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Approximate Optimal Control

•Approximate dynamic programming (ADP) 
• Optimal control & adaptive control

•Hamilton-Jacobi-Bellman (HJB) equation
• Optimal value function

• Unknown for nonlinear systems

•Reinforcement learning-based actor-critic framework
• Neural networks (NNs)

• Actor: learns control policy approximation

• Critic: learns value function approximation

•Model-based method
• Model knowledge required



Problem Formulation
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Control objective: Design a controller 𝒖  
which minimizes

Optimal control policy

𝐽 𝑥, 𝑢 = න
𝑡0

∞

𝑄 𝑥 + 𝑢𝑇𝑅𝑢

𝑉∗ 𝑥, 𝑢 = න
𝑡

∞

𝑄 𝑥 + 𝑢𝑇𝑅𝑢

𝑢∗ 𝑥 = −
1

2
𝑅−1𝐺 𝑥 𝑇∇𝑉∗ 𝑥 𝑇

0 = ∇𝑉∗ 𝑥 𝑓 𝑥, 𝜃 + 𝑔 𝑥 𝑢∗ 𝑥 +

𝑄 𝑥 + 𝑢∗𝑇𝑅𝑢∗

Hamilton-Jacobi-Bellman equation

Control affine dynamic system:

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 + 𝑔 𝑥 𝑡 𝑢 𝑡

Optimal value function (cost-to-go)



Actor-Critic Neural Networks
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෢𝑾𝒄: Critic weight estimate
෢𝑾𝒂: Actor weight estimate

NN Optimal Value Function and NN Optimal Control Policy

𝑉∗ 𝑥 = 𝑾𝑻𝜎 𝑥 + 𝜀 𝑥 𝑢∗ 𝑥 = −
1

2
𝑅−1𝑔 𝑥 𝑇 𝛻𝑥𝜎 𝑥 𝑇𝑾 + 𝛻𝑥𝜀 𝑥 𝑇

෠𝑉 𝑥, ෡𝑊𝑐 = ෢𝑾𝒄
𝑻

𝜎 𝑥  ො𝑢 𝑥, ෡𝑊𝑎 = −
1

2
𝑅−1𝑔 𝑥 𝑇 𝛻𝑥𝜎 𝑥 𝑇෢𝑾𝒂

Optimal Value Function and Optimal Control Policy Approximation



Bellman Error

6

0 = ∇𝑉∗ 𝑥 𝑓 𝑥, 𝜃 + 𝑔 𝑥 𝑢∗ 𝑥 + 𝑄 𝑥 + 𝑢∗ 𝑥 𝑇𝑅𝑢∗ 𝑥

Hamilton-Jacobi-Bellman Equation

Bellman Error (BE)

𝛿 𝑥, ෡𝑊𝑐 , ෡𝑊𝑎 =

𝛻 ෠𝑉 𝑥, ෡𝑊𝑐
መ𝑓𝑖 𝑥, 𝜃 + 𝑔 𝑥 ො𝑢 𝑥, ෡𝑊𝑎 + 𝑄 𝑥 + ො𝑢 𝑥, ෡𝑊𝑎

𝑇
𝑅 ො𝑢 𝑥, ෡𝑊𝑎

• Feedback to update the NN parameters 

• Calculated along the state trajectory

BE Extrapolation

• User-defined, off-trajectory points 

• Persistence of excitation (PE)

• Exploration vs exploitation



Weight Update Laws
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ሶ෡𝑊𝑐 𝑡 = −𝜂𝑐1Γ
𝜔 𝑡

