
Guaranteed and Safe
Learning Methods

Wanjiku A. Makumi, Hannah M. Sweatland, Emily J. Griffis, and
Warren E. Dixon

Lyapunov-based Adaptive Deep
Learning for Approximate Dynamic

Programming

Wanjiku A. Makumi, Omkar Sudhir Patil, Warren E. Dixon, “Lyapunov-based Adaptive Deep
Learning for Approximate Dynamic Programming”, Automatica, under review.

Approximate Optimal Control

•Approximate dynamic programming (ADP)
• Optimal control & adaptive control

•Hamilton-Jacobi-Bellman (HJB) equation
• Optimal value function

• Unknown for nonlinear systems

•Reinforcement learning-based actor-critic framework
• Neural networks (NNs)

• Actor: learns control policy approximation

• Critic: learns value function approximation

•Model-based method
• Model knowledge required

Problem Formulation

4

Control objective: Design a controller 𝒖
which minimizes

Optimal control policy

𝐽 𝑥, 𝑢 = න
𝑡0

∞

𝑄 𝑥 + 𝑢𝑇𝑅𝑢

𝑉∗ 𝑥, 𝑢 = න
𝑡

∞

𝑄 𝑥 + 𝑢𝑇𝑅𝑢

𝑢∗ 𝑥 = −
1

2
𝑅−1𝐺 𝑥 𝑇∇𝑉∗ 𝑥 𝑇

0 = ∇𝑉∗ 𝑥 𝑓 𝑥, 𝜃 + 𝑔 𝑥 𝑢∗ 𝑥 +

𝑄 𝑥 + 𝑢∗𝑇𝑅𝑢∗

Hamilton-Jacobi-Bellman equation

Control affine dynamic system:

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 + 𝑔 𝑥 𝑡 𝑢 𝑡

Optimal value function (cost-to-go)

Actor-Critic Neural Networks

5

𝑾𝒄: Critic weight estimate
𝑾𝒂: Actor weight estimate

NN Optimal Value Function and NN Optimal Control Policy

𝑉∗ 𝑥 = 𝑾𝑻𝜎 𝑥 + 휀 𝑥 𝑢∗ 𝑥 = −
1

2
𝑅−1𝑔 𝑥 𝑇 𝛻𝑥𝜎 𝑥 𝑇𝑾 + 𝛻𝑥휀 𝑥 𝑇

𝑉 𝑥, 𝑊𝑐 = 𝑾𝒄
𝑻

𝜎 𝑥 ො𝑢 𝑥, 𝑊𝑎 = −
1

2
𝑅−1𝑔 𝑥 𝑇 𝛻𝑥𝜎 𝑥 𝑇𝑾𝒂

Optimal Value Function and Optimal Control Policy Approximation

Bellman Error

6

0 = ∇𝑉∗ 𝑥 𝑓 𝑥, 𝜃 + 𝑔 𝑥 𝑢∗ 𝑥 + 𝑄 𝑥 + 𝑢∗ 𝑥 𝑇𝑅𝑢∗ 𝑥

Hamilton-Jacobi-Bellman Equation

Bellman Error (BE)

𝛿 𝑥, 𝑊𝑐 , 𝑊𝑎 =

𝛻 𝑉 𝑥, 𝑊𝑐
መ𝑓𝑖 𝑥, 𝜃 + 𝑔 𝑥 ො𝑢 𝑥, 𝑊𝑎 + 𝑄 𝑥 + ො𝑢 𝑥, 𝑊𝑎

𝑇
𝑅 ො𝑢 𝑥, 𝑊𝑎

• Feedback to update the NN parameters

• Calculated along the state trajectory

BE Extrapolation

• User-defined, off-trajectory points

• Persistence of excitation (PE)

