Updates on Research and Collaborations

Matthew Hale
School of Electrical and Computer Engineering
Georgia Tech
Center of Excellence for Assured Autonomy in Contested Environments

> Spring 2024 Review
> May $30^{\text {th }}, 2024$

© ULC SHNTH CRIUL

- Joint work with Sean Phillips and Alex Soderlund (both at RV) led to timeconstrained MPC for satellites
- Gabriel Behrendt (PhD student) created a time-constrained MPC algorithm that has been implemented in the SPACER Lab at RV
- Underlying idea: space-grade processors are slow, so we often cannot solve MPC sub-problems exactly
- Main question: with limited time, do we achieve stability/high performance?

Unibap SpaceCloud iX10-101

아
Duke
圈TEXAS

Collaborations with Air Force Colleagues

- For Summer 2024:
- William Warke is at RW with Kevin Brink
- The paper "Pose Graph Optimization over Planar Unit Dual Quaternions: Improved Accuracy with Provably Convergent Riemannian Optimization" is under review
- Working on a joint journal paper extension
- Adam Pooley is at RW with Adrienne Dorr
- Alexander Benvenuti is at RW with Mitzi Dennis
- The joint paper "Differentially Private Reward Functions for Multi-Agent Markov Decision Processes" was just accepted to CCTA 2024
- A journal extension will be submitted soon
- Gabriel Behrendt is at RW with Zach Bell
- The paper "Distributed Asynchronous Discrete-Time Feedback Optimization" is under review
- Multiple time-varying non-convex optimization papers are in preparation

Duke
埐TEXAS
"has

Efficient Verification of High Order Control Barrier Functions

Ellie Pond \& Matthew Hale

Department of Electrical and Computer Engineering Georgia Institute of Technology

Duke
圈TEXAS
(x)
(4)UC SHNTH CRUZ

Safety-critical systems are widely used

- Safety-critical systems...
- Have state-based constraints that designate a safe region
- Must prioritize safety over optimality
- Require a guarantee that safety can be maintained ahead of time
- Example systems:
- Autonomous vehicles
- Medical robots
- Industrial robots

魝TEXAS

Forward invariance encodes safety

- Safety \leftrightarrow Bad things never happen
- Forward invariance is a method used for safety-critical systems
- Identify a safe region $C \subseteq \mathcal{X}$
- Goal is to make C forward invariant through control-action

UF Fiticilic
(2sim)
© UL SANTH CRUL

- Control Barrier Functions (CBFs) are used in nonlinear, control-affine systems

$$
\dot{x}=f(x)+g(x) u
$$

- The state, $x \in X \subset \mathbb{R}^{n}$
- The input, $u \in U \subset \mathbb{R}^{q}$
- The CBF function $b: C \rightarrow \mathbb{R}$ defines the safe area C

$$
C=\{x \in \mathcal{X} \mid b(x) \geq 0\}
$$

- Assume that (1.) b is polynomial, (2.) C is compact, (3.) $C \subseteq X$, for this talk

> Problem 0, Safety verification:
> Develop conditions that guarantee that safe control action is always available, with respect to the CBF and other system-specific requirements.

Duke
圆TEXAS

Definition (Ames et al., 2019):
A function $b: C \rightarrow \mathbb{R}$ is a CBF if there exists a class \mathcal{K}_{∞} function α such that

$$
\sup _{u \in U}\left[L_{f} b(x)+L_{g} b(x) u+\alpha(b(x))\right] \geq 0
$$ for all $x \in C$.