𝜌 𝑡
𝛿 𝑡 − 𝜂𝑐2

1

𝑁
෍

𝑖=1

𝑁 𝜔𝑖 𝑡

𝜌𝑖 𝑡
𝛿𝑖 𝑡

ሶ෡𝑊𝑎 𝑡 = −𝜂𝑐1
෡𝑊𝑎 𝑡 − ෡𝑊𝑐 𝑡 − 𝜂𝑎2

෡𝑊𝑎 𝑡 +
𝜂𝑐1𝐺𝜎

𝑇 𝑡 ෡𝑊𝑎 𝑡 𝜔 𝑡 𝑇

4𝜌 𝑡
෡𝑊𝑐 𝑡

+
𝜂𝑐2

𝑁
෍

𝑖=1

𝑁 𝐺𝑖𝜎
𝑇 ෡𝑊𝑎 𝑡 𝜔𝑖 𝑡

4𝜌𝑖 𝑡
෡𝑊𝑐 𝑡

Actor Weight 
Update Law

Learning Gain 
Update Law

Critic Weight 
Update Law

On-trajectory 
points

ሶΓ 𝑡 = 𝜆Γ 𝑡 −
𝜂𝑐1Γ 𝑡 𝜔 𝑡 𝜔 𝑡 𝑇Γ 𝑡

𝜌 𝑡
− 𝜂𝑐2Γ 𝑡

1

𝑁
෍

𝑖=1

𝑁 𝜔𝑖 𝑡 𝜔𝑖
𝑇 𝑡

𝜌𝑖 𝑡
Γ 𝑡 𝟏 Γ≤ Γ ≤Γ

Off-trajectory 
points



All-Layer Adaptive DNN

• Multi-timescale DNNs
• Not updated via adaptive update laws

• No guarantees on the identification of inner-layer weights

•  Recent results update all weights
• Lack of parameter convergence

• All-layer adaptive DNN update laws for ADP

8



DNN and RISE-Based Dynamics Observer
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ሶො𝑥 = መ𝑓 + 𝑔𝑢 + 𝛼1 ෤𝑥

ሶመ𝑓 = ෤𝑥 + 𝑘𝑓
ሶ෤𝑥 + 𝛼1 ෤𝑥 + 𝛽𝑓𝑠𝑔𝑛 ෤𝑥

෤𝑥 = 𝑥 − ො𝑥

ሚ𝑓 = 𝑓 − መ𝑓

Observer ErrorsRISE-Observer Design Closed-Loop Observer Error System

ሶ෤𝑥 = ሚ𝑓 − 𝛼2 ǁ𝑟

ሶሚ𝑓 = ሶ𝑓 − 𝑘𝑓
ሚ𝑓 − ǁ𝑟

𝑓 𝑥 = Φ 𝑥, 𝜃∗ + 𝜀 𝑥 Φ 𝑥, መ𝜃 

DNN representation DNN estimate

• Absence of state-derivative information
• Integrals do not help identify inner-layer weights
• Robust integral of the sign of the error (RISE)-based 

dynamics observer 



Adaptive Update Laws

10

𝐸 = መ𝑓 − Φ 𝑥, መ𝜃 ሶመ𝜃 = Γ𝜃Φ′ 𝑥, መ𝜃 𝐸

𝑑

𝑑𝑡
Γ𝜃

−1 = −𝛽(𝑡)Γ𝜃
−1+ Φ′⊤ 𝑋, መ𝜃  Φ′ 𝑋, መ𝜃

𝛽 𝑡 = 𝛽0 1 −
𝜆max Γ𝜃  

𝜅0
 ≥ 𝛽1 ∈ ℝ≥0

If Φ′ 𝑋, መ𝜃  satisfies PE condition, then 𝛽1 > 0.

Adaptive Update LawIdentification Error

Bounded-Gain Time-Varying Forgetting Factor

Gain Matrix Update Law



Stability Analysis
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 The estimation errors are UUB such that 𝑧𝜃 ≤

𝜆2

𝜆1
𝑧𝜃 0 2𝑒

−
𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1𝜆3
1 − 𝑒

−
𝜆3
𝜆2

𝑡

𝑉𝜃 𝑧𝜃 =
1

2
෤𝑥𝑇 ෤𝑥 +

1

2
ሚ𝑓𝑇 ሚ𝑓 +

1

2
෨𝜃𝑇Γ𝜃

−1 𝑡 ෨𝜃 + 𝑃

Candidate Lyapunov Function

Theorem 1



Stability Analysis
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 The state x, critic weight estimate error ෩𝑊𝑐, and actor weight estimate 
error ෩𝑊𝑎 are UUB. Hence, the control policy 𝑢 converges to a 

neighborhood of the optimal control policy 𝑢∗.

𝑉𝐿 𝑧, 𝑡 = 𝑉∗ 𝑥 +
1

2
෩𝑊𝑐

𝑇Γ−1 𝑡 ෩𝑊𝑐 +
1

2
෩𝑊𝑎

𝑇 ෩𝑊𝑎

Candidate Lyapunov Function

Theorem 2



Simulation Results
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Simulation Results
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Controller Multi-timescale Adaptive % Decrease

𝑥 𝑅𝑀𝑆 2.265 0.776 65.73

𝑢 𝑅𝑀𝑆 1.525 1.040 31.82

𝑓 − Φ 𝑥, ෠𝜃
𝑅𝑀𝑆

8.732 1.836 78.97



Adaptive Deep Neural 
Network-Based Control 

Barrier Functions
Hannah M. Sweatland, Omkar Sudhir Patil, and Warren E. Dixon, “Adaptive Deep 
Neural Network-Based Control Barrier Functions”, IEEE Control Systems Letters, 

Under Review.