• Exploration vs exploitation

Weight Update Laws

7

ሶ𝑊𝑐 𝑡 = −𝜂𝑐1Γ
𝜔 𝑡

𝜌 𝑡
𝛿 𝑡 − 𝜂𝑐2

1

𝑁

𝑖=1

𝑁 𝜔𝑖 𝑡

𝜌𝑖 𝑡
𝛿𝑖 𝑡

ሶ𝑊𝑎 𝑡 = −𝜂𝑐1
𝑊𝑎 𝑡 − 𝑊𝑐 𝑡 − 𝜂𝑎2

𝑊𝑎 𝑡 +
𝜂𝑐1𝐺𝜎

𝑇 𝑡 𝑊𝑎 𝑡 𝜔 𝑡 𝑇

4𝜌 𝑡
𝑊𝑐 𝑡

+
𝜂𝑐2

𝑁

𝑖=1

𝑁 𝐺𝑖𝜎
𝑇 𝑊𝑎 𝑡 𝜔𝑖 𝑡

4𝜌𝑖 𝑡
𝑊𝑐 𝑡

Actor Weight
Update Law

Learning Gain
Update Law

Critic Weight
Update Law

On-trajectory
points

ሶΓ 𝑡 = 𝜆Γ 𝑡 −
𝜂𝑐1Γ 𝑡 𝜔 𝑡 𝜔 𝑡 𝑇Γ 𝑡

𝜌 𝑡
− 𝜂𝑐2Γ 𝑡

1

𝑁

𝑖=1

𝑁 𝜔𝑖 𝑡 𝜔𝑖
𝑇 𝑡

𝜌𝑖 𝑡
Γ 𝑡 𝟏 Γ≤ Γ ≤Γ

Off-trajectory
points

All-Layer Adaptive DNN

• Multi-timescale DNNs
• Not updated via adaptive update laws

• No guarantees on the identification of inner-layer weights

• Recent results update all weights
• Lack of parameter convergence

• All-layer adaptive DNN update laws for ADP

8

DNN and RISE-Based Dynamics Observer

9

ሶො𝑥 = መ𝑓 + 𝑔𝑢 + 𝛼1 𝑥

ሶመ𝑓 = 𝑥 + 𝑘𝑓
ሶ𝑥 + 𝛼1 𝑥 + 𝛽𝑓𝑠𝑔𝑛 𝑥

𝑥 = 𝑥 − ො𝑥

ሚ𝑓 = 𝑓 − መ𝑓

Observer ErrorsRISE-Observer Design Closed-Loop Observer Error System

ሶ𝑥 = ሚ𝑓 − 𝛼2 ǁ𝑟

ሶሚ𝑓 = ሶ𝑓 − 𝑘𝑓
ሚ𝑓 − ǁ𝑟

𝑓 𝑥 = Φ 𝑥, 𝜃∗ + 휀 𝑥 Φ 𝑥, መ𝜃

DNN representation DNN estimate

• Absence of state-derivative information
• Integrals do not help identify inner-layer weights
• Robust integral of the sign of the error (RISE)-based

dynamics observer

Adaptive Update Laws

10

𝐸 = መ𝑓 − Φ 𝑥, መ𝜃 ሶመ𝜃 = Γ𝜃Φ′ 𝑥, መ𝜃 𝐸

𝑑

𝑑𝑡
Γ𝜃

−1 = −𝛽(𝑡)Γ𝜃
−1+ Φ′⊤ 𝑋, መ𝜃 Φ′ 𝑋, መ𝜃

𝛽 𝑡 = 𝛽0 1 −
𝜆max Γ𝜃

𝜅0
 ≥ 𝛽1 ∈ ℝ≥0

If Φ′ 𝑋, መ𝜃 satisfies PE condition, then 𝛽1 > 0.

Adaptive Update LawIdentification Error

Bounded-Gain Time-Varying Forgetting Factor

Gain Matrix Update Law

Stability Analysis

11

 The estimation errors are UUB such that 𝑧𝜃 ≤

𝜆2

𝜆1
𝑧𝜃 0 2𝑒

−
𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1𝜆3
1 − 𝑒

−
𝜆3
𝜆2

𝑡

𝑉𝜃 𝑧𝜃 =
1

2
𝑥𝑇 𝑥 +

1

2
ሚ𝑓𝑇 ሚ𝑓 +

1

2
෨𝜃𝑇Γ𝜃

−1 𝑡 ෨𝜃 + 𝑃

Candidate Lyapunov Function

Theorem 1

Stability Analysis

12

 The state x, critic weight estimate error ෩𝑊𝑐, and actor weight estimate
error ෩𝑊𝑎 are UUB. Hence, the control policy 𝑢 converges to a

neighborhood of the optimal control policy 𝑢∗.