- The admissible input set is
$\Psi_{1}(x)=\left\{u \in U \mid L_{f} b(x)+L_{g} b(x) u+\alpha(b(x)) \geq 0\right\}$
Theorem (Ames et al., 2019):
Given a CBF b, any Lipschitz continuous
 controller $u:[0, \infty) \rightarrow U$ such that $u(t) \in \Psi_{1}(x(t))$ for all $t \geq 0$ renders C forward invariant.
- High Order Control Barrier Functions (HOCBFs) are an extension of CBFs
- The input does not appear on the first derivative

$$
L_{f} b(x)+L_{g} k(x) u(t)+\alpha(b(x)) \geq 0 \underbrace{}_{\begin{array}{c}
\text { Control action is } \\
\text { rendered ineffective }
\end{array}}
$$

- The relative degree r is the number of times b must be differentiated until the input shows up
- The high-degree functions:
$\psi_{0}(x)=b(x)$
$\psi_{1}(x)=\dot{\psi}_{0}(x)+\alpha_{1}\left(\psi_{0}(x)\right)$
$\psi_{r-1}(x)=\dot{\psi}_{r-2}(x)+\alpha_{r-1}\left(\psi_{r-2}(x)\right)-$
$\psi_{r}(x, u)=\underbrace{\dot{\psi}_{r-1}(x, u)}+\alpha_{r}\left(\psi_{r-1}(x)\right)$
The input shows up here!

HOCBFs are a natural extension of CBFs

Definition:

A function $b: C_{1} \rightarrow \mathbb{R}$ is an HOCBF with relative degree r if there exist r class \mathcal{K}_{∞} functions α_{i} such that

$$
\sup _{u \in U}\left[\psi_{r}(x, u)\right] \geq 0 \quad \text { for all } \quad x \in C_{r}
$$

- The admissible input set is

$$
\Psi_{r}(x)=\left\{u \in U \mid \psi_{r}(x, u) \geq 0\right\}
$$

Theorem:

Given a relative degree r HOCBF, any Lipschitz continuous controller $u:[0, \infty) \rightarrow U$ such that $u(t) \in \Psi_{r}(x(t))$ for all $t \geq 0$ renders C_{1} forward invariant.

Theorem:

Given a relative degree r HOCBF, any Lipschitz continuous controller $u:[0, \infty) \rightarrow U$ such that $u(t) \in \Psi_{r}(x(t))$ for all $t \geq 0$ renders C_{1} forward invariant.

$$
\begin{aligned}
& C=\{x \in \mathcal{X} \mid b(x) \geq 0\}, C_{1}=\left\{x \in \mathcal{X} \mid \psi_{0}(x) \geq 0\right\} \\
& C_{2}=\left\{x \in \mathcal{X} \mid \psi_{1}(x) \geq 0\right\} \\
& C_{r-1}=\left\{x \in \mathcal{X} \mid \psi_{r-2}(x) \geq 0\right\} \\
& C_{r}=\left\{x \in \mathcal{X} \mid \psi_{r-1}(x) \geq 0\right\}
\end{aligned}
$$

Information about one companion set provides information about all companion sets.

Theorem 1 (Pond \& Hale, In Preparation):
Assume: All C_{i} are compact and nonempty

$$
\begin{gathered}
C_{i}=\left\{x \in \mathcal{X} \mid \psi_{i-1}(x) \geq 0\right\} \\
\text { is forward invariant }
\end{gathered} \Leftrightarrow \begin{gathered}
C_{i+1}=\left\{x \in \mathcal{X} \mid \psi_{i}(x) \geq 0\right\} \\
\text { is forward invariant }
\end{gathered}
$$

Potential conflicts can arise in real-time

CBFs/HOCBFs are typically implemented in real-time with sequential quadratic programs (SQPs)

$\min _{u(t) \in u} \mid\\|u(t)\\|^{2}$
s.t $\psi_{r_{1}}^{1}(x(t), u(t)) \geq 0$
\vdots
$\psi_{r_{j}}^{J}(x(t), u(t)) \geq 0$
$L_{f} V(x(t))+L_{g} V(x(t)) u(t)+\gamma(V(x(t))) \leq 0$

Possible conflicts:

1. Validation of the HOCBF definition - Does b always satisfy its definition?
2. Actuation limits - Will the input needed for safety ever be outside the system's input bounds?
3. Safe stabilization - Can the CLF and CBF constraint be satisfied by the same input?
4. Multiple HOCBFs - Will there be a time when the intersection of the safe sets is empty?