Control Barrier Functions (CBFs)

• One way of guaranteeing the safety of a system is through 
forward invariance

• Trajectories that start within some forward invariant safe set 
will never reach an unsafe region

• Control barrier functions (CBFs) convert state constraints into 
constraints on the control input

𝒮 ≜ 𝑥 ∈ ℝ𝑛: 𝐵 𝑥 ≤ 0

𝐾𝑐 𝑥 = 𝑢 ∈ ℝ𝑚: ሶ𝐵 𝑥 ≤ −𝛾 𝑥

CBF Candidate

𝒮

Set of Safe 
Control Inputs

Safe Set



Control Barrier Functions

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

The function 𝑓 𝑥  is 
unknown but 
continuously 
differentiable 

A. Isaly, O. S. Patil, H. M. Sweatland, R. G. Sanfelice and W. E. Dixon, "Adaptive Safety with a RISE-Based Disturbance 

Observer," in IEEE Transactions on Automatic Control, 2024. 



Control Barrier Functions

The function 𝑓 𝑥  is 
unknown but 
continuously 
differentiable 

A. Isaly, O. S. Patil, H. M. Sweatland, R. G. Sanfelice and W. E. Dixon, "Adaptive Safety with a RISE-Based Disturbance 

Observer," in IEEE Transactions on Automatic Control, 2024. 

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥



State-Derivative Observer

• A least squares weight adaptation law adaptively identifies the 
system dynamics based on an identification error

• Least squares-based real-time identification is challenging for 
continuous-time systems because it requires state-derivative 
information which is often unknown or noisy

• We develop a high-gain state-derivative estimator to quantify 
the identification error

ሶො𝑥 = መ𝑓 + 𝑔 𝑥 𝑢 + 𝑘𝑥 ෤𝑥,

ሶመ𝑓 = 𝑘𝑓
ሶ෤𝑥 + 𝑘𝑥 ෤𝑥 + ෤𝑥



ሶመ𝜃 = proj Γ −𝑘𝜃
መ𝜃 + Φ′⊤ 𝑥, መ𝜃 መ𝑓 − Φ 𝑥, መ𝜃

DNN Adaptation Law

The projection operator 

ensures ෠𝜃 𝑡 ∈ ℬ ≜
𝜃 ∈ ℝ𝑝: 𝜃 − 𝜃∗ ≤ Ξ

• The DNN adaptation law is defined as

• The term Γ ∈ ℝ𝑝×𝑝 denotes a symmetric positive-definite time-varying least squares 
adaptation gain matrix that is a solution to

𝑑

𝑑𝑡
Γ−1 = −𝛽 𝑡 Γ−1 + Φ′⊤

𝑥, መ𝜃 Φ′ 𝑥, መ𝜃 ,

      where the bounded-gain time-varying forgetting factor 𝛽: ℝ≥0 → ℝ≥0 is defined as 

𝛽 𝑡 ≜ 𝛽0 1 −
𝜆max Γ

𝜅0
≥ 𝛽1 ∈ ℝ≥0



Stability Analysis

Theorem 1: The parameter estimation error is bounded such that

෨𝜃 𝑡 ≤ ෨𝜃𝑈𝐵 𝑡 ≜
𝜆2

𝜆1
𝑧 𝑡0

2𝑒
−

𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1
1 − 𝑒

−
𝜆3
𝜆2

𝑡

where 𝜆1 ≜ min
1

2
,

1

2𝜅0
, 𝜆2 ≜ min

1

2
,

1

2𝜅1
, 𝜆3 ≜ min ൜

ൠ

𝑘𝑥 , 𝑘𝑓 −
ҧሶ𝑓+𝑐2

2
,

𝛽1

2𝜅0
+

𝑘𝜃

2
− 𝑐2  , and 𝐶 ≜

ҧሶ𝑓+𝑐2𝑐1
2+𝑘𝜃

ഥ𝜃2

2
 , provided 𝜆3 > 0.