𝑉𝐿 𝑧, 𝑡 = 𝑉∗ 𝑥 +
1

2
෩𝑊𝑐

𝑇Γ−1 𝑡 ෩𝑊𝑐 +
1

2
෩𝑊𝑎

𝑇 ෩𝑊𝑎

Candidate Lyapunov Function

Theorem 2

Simulation Results

13

Simulation Results

14

Controller Multi-timescale Adaptive % Decrease

𝑥 𝑅𝑀𝑆 2.265 0.776 65.73

𝑢 𝑅𝑀𝑆 1.525 1.040 31.82

𝑓 − Φ 𝑥, 𝜃
𝑅𝑀𝑆

8.732 1.836 78.97

Adaptive Deep Neural
Network-Based Control

Barrier Functions
Hannah M. Sweatland, Omkar Sudhir Patil, and Warren E. Dixon, “Adaptive Deep
Neural Network-Based Control Barrier Functions”, IEEE Control Systems Letters,

Under Review.

Control Barrier Functions (CBFs)

• One way of guaranteeing the safety of a system is through
forward invariance

• Trajectories that start within some forward invariant safe set
will never reach an unsafe region

• Control barrier functions (CBFs) convert state constraints into
constraints on the control input

𝒮 ≜ 𝑥 ∈ ℝ𝑛: 𝐵 𝑥 ≤ 0

𝐾𝑐 𝑥 = 𝑢 ∈ ℝ𝑚: ሶ𝐵 𝑥 ≤ −𝛾 𝑥

CBF Candidate

𝒮

Set of Safe
Control Inputs

Safe Set

Control Barrier Functions

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

The function 𝑓 𝑥 is
unknown but
continuously
differentiable

A. Isaly, O. S. Patil, H. M. Sweatland, R. G. Sanfelice and W. E. Dixon, "Adaptive Safety with a RISE-Based Disturbance

Observer," in IEEE Transactions on Automatic Control, 2024.

Control Barrier Functions

The function 𝑓 𝑥 is
unknown but
continuously
differentiable

A. Isaly, O. S. Patil, H. M. Sweatland, R. G. Sanfelice and W. E. Dixon, "Adaptive Safety with a RISE-Based Disturbance

Observer," in IEEE Transactions on Automatic Control, 2024.

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

State-Derivative Observer

• A least squares weight adaptation law adaptively identifies the
system dynamics based on an identification error

• Least squares-based real-time identification is challenging for
continuous-time systems because it requires state-derivative
information which is often unknown or noisy

• We develop a high-gain state-derivative estimator to quantify
the identification error

ሶො𝑥 = መ𝑓 + 𝑔 𝑥 𝑢 + 𝑘𝑥 𝑥,

ሶመ𝑓 = 𝑘𝑓
ሶ𝑥 + 𝑘𝑥 𝑥 + 𝑥

ሶመ𝜃 = proj Γ −𝑘𝜃
መ𝜃 + Φ′⊤ 𝑥, መ𝜃 መ𝑓 − Φ 𝑥, መ𝜃

DNN Adaptation Law

The projection operator

ensures 𝜃 𝑡 ∈ ℬ ≜
𝜃 ∈ ℝ𝑝: 𝜃 − 𝜃∗ ≤ Ξ

• The DNN adaptation law is defined as

• The term Γ ∈ ℝ𝑝×𝑝 denotes a symmetric positive-definite time-varying least squares
adaptation gain matrix that is a solution to

