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Countering misinformation
* Controlling the information flow with guarantees [ACC 2024]

* Credibility detection and community analysis
through textual information [submitted to ICWSM 2024]

* Motivations for misinformation spread
* Improving information quality via optimal ranking
Network Perception
* Risk of misperception in networked autonomous systems [CDC2023]
* Fast networked feature selection to reduce uncertainty [submitted to IROS 2024}

* Effects of memory and message limitations on network perception
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Complex in Washington D.C.
AFire s currently Burning at the Location of the Blast with Fire and
Rescue Crews arriving On-Scene.
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Countering Misinformation

* Rumors
-~ .
Detection g) ’ Mitigation of spread ’;33.'
®
* Content Monitoring * Alternation of Social Network
* Detection by NLP e Controlling Information Flow

 LLM models * Countering Spread
* BERT models



Twitter Algorithm

The University of Texas at Austin
Oden Institute for Computational

Engineering and Sciences

&p

DATA FEATURES HOME MIXER
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v

A 4
v

CANDIDATE SOURCE

Follow graph SimClusters

In Network

RealGraph, T&S
Tweet engagement

User data RealGraph Embedding Space

SimClusters, TwHIN
Trust and Safety

Social Graph

Follow graph,
engagements

HEAVY RANKER

HEURISTICS & FILTERING

Social Proof

Visibility (T&S)

Author diversity Timeline

Content balance

Feedback fatigue Who to follow
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Social Media companies are profit-driven

* Advertising: 'i r@

 Showing ads to users

» Selling user information for ads

* Monetize content: m D

e Subscription models

Users = Revenue
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Infodemic Modeling

* Susceptible-Infected-Recovered Model (SIR)

e Susceptible — Infected

PX(t+ AD =1|X'()=8) = ) Blaydy (At
j=1

e Infected — Recovered

P(X(t+ At) = R|X'(t) = 1) = y'At

&

The University of Texas at Austin
Oden Institute for Computational

Engineering and Sciences



j=1

PX(t+ AD =1|X'()=8) = ) Blaydy (AL

* Susceptible-Infected-Recovered Model (SIR)

Infodemic Modeling

e Susceptible — Infected
e Infected — Recovered

P(X'(t+ At) = R|X'(t) = 1) = y'At
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* SIR Model for communities s{ = PX] = 8) = E[6(5)]

X =PX =1) = E[65x)]

rfzﬂm(Xti:S):l—xf—sf

e Susceptible — Infected

PX(t+ A) =1|X'()=S) = ) Blaydy (At
j=1

e Infected — Recovered

P(X(t+ At) = R|X'(t) = 1) = y'At
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Mean-field Approximations

* SIR Model for communities s{ = PX] = 8) = E[6(5)]

X =PX =1) = E[65x)]

rf=P(Xf=S)=1—xf—sf

» Susceptible — Infected ) §i(r) = — Bisi(p) Zn: a,-juij(t)xf(t)
PXI(t+ AD =11 X'(1) = S) = ) Playdy (DA =1

() = y'x'(0),

j=1

e Infected — Recovered

P(Xi(t + Af) = R| Xi(t) = I) = y'At #(1) = Bis'(0) Y au (DX (D) — y'xi(@)
j=1




Mean-field Approximations

* SIR Model for communities si=PX' =98) =

X' =PX'=1) =
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=[0xi(5) ]

= [0x(1)]

rfzﬂm(Xti:S):l—xf—sf

e Susceptible — Infected ) $i(0) = — Bisi(r) Z a,-juij(t)xj(t)
PX(t+ A) =1|X'()=S) = ) Blaydy (At j=1
j=1 (1) = y'x'(1),
e |Infected — Recovered )
P(Xi(t + Af) = R|Xi(t) = I) = y'At #(1) = Bis'(0) Y aguy (D (1) —

j=1

y'x'(1)
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Safety and Information Flow

* Controlling information inside a community is not
possible

* QOut-of-platform connections

e Similar sources

* Controlling Information between communities

1.

