’ Nw !
0 0 0 0 0 0 0 .
4 ° ° L4 Synthesis Framework [CAV19]
1 1 1 -1 1 1 1
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Private Variables Representation _________ ModelRefinement |
@ ° ® V
R NG = N S L . Y  Composition ( W
landscape ? . EE oal = 1, # Primary > - Strategy Analysis
,,,,,,,,,,,,,,,,,,,,,,,,, i E F Components g I1
@ sa o2 2 2 2 My, My, Moy ) (Model Checker, ¢g)
target " i E w 0 o~
¢ - 4 5 6 7

L] 7
HHE, 4 ] .
urban - W il decnl R B (a) Geolocation task at stage k
;1 / I XY ! = !
kﬂ Bl p a ¢ S 1.0 o
landmark 2 I e I S A : <
/ hazard 1 e ; = h -
sl & PV i 2 06 P Auxiliary
& & -l S - ik Components
4 H = 04
' z r nthesi
x ® Subgame initial location ¢ ] / Mmrdl mer J DAG C St atEgy Sy thesis
N AG Construction
A - Path plan g o2 | (Model Checker, ¢s)
seascape > Geolocation task = 00 (Algorithm 1)

l / ol alts S
1 2 3 4 5 6 7 8 9 10
) Ma

(b) Max. no. of geolocation tasks h

[1] M. Elfar, Y. Wang, and M. Pajic, “Security-Aware Synthesis using Delayed Action Games”, 31st CAV, 2019.
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Lidar Attacks — Visualizations in Camera Frame
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Attacks on Camera-Lidar Fusion
Frustum Pointnet Vulnerability Example ENGINEERING

* Injection of just 65 points (bracketed red) can fool frustum pointnet 3D object detection,
even against a valid object (bracketed yellow) of 492 points

 An adversary capitalizes on physics-based assumptions that few LiDAR points penetrate
physical objects.

Fusion of camera + LiDAR is still vulnerable to attacks
with knowledge of the approximate frustum
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1-Sigma projected track bounds Track over 9
on [0, 1.2] seconds later subsequent injections

«re2)

Initial detection
of vehicle

* Move false detections into false target tracking.

 Initial injection is in red box, white line is track history, and white box
is ground truth target location.

* False moving target created with a time-to-impact with the host
vehicle of just under 1.2 seconds
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Tracking Case Study: Vehicle Following

1-Sigma projected track bounds
on [0, 2] seconds later

Injected’ trajectory over 9
subsequent injections

W

of vehicle

Attack goal: create a false vehicle trajectory moving away from the host vehicle

* resulting in unsafe behavior of the host vehicle.
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