𝑑

𝑑𝑡
Γ−1 = −𝛽 𝑡 Γ−1 + Φ′⊤

𝑥, መ𝜃 Φ′ 𝑥, መ𝜃 ,

 where the bounded-gain time-varying forgetting factor 𝛽: ℝ≥0 → ℝ≥0 is defined as

𝛽 𝑡 ≜ 𝛽0 1 −
𝜆max Γ

𝜅0
≥ 𝛽1 ∈ ℝ≥0

Stability Analysis

Theorem 1: The parameter estimation error is bounded such that

෨𝜃 𝑡 ≤ ෨𝜃𝑈𝐵 𝑡 ≜
𝜆2

𝜆1
𝑧 𝑡0

2𝑒
−

𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1
1 − 𝑒

−
𝜆3
𝜆2

𝑡

where 𝜆1 ≜ min
1

2
,

1

2𝜅0
, 𝜆2 ≜ min

1

2
,

1

2𝜅1
, 𝜆3 ≜ min ൜

ൠ

𝑘𝑥 , 𝑘𝑓 −
ҧሶ𝑓+𝑐2

2
,

𝛽1

2𝜅0
+

𝑘𝜃

2
− 𝑐2 , and 𝐶 ≜

ҧሶ𝑓+𝑐2𝑐1
2+𝑘𝜃

ഥ𝜃2

2
 , provided 𝜆3 > 0.

𝑧 ≜ 𝑥⊤, ሚ𝑓⊤, ෨𝜃⊤ ⊤

෨𝜃 𝑡 ≤ 𝜒𝜃 ≜ min Ξ,
𝜆2

𝜆1
Ξ2 + 4 ҧ𝑓2 𝑒

−
𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1
1 − 𝑒

−
𝜆3
𝜆2

𝑡

• Because ෨𝜃𝑈𝐵 𝑡 may initially be more conservative than Ξ, we
define the auxiliary function 𝜒𝜃

22

መ𝜃 𝑡0 ∈ ℬ, መ𝑓 𝑡0 ≤ ҧ𝑓

Safe Control Inputs

• A new set of safe control inputs can be found that is composed
of only known terms

• Begin with the original

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

• Substitute in DNN estimate of 𝑓 𝑥 , the Taylor series
approximation of Φ 𝑥, 𝜃∗ , and 𝜒𝜃 to yield

𝐾𝑑 𝑥 ≜ 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + ഥΔ + ∇𝐵⊤ 𝑥 Φ 𝑥, መ𝜃 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

Definition 2: A continuously differentiable CBF candidate

𝐵: ℝ𝑛 → ℝ𝑑 defining the set 𝒮 ⊆ Ω is an adaptive DNN CBF
(aDCBF) for the dynamic system and the safe set 𝒮 on a set

𝒪 ⊂ ℝ𝑛 with respect to a function 𝛾: ℝ𝑛 → ℝ𝑑 if there exists
a neighborhood of the boundary of 𝒮 such that 𝒩 𝜕𝒮 ⊂ 𝒪,
2) for each 𝑖 ∈ 𝑑 , 𝛾𝑖 ≥ 0 for all 𝑥 ∈ 𝒩 𝑀𝑖 \𝒮𝑖, and 3) the set

is nonempty for all 𝑥 ∈ 𝒪.

aDCBF Definition

𝐾𝑑 𝑥 ≜ 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + ഥΔ + ∇𝐵⊤ 𝑥 Φ 𝑥, መ𝜃 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

Forward Invariance

• An optimization-based control law 𝜅∗: ℝ𝑛 → 𝒰 is used to make
a selection of 𝐾𝑑 and is defined as

𝜅∗ 𝑥 ≜ argmin𝑢∈𝒰𝑄 𝑥, 𝑢

s. t. ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + 𝑐1

+∇𝐵⊤ 𝑥 Φ 𝑥, 𝜃 + 𝑔 𝑥 𝑢

≤ −𝛾 𝑥

Theorem 2: Suppose 𝐵: ℝ𝑛 × ℝ𝑝 is an aDCBF defining a

safe set 𝒮 ⊆ Ω for the closed-loop system. Let ො𝑥, መ𝑓, and 𝜃
update according to the developed state-derivative estimator
and adaptive update law, respectively, and let ො𝑥 𝑡0 = 𝑥 𝑡0 ,

መ𝑓 ≤ ҧ𝑓, 𝑧 𝑡0 ∈ 𝒟, and 𝜃 𝑡0 ∈ ℬ. If 𝜅∗ is continuous, then

the set 𝒮 is forward invariant, provided 𝜆3 > 0.