2.
3.
4

Minimizing the overall number of infected
Minimizing the network modifications
Preventing viral rumors

Maintaining information flow
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* Controlling information inside a community is not
possible

* QOut-of-platform connections

e Similar sources

* Controlling Information between communities

1.

Minimizing the overall number of infected

2. Minimizing the network modifications
3.
4. Maintaining information flow

Preventing viral rumors

s.t. Dynamics, x'0)= xé, s'(0)=1— xé
X)) <x(t) Vie?,ViteR,,
u ) €U V(ij) € .

n

Z a;iu;(t) 2 i a;; Vie7
j=1

j=1
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e Similar sources

* Controlling Information between communities

1.

Minimizing the overall number of infected

2. Minimizing the network modifications
3.
4. Maintaining information flow

Preventing viral rumors

[ Z q.x; + Z r(l — ul])zdt

S.t. DynamICS . x4(0) = xo, s(0)=1— xé
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* Controlling information inside a community is not
possible

* QOut-of-platform connections

e Similar sources

* Controlling Information between communities

1.

Minimizing the overall number of infected

2. Minimizing the network modifications
3.
4. Maintaining information flow

Preventing viral rumors

[ Z q.x; + Z r(l — ul])zdt

S.t. DynamICS . x1(0) = xO, s'(0)=1— xé
X)) <x(t) Vie?,ViteR,,
uH) €U Y (i.j) € &,

Vie?
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Pontryagin’s Maximum Principle

L= [As(0) + Al + ug' — gx] = Y (1 = u)?
i=1 iji=1

max L(x,u, A, i)
=x/A

s.t. Dynamics ,x'(0) = x/, s'(0) = 1 — x/,

. oL .
A= -, A(T) =0,
ox!

5 oL .
AL = -, A(T) = 0,
oS!

w'g'(x,u) =0, u'(t) <0

10

I' n n
min [ q,x; + 2 r(l — ulj)zdt
0 =1

17 =1 i =1

s.t. Dynamics, x'(0)=ux},s'(0)=1—x

x't)<x(@t) Vie?,VieR,,
uij(t) €U V(laj) S %9

n

2 a;iu;(t) 2 i a;; Vie7
j=1

j=1
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Pontryagin’s Maximum Principle

L= [As(0) + Al + ug' — gx] = Y (1 = u)?
i=1 iji=1

max L(x,u, A, i)
=x/A

s.t. Dynamics ,x'(0) = x/, s'(0) = 1 — x/,

. oL .
A= -, A(T) =0,
ox!

5 oL .
AL = -, A(T) = 0,
oS!

w'g'(x,u) =0, u'(t) <0

10

I' n n
min [ q;x; + Z r(1 — ulj)zdt
0 =1

117 =1 i =1

s.t. Dynamics, x'0)= xé,si(O) =1-x

X)) <xt) Vie?,VteR,,
uij(t) €U V(l,]) S ga

n

Z a;iu;(t) 2 i a;; Vie7
j=1

J=1
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Theorem 1. In the SIR dynamics, If [u;(7)] satisfies
. . . n .
0 <y —pis'() ) au(Ox(), VieV.VieR,
j=1

then x'(f) < X forall t € R,andi € 7.

11






Optimal Control Problem

Constrained Quadratic Programming

max —rui(t)Tul-(t) cl.Tul-(t)
ucU,

s.t. all < aiTul-(t)

b(H) u(r) <y'x
a; = la;;;ap; - ay,]
b, := s'f' Diag(a;) x
¢;:= (AL — Al — u")s'p Diag(a,) x + 2r1,,

12

&

The University of Texas at Austin
Oden Institute for Computational

Engineering and Sciences



The University of Texas at Austin

O . | |
Optimal Control Problem D campytations

&

Constrained Quadratic Programming

max —ru(t) u(t) + ¢ ur) Forward Backward Sweep Method

ucU,

a; = lag; ap; -5 ay,
b, := s'f' Diag(a;) x
¢;:= (AL — Al — u")s'p Diag(a,) x + 2r1,,

12
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max —ru(t) u(t) + ¢ ur) Forward Backward Sweep Method

ucU,

I
Decentralize Solution
a; .= la;;;ap; -5 a,

b, := s'f' Diag(a;) x
¢;:= (AL — Al — u")s'p Diag(a,) x + 2r1,,

12
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No control

0.2

0.16

0.12

0.08

0.04

) t=0 .