𝑧 ≜ ෤𝑥⊤, ሚ𝑓⊤, ෨𝜃⊤ ⊤



෨𝜃 𝑡 ≤ 𝜒𝜃 ≜ min Ξ,
𝜆2

𝜆1
Ξ2 + 4 ҧ𝑓2 𝑒

−
𝜆3
𝜆2

𝑡
+

𝜆2𝐶

𝜆1
1 − 𝑒

−
𝜆3
𝜆2

𝑡

• Because ෨𝜃𝑈𝐵 𝑡  may initially be more conservative than Ξ, we 
define the auxiliary function 𝜒𝜃

22

መ𝜃 𝑡0 ∈ ℬ,  መ𝑓 𝑡0 ≤ ҧ𝑓



Safe Control Inputs

• A new set of safe control inputs can be found that is composed 
of only known terms

• Begin with the original

𝐾𝑐 = 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 𝑓 𝑥 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥

• Substitute in DNN estimate of 𝑓 𝑥 , the Taylor series 
approximation of Φ 𝑥, 𝜃∗ , and 𝜒𝜃 to yield

𝐾𝑑 𝑥 ≜ 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + ഥΔ + ∇𝐵⊤ 𝑥 Φ 𝑥, መ𝜃 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥



Definition 2: A continuously differentiable CBF candidate 

𝐵: ℝ𝑛 → ℝ𝑑 defining the set 𝒮 ⊆ Ω is an adaptive DNN CBF 
(aDCBF) for the dynamic system and the safe set 𝒮 on a set 

𝒪 ⊂ ℝ𝑛 with respect to a function 𝛾: ℝ𝑛 → ℝ𝑑 if there exists 
a neighborhood of the boundary of 𝒮 such that 𝒩 𝜕𝒮 ⊂ 𝒪, 
2) for each 𝑖 ∈ 𝑑 , 𝛾𝑖 ≥ 0 for all 𝑥 ∈ 𝒩 𝑀𝑖 \𝒮𝑖, and 3) the set

is nonempty for all 𝑥 ∈ 𝒪.

aDCBF Definition

𝐾𝑑 𝑥 ≜ 𝑢 ∈ ℝ𝑚: ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + ഥΔ + ∇𝐵⊤ 𝑥 Φ 𝑥, መ𝜃 + 𝑔 𝑥 𝑢 ≤ −𝛾 𝑥



Forward Invariance

• An optimization-based control law 𝜅∗: ℝ𝑛 → 𝒰 is used to make 
a selection of 𝐾𝑑 and is defined as

𝜅∗ 𝑥 ≜ argmin𝑢∈𝒰𝑄 𝑥, 𝑢

s. t. ∇𝐵⊤ 𝑥 Φ′ 𝜒𝜃 + 𝑐1

+∇𝐵⊤ 𝑥 ෡Φ 𝑥, 𝜃 + 𝑔 𝑥 𝑢

≤ −𝛾 𝑥



Theorem 2: Suppose 𝐵: ℝ𝑛 × ℝ𝑝 is an aDCBF  defining a 

safe set 𝒮 ⊆ Ω for the closed-loop system. Let ො𝑥, መ𝑓, and ෠𝜃 
update according to the developed state-derivative estimator 
and adaptive update law, respectively, and let ො𝑥 𝑡0 = 𝑥 𝑡0 , 

መ𝑓 ≤ ҧ𝑓, 𝑧 𝑡0 ∈ 𝒟, and ෠𝜃 𝑡0 ∈ ℬ. If 𝜅∗ is continuous, then 

the set 𝒮 is forward invariant, provided 𝜆3 > 0.

Main Result



Adaptive Cruise Control

ሶ𝑣 = −
1

𝑚
𝐹𝑟 + 𝛿 𝑣 +

1

𝑚
𝑢

• Deep ResNet with 2 hidden layers, a shortcut connection between 
each layer, and 6 neurons in each layer for a total of 122 weights

• Controller uses cost function
𝑄 𝑥, 𝑢 = 𝑢 − 𝑢𝑛𝑜𝑚 𝑥 2

     where
𝑢𝑛𝑜𝑚 = −Φ 𝑣, መ𝜃 − 𝑚𝑘1 𝑥 − 𝑥𝑑



Non-Polynomial Dynamics

• Deep ResNet with 3 hidden 
layers, a shortcut connection 
between each layer, and 5 
neurons in each layer for a total 
of 174 weights