Main Result

Adaptive Cruise Control

ሶ𝑣 = −
1

𝑚
𝐹𝑟 + 𝛿 𝑣 +

1

𝑚
𝑢

• Deep ResNet with 2 hidden layers, a shortcut connection between
each layer, and 6 neurons in each layer for a total of 122 weights

• Controller uses cost function
𝑄 𝑥, 𝑢 = 𝑢 − 𝑢𝑛𝑜𝑚 𝑥 2

 where
𝑢𝑛𝑜𝑚 = −Φ 𝑣, መ𝜃 − 𝑚𝑘1 𝑥 − 𝑥𝑑

Non-Polynomial Dynamics

• Deep ResNet with 3 hidden
layers, a shortcut connection
between each layer, and 5
neurons in each layer for a total
of 174 weights

• Controller uses cost function
𝑄 𝑥, 𝑢 = 𝑢 − 𝑢𝑛𝑜𝑚 𝑥 2

 where
𝑢𝑛𝑜𝑚 = ሶ𝑥𝑑 − Φ 𝑥, መ𝜃 − 𝑘𝑒 𝑥 − 𝑥𝑑

• Baseline method uses
𝑢𝑛𝑜𝑚 = ሶ𝑥𝑑 − መ𝑓 − 𝑘𝑒 𝑥 − 𝑥𝑑

𝑓 𝑥 = 𝑥2 sin 𝑥1 tanh2 𝑥2 , 𝑥1𝑥2 cos 𝑥2 sech 𝑥2
⊤

Adaptive Output Feedback
Control Using Lyapunov-Based

Deep Recurrent Neural
Networks (Lb-DRNNs)

Emily Griffis, Omkar Sudhir Patil, Wanjiku A. Makumi, and Warren E. Dixon, “Adaptive Output
Feedback Control Using Lyapunov-Based Deep Recurrent Neural Networks (Lb-DRNNs)”, IEEE
Transactions on Automatic Control, Under Review.

Contribution

• RNNs are a dynamic model → better suited for dynamical
system identification and output feedback (OFB) control
compared to feedforward NNs

• Previous deep RNN (DRNN)-based control results use offline
optimization techniques to train the DRNN weights.
• No online learning or adaptive control result for deep RNN

architectures.
• No OFB control result for DRNNs.

• Develop adaptive Lyapunov-based DRNN (Lb-DRNN) OFB
controller.
• A continuous-time Lb-DRNN is developed to adaptively estimate

unknown system states in an observer design.
• Lb-DRNN is implemented in controller to adaptive compensate for

model uncertainties.
• Stability-driven adaptation laws adjust the Lb-DRNN weights in real-

time.

System Dynamics and Control Objective

▪Consider a second order nonlinear system
ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑓 𝑥 + 𝑔 𝑥1 𝑢

▪Design estimation (𝑥1) and tracking (𝑒1) errors

Use DRNN to
adaptively estimate
system dynamics

𝑥1 known
𝑥2 unknown

𝑥1 ≜ 𝑥1 − ො𝑥1

𝜉 ≜ ሶ𝑥1 + 𝛼 𝑥1 + 𝜂
𝑒1 ≜ 𝑥1 − 𝑥𝑑,1

𝑟 ≜ ሶ𝑒1 + 𝛼𝑒1 + 𝜂

Auxiliary errors 𝜉 and 𝑟 are
unknown → can’t be used in

adaptation law design

Dynamic Filter

Dynamic filter:
𝜂 ≜ 𝑝 − 𝛼 + 𝑘𝑟 𝑥1

ሶ𝑝 ≜ − 𝑘𝑟 + 2𝛼 𝑝 − 𝜈 + 𝛼 + 𝑘𝑟
2 + 1 𝑥1 + e1

ሶ𝜈 ≜ 𝑝 − 𝛼𝜈 − 𝛼 + 𝑘𝑟 𝑥1

Implementable Errors:
𝑒𝑒𝑠 = 𝑥1 + 𝜈 → 𝑟 = ሶ𝑒𝑒𝑠 + 𝛼𝑒𝑒𝑠
𝑒𝑡𝑟 = 𝑒1 + 𝜈 → 𝜉 = ሶ𝑒𝑡𝑟 + 𝛼𝑒𝑡𝑟