Duke

Problem 1, Single HOCBF Verification:

For a single HOCBF b, determine a sufficient condition to guarantee the continued feasibility of the SQP.

Definition:

A system has a guarantee of continued feasibility if the existence of a continuous input that satisfies:

1. The actuation limits $u \in U=\{A u(x) \leq c\}$
2. The HOCBF definition validation
3. The CLF definition validation has been established.

SQP			
	$\min _{u(t) \in u} \mid\\|u(t)\\|^{2}$		
	\rightarrow s.t $\psi_{r}(x(t), u(t)) \geq 0$		
	$L_{f} V(x(t))+L_{g} V(x(t)) u(t)+\gamma(V(x(t))) \leq 0$		

Duke

Algebraic geometry has a natural connection

- Nonnegativity certificates
- Question: Is the polynomial $g \in \mathbb{R}[x]$ nonnegative over the semialgebraic set

$$
K_{S}=\left\{x \in \mathbb{R}^{n} \mid v_{1}(x) \geq 0, \ldots, v_{m}(x) \geq 0\right\} ?
$$

- Answer: If $g \in Q_{S}$, then yes!

Definition (Powers, 2021):

> | Q_{S} is an algebraic object |
| :---: |
| - a specifically |
| structured polynomial |
| set that requires |
| nonnegativity for |
| membership |

The quadratic module generated by the set $S=\left\{v_{1}, \ldots, v_{m}\right\}$ is

$$
Q_{S}=\left\{q \in \mathbb{R}[x] \mid q(x)=s_{0}(x)+\sum_{i=1}^{m} s_{i}(x) v_{i}(x)\right\}
$$

Sums-of-squares polynomial:

$$
s_{i}(x)=\sum p_{i}^{2}(x)
$$

- Recall, we need to know if $\psi_{r}(x, u) \geq 0$ over the set

$$
C_{r}=\left\{x \in \mathcal{X} \mid \psi_{r-1}(x) \geq 0\right\}
$$

- Nonnegativity certificates can be solved using semidefinite programs (SDPs)

Duke

Theorem 2 (Pond \& Hale, In Preparation): The continued feasibility for a system with

1. A HOCBF
2. A CLF
3. Actuation constraints
is guaranteed if there is a solution to the SDP:

$$
\begin{array}{lc}
\min & 0 \\
\text { s.t. } & \psi_{r}(x, u(x))=s_{0}(x)+s_{1}(x) \psi_{r-1}(x) \\
-L_{f} V(x)-L_{g} V(x) u(x)-\gamma(V(x))=s_{2}(x)+s_{3}(\mathrm{x}) \psi_{0}(x) \\
& \quad-A u(x)+c=\mathrm{s}_{4}(\mathrm{x})+\mathrm{s}_{5}(\mathrm{x}) \psi_{0}(x)
\end{array}
$$

Nonnegativity certificates:
$\psi_{r}(x, u(x)) \geq 0$ for all $x \in C_{r} \Rightarrow$ HOCBF definition satisfied and C_{1} forward invariant
$L_{f} V(x)+L_{g} V(x) u(x)+\gamma(V(x)) \leq 0$ for all $x \in C_{1} \quad \Rightarrow$ Safe stabilization is possible $A u(x) \leq c$ for all $x \in C_{1} \quad \Rightarrow$ Actuation limits satisfied

Duke
© UC SANTH CRULZ

SQP

SQP
$\min _{u(t) \in u}\| \| u(t) \\|^{2}$
s.t $\psi_{r_{1}}^{1}(x(t), u(t)) \geq 0$
\vdots
$\psi_{r_{J}}^{J}(x(t), u(t)) \geq 0$
$L_{f} V(x(t))+L_{g} V(x(t)) u(t)+\gamma(V(x(t))) \leq 0$

- Now, we must establish
- HOCBF definition validation for each $j \in[J]$
- CLF definition validation
- Actuation constraint compliance over the forward invariant intersection set

Problem 2, Multiple HOCBF Verification: Given a collection of HOCBFs $\left\{b_{1}, \ldots, b_{J}\right\}$, determine a sufficient condition to guarantee the continued feasibility of the SQP.