• Controller uses cost function
𝑄 𝑥, 𝑢 = 𝑢 − 𝑢𝑛𝑜𝑚 𝑥 2

     where
𝑢𝑛𝑜𝑚 = ሶ𝑥𝑑 − Φ 𝑥, መ𝜃 − 𝑘𝑒 𝑥 − 𝑥𝑑

• Baseline method uses
𝑢𝑛𝑜𝑚 = ሶ𝑥𝑑 − መ𝑓 − 𝑘𝑒 𝑥 − 𝑥𝑑

𝑓 𝑥 = 𝑥2 sin 𝑥1 tanh2 𝑥2 , 𝑥1𝑥2 cos 𝑥2 sech 𝑥2
⊤



Adaptive Output Feedback 
Control Using Lyapunov-Based 

Deep Recurrent Neural 
Networks (Lb-DRNNs)

Emily Griffis, Omkar Sudhir Patil, Wanjiku A. Makumi, and Warren E. Dixon, “Adaptive Output 
Feedback Control Using Lyapunov-Based Deep Recurrent Neural Networks (Lb-DRNNs)”, IEEE 
Transactions on Automatic Control, Under Review.



Contribution

• RNNs are a dynamic model → better suited for dynamical 
system identification and output feedback (OFB) control 
compared to feedforward NNs

• Previous deep RNN (DRNN)-based control results use offline 
optimization techniques to train the DRNN weights.
• No online learning or adaptive control result for deep RNN 

architectures. 
• No OFB control result for DRNNs.

• Develop adaptive Lyapunov-based DRNN (Lb-DRNN) OFB 
controller.
• A continuous-time Lb-DRNN is developed to adaptively estimate 

unknown system states in an observer design.
• Lb-DRNN is implemented in controller to adaptive  compensate for 

model uncertainties.
• Stability-driven adaptation laws adjust the Lb-DRNN weights in real-

time.



System Dynamics and Control Objective

▪Consider a second order nonlinear system
ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑓 𝑥 + 𝑔 𝑥1 𝑢

▪Design estimation ( ෤𝑥1) and tracking (𝑒1) errors

Use DRNN to 
adaptively estimate 
system dynamics

𝑥1 known
𝑥2 unknown

෤𝑥1 ≜ 𝑥1 − ො𝑥1

𝜉 ≜ ሶ෤𝑥1 + 𝛼 ෤𝑥1 + 𝜂
𝑒1 ≜ 𝑥1 − 𝑥𝑑,1

𝑟 ≜ ሶ𝑒1 + 𝛼𝑒1 + 𝜂

Auxiliary errors 𝜉 and 𝑟 are 
unknown → can’t be used in 

adaptation law design



Dynamic Filter

Dynamic filter: 
𝜂 ≜ 𝑝 − 𝛼 + 𝑘𝑟 ෤𝑥1

ሶ𝑝 ≜ − 𝑘𝑟 + 2𝛼 𝑝 − 𝜈 + 𝛼 + 𝑘𝑟
2 + 1 ෤𝑥1 + e1

ሶ𝜈 ≜ 𝑝 − 𝛼𝜈 − 𝛼 + 𝑘𝑟 ෤𝑥1

Implementable Errors:
𝑒𝑒𝑠 = ෤𝑥1 + 𝜈 → 𝑟 = ሶ𝑒𝑒𝑠 + 𝛼𝑒𝑒𝑠
𝑒𝑡𝑟 = 𝑒1 + 𝜈 → 𝜉 = ሶ𝑒𝑡𝑟 + 𝛼𝑒𝑡𝑟

Auxiliary errors 𝜉 and 𝑟 are unknown → 
Design dynamic filter to generate secondary errors that 

can be implemented in the adaptation law design



OFB Control Design

▪Use deep RNN to estimate the unknown state

▪𝜙: tanh activation function

▪𝑦 = ℎ⊤, 𝑥⊤, 1 ⊤: concatenated input

ሶℎ = −𝑏ℎ + 𝑊1
⊤𝜙𝑘 ∘ 𝑊0

⊤𝑦



OFB Control Design

▪Use deep RNN to estimate the unknown state

▪𝜙: tanh activation function

▪𝑦 = ℎ⊤, 𝑥⊤, 1 ⊤: concatenated input

ሶℎ = −𝑏ℎ + 𝑊𝑘
⊤𝜙𝑘 ∘ ⋯ ∘ 𝑊1

⊤𝜙1 ∘ 𝑊0
⊤𝑦

Make it 
deep!