Auxiliary errors 𝜉 and 𝑟 are unknown →
Design dynamic filter to generate secondary errors that

can be implemented in the adaptation law design

OFB Control Design

▪Use deep RNN to estimate the unknown state

▪𝜙: tanh activation function

▪𝑦 = ℎ⊤, 𝑥⊤, 1 ⊤: concatenated input

ሶℎ = −𝑏ℎ + 𝑊1
⊤𝜙𝑘 ∘ 𝑊0

⊤𝑦

OFB Control Design

▪Use deep RNN to estimate the unknown state

▪𝜙: tanh activation function

▪𝑦 = ℎ⊤, 𝑥⊤, 1 ⊤: concatenated input

ሶℎ = −𝑏ℎ + 𝑊𝑘
⊤𝜙𝑘 ∘ ⋯ ∘ 𝑊1

⊤𝜙1 ∘ 𝑊0
⊤𝑦

Make it
deep!

Observer Development

▪Use deep RNN to estimate the unknown state

ሶℎ = −𝑏ℎ + 𝑊𝑘
⊤𝜙𝑘 ∘ ⋯ ∘ 𝑊1

⊤𝜙1 ∘ 𝑊0
⊤𝑦

ሶ𝑥2 = −𝑏𝑥2 + Φ 𝑥, 𝜃 + 𝑔 𝑥1 𝑢 + 휀(𝑥)

→ 휀: residual error

ሶℎ = −𝑏ℎ + Φ(ℎ, 𝜃) → 𝜃: DRNN weights

Observer Design

ሶො𝑥1 ≜ ො𝑥2

ሶො𝑥2 ≜ −𝑏 ො𝑥2 + Φ ො𝑥, መ𝜃 + 𝑔 𝑥1 𝑢 + 𝛽1sgn(𝑒𝑒𝑠) + 𝜒

መ𝜃 = 𝑣𝑒𝑐 𝑊0
⊤ … 𝑣𝑒𝑐 𝑊𝑘

⊤ ⊤ → stacked
representation of all weight estimates

Generates state estimate ො𝑥2 to use in controller

Using the adaptive DRNN term −𝑏 ො𝑥2 + Φ ො𝑥, መ𝜃 , the

observer is designed as

Control Design

▪The controller is designed as

𝑢 ≜ 𝑔 𝑥1
+[− −𝑏𝑥2 + Φ ො𝑥, መ𝜃 − 𝛽2 sgn 𝑒𝑡𝑟 +

 ሷ𝑥𝑑,1 − 𝑘𝑟 + 𝛼 ሶƸ𝑒1 + 𝛼 Ƹ𝑒1 − 𝛼2𝑒1 − 𝜈]

How do we
design weight

estimates መ𝜃?

where Ƹ𝑒1 ≜ ො𝑥1 − 𝑥𝑑,1

Weight Adaptation Law

▪The weight adaptation law is designed as
ሶ𝜃 ≜ Γ Φ′⊤(𝑒𝑒𝑠 + 𝑒𝑡𝑟)

▪Implementable errors (using dynamic filter):
𝑒𝑒𝑠 ≜ 𝑥1 + 𝜈
𝑒𝑡𝑟 ≜ 𝑒1 + 𝜈

Jacobian Φ′ =
𝜕 Φ

𝜕𝜃

Adaptation

gain matrix
Estimation and

Tracking errors

Main Stability Result

Theorem 1. The adaptive DRNN OFB controller
and weight adaptation laws ensure asymptotic state
estimation error and tracking error convergence in
the sense that

