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Cyber-Physical System with NN controller

@ A A Why NN controller?
Low onboard computing cost ;
End-to-end implementation ...
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Stochastic Closed-Loop System

Q- A%

Measurement
d(x?)

xED) = Axt + But Hw
w~N(u,o?) |

Natural disturbance, uncertain
modeling errors, etc.
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ut = ReLU(d(x")) Duke
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Probabilistic Safety and Problem Formulation

Definition: Let a function Px : R™ + [0, 1] represents the probability of the robot ending up in
an unsafe state after k time steps from being initialized at z?, i.e.:

Py, (z*) = P(Pw (z'*) € W,)

where Pw : R™ — RP is a projection operator that returns the robot's current position. In the
remainder, we shall call a state x p-safe if Px(z) < p, where p € [0,1].

Problem Formulation

Given the dynamical system (A, B), the measurement model d(x) , the noise model and a trained neural
network controller Re LU (d(x)), our goal is to verify whether the system is p-safe from a specific state Zo
after k time steps.
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One-step reachability
analysis

Deterministic dynamics

Simplified assumption
on the system
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System Abstraction and Safety over Regions

60 -
50 A

40 The system is abstracted

so that the measurement
model d(x) is affine at
each specific abstraction
[Sun, et al., 2019].
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Definition: S = {S:}}=, is a non-overlapping, polytopic partitioning of the state space. we
define p, : S — [0,1]as the extension of the upper bound of P, over the state abstraction
Sas follows:

Py(S:) = max(Fy(z))




Dynamic Programming on Transition Graph

Unsafe
abstraction

Transition Probability Upper Bound:
— N
P($t+1 c Sj‘ZCt € Sz) < P(SZ,S])

Theorem 1: Let S; be a node of the Transition Graph and let k time step Collison probability Py
be known. Then, the following holds:

Pi41(Si) = Z Po(SP(S:, S5) Give rise to very
S;E€Ns, 1 \ loose bounds.

>
How to compute with UU.ke

NN controller? UNIVERSITY




Chance constrained SMC with NN constraints

3 x4, 441 € R™ u' € R™, d € R?N
(b1, Bt tY) € BMi x RMt x RM:

subject to :

Nzt € S, » Feasibility to transit g

Nz €|S;(q) » Chance augmented set el S
Nztt! = Azt + Byt xt + But\/ S2(q)

L
N (t' = Wo(a") + w®) N (At =WR 4 wl) | valt! ¢ Sz(q),P(Si,Sj) <gq

N (ut = WEhY + wh ) » RelLU Activation
Function Constraint
N /\/\bl (Al =1t}) A (£, > 0)]
l=1:1=1

Increase q until we find a value of

i —h I _ l q making the modified SMC
4 l/:\l z/=\1 bi = [(hz 0) A (ti < 0)] problem become infeasible.

Duke

UNIVERSITY




Transition Probability Normalization

Theorem 1: Let S; be a node of the Transition Graph and let k time step Collison probability Py,
be known. Then, the following holds:

Theorem 1: P, .1(S;)=1.05

Theorem 2: P,,.1(S;)= 0.66

Theorem 2: Let S it and let k time step Collison probability Py,
be known. Assume P, (S,) = P (S,) when a > b.|Then, the following holds:

Pey1(Si) = zn: P(Si, 8;)Pe(S;) + (1— Xn: 15(82-,81-)) Py(Sm)

j=m+1 j=m+1
n

Where m is the first index to make Z P(S;,S;) > 1

1=1m




Abstraction Merging

Theorem 3: Let Se,S.-S5-he-the nodes of transition graph, and Sy, S, € Ny. Consider the set
Sij = S; US| IfS;(p) N S;(p) = @,[then we could merge Sy, S, into a new state S'; ;.

P'(S,,S!) = max(max(P(S,,S;), P(Ss,S;)) + p, 2p)
J

(0] (¥

Theorem 1: P, 1(S;)=1.05

~ Implicit refinement
Theorem 2: Py, (S1)= 0.66 effect without additional
computation.

Theorem 3: Py, ,.1(S;)=0.60 D
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Chance Constrained SMC Based Refinement

Use SMC Several times until we
find a good partition

A pair of
feasible points
returned from

SMC
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Case Study: Navigation with NN controller
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Verification Results with Merging and Refinement
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(a) Without merging and refinement, k = 6 (b) With merging, k = 6
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(c) With refinement, k = 6 (d) With refinement and merging, k =6 )uke
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Correctness of the Safety Guarantee
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Bound on and actual probability of unsafe events at a given abstraction. D k
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Summary

We modify the SMC formulation to compute the upper bound on the transition probability in the

probabilistic transition graph with ReLU controller;

We propose to add an abstraction merging step in the verification framework, which requires
less computation and can possibly achieve tighter bound on the probability of unsafe events

than just doing refinement on the original abstraction.
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Ongoing Work: Safe Deep NN Control Learning
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Complex Workspace

Arbitrary Robot Shape

Z+1 = f (zkauk)a

u = @(Z) =5 ¢N<:> (@Nd,—l(- .o ¢1(Z) .. )),

¢i(x) = hi(w; -z +b;), VieIn,,

Problem: Given static workspace V) C IR2, polygonal robot’R. C IR?, and dataset D
of points (z;, u;) € Z X U:
. Compute tight subset Z  of set of safe states Z .

» Re-train NN controller ¢( z) that fits D and renders Z _ invariant.
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Before re-training

Preliminary Results

After re-training
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Thank You for Your Attention!
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