$$
\bigcap_{j=1}^{J} C_{1}^{j}=\left\{x \in \mathcal{X} \mid \psi_{0}^{1}(x) \geq 0, \ldots, \psi_{0}^{J}(x) \geq 0\right\}
$$

Duke

The verification for multiple HOCBFs

Theorem 3 (Pond \& Hale, In Preparation):
The continued feasibility for a system with

1. J HOCBFs
2. A CLF
3. Actuation constraints

Decision Variables

$$
\begin{gathered}
u \in \mathbb{R}^{q}[x] \\
s_{i}^{1}, \ldots, s_{i}^{J}, s_{i}^{J+1} \in \Sigma[x] \\
s_{i}^{J+2} \in \Sigma^{q}[x]
\end{gathered}
$$

is guranteed if there is a solution to the SDP:

$$
\begin{gathered}
\min 0 \\
\text { s.t. } \psi_{r_{1}}^{1}(x, u(x))=s_{0}^{1}(x)+s_{1}^{1}(x) \psi_{r_{1}-1}^{1}(x)+\cdots+s_{J}^{1}(x) \psi_{0}^{J}(x) \\
\vdots
\end{gathered} \begin{gathered}
\psi_{r_{J}}^{J}(x, u(x))=s_{0}^{J}(x)+s_{1}^{J}(x) \psi_{0}^{1}(x)+\cdots+s_{J}^{J}(x) \psi_{r_{J}-1}^{J}(x) \\
-L_{f} V(x)-L_{g} V(x) u(x)-\gamma(V(x))=s_{0}^{J+1}(x)+s_{1}^{J+1}(\mathrm{x}) \psi_{0}^{1}(x)+\cdots+s_{J}^{J+1}(x) \psi_{0}^{J}(x) \\
-A u(x)+c=s_{0}^{J+2}(\mathrm{x})+s_{1}^{J+2}(\mathrm{x}) \psi_{0}^{1}(x)+\cdots+s_{J}^{J+2}(x) \psi_{0}^{J}(x)
\end{gathered}
$$

Each HOCBF definition is

$$
\psi_{r_{j}}^{j}(x, u(x)) \geq 0 \text { for all } x \in C_{1}^{1} \cap \cdots \cap C_{r_{j}}^{j} \cap \cdots \cap C_{1}^{J} \Rightarrow
$$

satisfied over the forward invariant operating region

- Dynamics

$$
\dot{x}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] u
$$

$$
\begin{aligned}
& b_{1}(x)=x_{1}^{2}+x_{2}^{2}-1^{2} \\
& b_{2}(x)=-x_{1}^{2}-x_{2}^{2}+10^{2} \\
& b_{3}(x)=-x_{3}^{2}-x_{4}^{2}+15^{2}
\end{aligned}
$$

- One CLF

$$
V(x)=\left(x-\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right]\right)^{T}\left(\mathrm{x}-\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right]\right)
$$

- Actuation Constraints

$$
-30 \leq u \leq 30
$$

Remaining Work

- Synthesizing HOCBFs
- The class \mathcal{K}_{∞} functions lack intuition
- Can be difficult to determine any feasible class \mathcal{K}_{∞} functions, let alone optimal class \mathcal{K}_{∞} functions
- The class \mathcal{K}_{∞} functions determine restrictiveness for the intercession of safety
- All issues with class \mathcal{K}_{∞} functions are exacerbated for HOCBFs

$$
\psi_{r}(x)=L_{f}^{r} b(x)+L_{g} L_{f}^{r-1} b(x) u+\alpha_{r}\left(\psi_{r-1}(x)\right)+\sum_{i=1}^{r-1} L_{f}^{i}\left(\alpha_{i-1}\left(\psi_{r-i-1}(x)\right)\right)
$$

- Incorporate α_{i} functions as a decision variable

Duke
甸TEXAS
© UC SANTH CRUL

Thank you! epond3@gatech.edu

©UL SANTH CRUZ