𝒙𝟐 − ෝ𝒙𝟐 → 0 as t → ∞
𝒙𝟏 − 𝒙𝒅,𝟏 → 0 as t → ∞

Simulation Parameters

• Comparative simulations were performed on a 6DOF unmanned
underwater vehicle (UUV) system
• DRNN OFB controller: 8 (tanh) layers with 8 neurons

• Shallow RNN (SRNN) OFB controller: 2 (tanh) layers with 17 neurons

• Central difference observer (no DNN in controller)

• Noise on position from uniform distribution U(-0.001, 0.001)

• 150 seconds with a step size of 0.001 seconds with initial condition

 𝑥1 = 4 𝑚 , 0.5 𝑚 , 0 𝑚 , 0 𝑟𝑎𝑑 , 0.2 𝑟𝑎𝑑 , 0 𝑟𝑎𝑑
⊤

• Helical Desired trajectory
𝑥1,𝑑 = 5 cos 0.1𝑡 𝑚 , 5 sin 0.1𝑡 𝑚 , 0.1𝑡 𝑚 , 0 𝑟𝑎𝑑 , 0 𝑟𝑎𝑑 , −0.05𝑡 𝑟𝑎𝑑

⊤

Control Gains
𝑏 = 1

𝑘𝑟 = 2
𝛼 = 5

𝛽1 = 𝛽2 = 0.001
Γ = 0.5 ⋅ 𝐼

For a fair comparison, the
same gains were used

Simulation Results

Velocity Estimation Error Position Tracking Error

Simulation Results

Architecture 𝒆𝟏 𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

CD sensitive to measurement noise –
High estimation error and control

effort!

Simulation Results

Architecture 𝒆𝟏 𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

27.98% improvement in linear tracking error
89.94% improvement in angular tracking error

Simulation Results

Architecture 𝒆𝟏 𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

27.98% improvement in linear tracking error
89.94% improvement in angular tracking error

52.43% improvement in linear estimation error
66.67% improvement in angular estimation error

Thank you

	Slide 1: Guaranteed and Safe Learning Methods
	Slide 2: Lyapunov-based Adaptive Deep Learning for Approximate Dynamic Programming
	Slide 3: Approximate Optimal Control
	Slide 4: Problem Formulation
	Slide 5: Actor-Critic Neural Networks
	Slide 6: Bellman Error
	Slide 7: Weight Update Laws
	Slide 8: All-Layer Adaptive DNN
	Slide 9: DNN and RISE-Based Dynamics Observer
	Slide 10: Adaptive Update Laws
	Slide 11: Stability Analysis
	Slide 12: Stability Analysis
	Slide 13: Simulation Results
	Slide 14: Simulation Results
	Slide 15: Adaptive Deep Neural Network-Based Control Barrier Functions
	Slide 16: Control Barrier Functions (CBFs)
	Slide 17: Control Barrier Functions
	Slide 18: Control Barrier Functions
	Slide 19: State-Derivative Observer
	Slide 20: DNN Adaptation Law
	Slide 21: Stability Analysis
	Slide 22
	Slide 23: Safe Control Inputs
	Slide 24: aDCBF Definition
	Slide 25: Forward Invariance
	Slide 26: Main Result
	Slide 27: Adaptive Cruise Control
	Slide 28: Non-Polynomial Dynamics
	Slide 29: Adaptive Output Feedback Control Using Lyapunov-Based Deep Recurrent Neural Networks (Lb-DRNNs)
	Slide 30: Contribution
	Slide 31: System Dynamics and Control Objective
	Slide 32: Dynamic Filter
	Slide 33: OFB Control Design
	Slide 34: OFB Control Design
	Slide 35: Observer Development
	Slide 36: Observer Design
	Slide 37: Control Design
	Slide 38: Weight Adaptation Law
	Slide 39: Main Stability Result
	Slide 40: Simulation Parameters
	Slide 41: Simulation Results
	Slide 42: Simulation Results
	Slide 43: Simulation Results
	Slide 44: Simulation Results
	Slide 45: Thank you