Observer Development

▪Use deep RNN to estimate the unknown state

ሶℎ = −𝑏ℎ + 𝑊𝑘
⊤𝜙𝑘 ∘ ⋯ ∘ 𝑊1

⊤𝜙1 ∘ 𝑊0
⊤𝑦

ሶ𝑥2 = −𝑏𝑥2 + Φ 𝑥, 𝜃 + 𝑔 𝑥1 𝑢 + 𝜀(𝑥)

→ 𝜀: residual error

ሶℎ = −𝑏ℎ + Φ(ℎ, 𝜃) → 𝜃: DRNN weights



Observer Design

ሶො𝑥1 ≜ ො𝑥2 

ሶො𝑥2 ≜ −𝑏 ො𝑥2 + ෡Φ ො𝑥, መ𝜃 + 𝑔 𝑥1 𝑢 + 𝛽1sgn(𝑒𝑒𝑠) + 𝜒 

መ𝜃 = 𝑣𝑒𝑐 𝑊0
⊤ … 𝑣𝑒𝑐 𝑊𝑘

⊤ ⊤ → stacked 
representation of all weight estimates

Generates state estimate ො𝑥2 to use in controller

Using the adaptive DRNN term −𝑏 ො𝑥2 + ෡Φ ො𝑥, መ𝜃 ,  the 

observer is designed as 



Control Design

▪The controller is designed as

𝑢 ≜ 𝑔 𝑥1
+[− −𝑏𝑥2 + ෡Φ ො𝑥, መ𝜃 − 𝛽2 sgn 𝑒𝑡𝑟 +

 ሷ𝑥𝑑,1 − 𝑘𝑟 + 𝛼 ሶƸ𝑒1 + 𝛼 Ƹ𝑒1 − 𝛼2𝑒1 − 𝜈]

How do we 
design weight 

estimates መ𝜃?

where Ƹ𝑒1 ≜ ො𝑥1 − 𝑥𝑑,1



Weight Adaptation Law

▪The weight adaptation law is designed as
ሶ෠𝜃 ≜ Γ ෡Φ′⊤(𝑒𝑒𝑠 + 𝑒𝑡𝑟)

▪Implementable errors (using dynamic filter):
𝑒𝑒𝑠 ≜ ෤𝑥1 + 𝜈
𝑒𝑡𝑟 ≜ 𝑒1 + 𝜈

Jacobian ෡Φ′ =
𝜕 ෡Φ

𝜕෡𝜃

Adaptation 

gain matrix
Estimation and 

Tracking errors



Main Stability Result

Theorem 1. The adaptive DRNN OFB controller 
and weight adaptation laws ensure asymptotic state 
estimation error and tracking error convergence in 
the sense that

𝒙𝟐 − ෝ𝒙𝟐 → 0 as t → ∞
𝒙𝟏 − 𝒙𝒅,𝟏 → 0 as t → ∞



Simulation Parameters

• Comparative simulations were performed on a 6DOF unmanned 
underwater vehicle (UUV) system 
• DRNN OFB controller: 8 (tanh) layers with 8 neurons

• Shallow RNN (SRNN) OFB controller: 2 (tanh) layers with 17 neurons

• Central difference observer (no DNN in controller)

• Noise on position from uniform distribution U(-0.001, 0.001) 

• 150 seconds with a step size of 0.001 seconds with initial condition

    𝑥1 = 4 𝑚 , 0.5 𝑚 , 0 𝑚 , 0 𝑟𝑎𝑑 , 0.2 𝑟𝑎𝑑 , 0 𝑟𝑎𝑑
⊤
 

• Helical Desired trajectory 
𝑥1,𝑑 = 5 cos 0.1𝑡 𝑚 , 5 sin 0.1𝑡 𝑚 , 0.1𝑡 𝑚 , 0 𝑟𝑎𝑑 , 0 𝑟𝑎𝑑 , −0.05𝑡 𝑟𝑎𝑑

⊤

Control Gains
𝑏 = 1

𝑘𝑟 = 2
𝛼 = 5

𝛽1 = 𝛽2 = 0.001
Γ = 0.5 ⋅ 𝐼

For a fair comparison, the 
same gains were used



Simulation Results

Velocity Estimation Error Position Tracking Error



Simulation Results

Architecture 𝒆𝟏 ෥𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

CD sensitive to measurement noise – 
High estimation error and control 

effort!



Simulation Results

Architecture 𝒆𝟏 ෥𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

27.98% improvement in linear tracking error
89.94% improvement in angular tracking error



Simulation Results

Architecture 𝒆𝟏 ෥𝒙𝟐 control input

SRNN Linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]

Angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [Nm]

CD Linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]

Angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [Nm]

DRNN Linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]

Angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [Nm]

27.98% improvement in linear tracking error
89.94% improvement in angular tracking error

52.43% improvement in linear estimation error
66.67% improvement in angular estimation error



Thank you
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