Proposed controller

0.2

0.16

0.12

0.08

0.04

(d) t=10
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Constrained Quadratic Programming

max —rui(t)Tui(t) + ciTui(t)
u.EU,

s.t. al,Tln < aiTui(t) * The graph is almost complete

 Number of nodes ~ 10°

bl-(t)Tui(t) < },i)—c * The optimization problem is solved in polynomial time

* We need to solve the optimization for each time instant
a; .= la;;; a5 5 a;, multiple times

Each node solve CQP with n parameters each time step

14
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Network Latent Space

Network Data d In Network Sources
RealGraph \
Interaction Data d Out Network Sources /
SimCluster

SimCluster

Heavy Ranker ad Filtering el Timeline
Neural Network

Can we use the network structure to make

the proposed algorithm scalable?

* |dentify 145,000 community a

* Clustering based on Interactions

* Updated weekly

15
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Using interactions such as: R Number of interactions between u and v
| >  p = . . .
« Conversation Engagements “ Number of all interactions in u and v

&

e Mentions

e Retweets

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________|
1. Lubold, Shane, Arun G. Chandrasekhar, and Tyler H. McCormick. "Identifying the latent space geometry of network models through analysis of curvature." Journal of the Royal Statistical Society Series B: Statistical Methodology.
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Truncating the graph

Remove links based on their latent space distance:
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Localization for Scalability

Truncating the graph

Remove links based on their latent space distance:

If d;; < k remove the link between i and j

Solve the control problem for the truncated network

Question:

Can we guarantee that the resulting policy uphold the
constraints? Localized Graph
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Localization for Scalability

Lemma 1. If the nodes are uniformly distributed in the latent space with at most p nodes in unit space, and
a;. = ae~%, Y(i,j) € & then forany i € ¥ it follows that

]
Z a; < e k] D,
JEN
where /. denotes the k-distance neighborhood of node i defined by A" := {j € 7| d; < x}, andl’; = apn(l + 1) for some
constant 0 < .
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Lemma 2. Let §. = Z a;
JEN

]xf and V(i,j) € &Kk, u; (t) satisfy

lolST [l J .
O<< ﬁé) s Zau]x A=/
JEN
then xi(t) < xfor all 0 < t. We can further simplify the constraint to be solely based on the information from /4 5< by
= i j
0<yx—p's Za]u]x
JEN

SO e k]

X

where 7. = y!(1 ).
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Localization for Scalability

Localized Optimal Control Problem

I n o _ _
min J g7 x(f) + Z Z r(1 — u%)2dt Feasibility Criteria

I _

X
o o . e Wk |H <« —
s.t. Dynamics, x'(0) = x,, s'(0) = 1 — x; ﬁlsl.()l“l

ul?;. €U V(a,j e &,

n
0 Lyx—p's Z al-jul?]‘.xf Vie?,
JEN

n n
Zaij < Z au; Vi€V .
j=1

JENL
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Localization for Scalability

&

We applied the algorithm to the network extracted from 500

million tweets
200 Communities (~150,000 users)
e 4 dimensional manifold

K Convergence time x? My
3.00 N/A N/A 3,238
3.92 120.47 s 0.1194 4,280
4.6 149.08 s 0.1163 6,558,
5.30 185.08 s 0.1071 8,088
6.91 350.06 s 0.1027 11,990

00 +1 hr N/A 40, 000
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