Cybersecurity and Privacy in Space and

Associated Domains: Update
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4,\,3’/, ace Is a Contested Environent

Many aspects of the space infrastructure need to be considered from a
security perspective

€he New Aork Eimes

U.S. Warns Allies Russia Could Put a
Nuclear Weapon Into Orbit This Year

The American assessments are divided, however, and President
Vladimir Putin denied having such an intention, saying that
Russia was “categorically against” it.

Russia, in New Push, Increasingly
Disrupts Ukraine’s Starlink Service

Russia has deployed advanced tech to interfere with Elon Musk’s
satellite internet service, Ukrainian officials said, leading to more
outages on the northern front battle line.
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,g\\.g./), t Research in Space Security

Communication &
Network security

Don’t Shoot the Messenger:
Localization Prevention of Satellite Internet Users

The Dark Side of Scale: Insecurity of Direct-to-Cell Satellite Mega-Constellations

System security

Orbital Shield: Rethinking Satellite Security in the
Commercial Off-the-Shelf Era
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—Q\.:./), ecent Work in Related Areas

e Preliminary discussion of privacy-preserving computing for satellites (AIAA
SciTech Forum’24)

* Directed energy (acoustic) attacks in underwater environments (IEEE S&P’24)
* Resilience of terrestrial communication infrastructure:
e Overprivilege in 5G network functions (ACM WiSec’24)

* Randomness and cryptography failures in 5G network cores (ACM
CODASPY’24)

* Fuzzing of cellular cores and RAN interfaces (ACM CCS’24)
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Holistically Assessing Privacy-Preserving
Satellite Computation for RPO and ISM
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_ - Segments of Space Security
Space Segm‘ent 3

g “_LmkSegme :

Ground Segment
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Needs for both privacy
and security in space

IN-SPACE Cybersecurity

Growing number of satellites &
expanding private sector

Motivates autonomy needs

Rendezvous & Proximity
Operations (RPO)

Near-field collision avoidance
and characterization
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4:\.3./) , Project Overview

General goal: address security and privacy challenges in satellite rendezvous
and proximity operations (RPQO) and in-space manufacturing (ISM)

* Examining existing limitations of secure multiparty computation (SMC) in space
applications

* Limited existing research on space segment and in-space operation security

* Implementation and evaluation of in-space RPO and ISM algorithms on space-
certified hardware

e (Categorized mission scenarios and associated security requirements
* Detailed adversarial scenarios and solutions
* Feasibility assessment of SMC in RPO/ISM given satellite operational constraints

* characterize use of SMC protocols considering propagation, transmission, local
execution time
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4«\.3./, Motivation: RPO
Rendezvous and Proximity Operations (RPO): RPO example: docking

o On-board trajectory operation and replanning b

o E.g.docking, on-orbit servicing/refueling, formation flying

o RPO occurs on-board, autonomously as

o housed in guidance navigation and control (GNC) unit

o Needed at scales of < 500km between satellites

Ground station vs On-board Control

Distance between 1-10 Mm <500 km
satellites
Time needed Days-weeks <1 day
Speed km /sec m /sec
Approach conjunction analysis RPO
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ag\.;./, Problem: Capability Inference

Example: Collision Avoidance in RPO
Error margin = 10-15 km

* Minimum data to share with other satellites : A \
* position, veIocit LT R

[l o

Stochastic systems ! ) |
. L \ a2
* Probabilistic, not deterministic \
* Covariance matrices = quantify uncertainty ‘ Y :
* Calculated using intrinsic sensor variance 1/3(; accurac{/‘\\ ,/’/

~
~—— e =-

* Measure of TRUST, decisions based on accuracy

Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite
capabilities, purpose, etc. through knowledge of sensors on board
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,/)A' : In-Space Manufacturing
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Example: In-Space Manufacturing

* Integrated circuits, advanced materials, bioengineering, large assembly (Luvoir telescope)

Sensitive Values* Threat Assumptions

Covariance matrices Infer proprietary sensor info
Fuel levels May infer satellite
capacity/mission objectives
State-of-health telemetry Infer propulsion system,
(e.g. power, heat use)
Installation/servicing Infer IP (e.g. IC design,
technology parameters robotic arm capability)

*not exhaustive list, values are mission dependent

» Solution: protect sensitive values using
privacy-preserving computation
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»g\.,./), IVacy-Preserving Computation

Privacy-Preserving Computation (PPC)
* Allows for data to remain encrypted during computation

* Protects physical integrity of satellite during RPO and data privacy keeping data encrypted

Secure Multiparty Computation (SMC):

* Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a
function on their inputs, without revealing information about inputs (millionaire’s problem)

1. 2-Party Computation (2PC): e.g. Yao’s garbled or BMR, binary circuit representation

2. Secret sharing: 3+ parties, arithmetic circuit representation
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Security Models

e Multiparty Computation Tool

* Honest vs. dishonest majority — assumption of behavior of parties

e Semi-honest vs. malicious corruption — passive vs. active adversary

Computation Domain
Mathematical structure of secret info

* Usually ring structure defined by
integer operation with modulus or
Galois (finite) field

* Binary circuits or arithmetic circuits

* Mod prime, mod power 2

Underlying Primitives
* Secret Sharing
* Garbled Circuits

* Oblivious Transfer
*  Homomorphic Encryption
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Security model

Malicious, dishonest
majority

Semi-honest,
dishonest majority

Malicious, honest
majority

Semi-honest, honest
majority

Malicious, honest
supermajority

Semi-honest, dealer

Mod prime / GF(2”n)

MASCOT / LowGear /
HighGear

Semi / Hemi / Temi /
Soho

Shamir / Rep3 / PS / SY

Shamir / ATLAS / Rep3

Rep4

Dealer

Mod 27k

SPDZ2k

Semi2k

Brain / Rep3
/PS/SY

Rep3

Rep4

Dealer

Bin. SS Garbling
o
SemiBin taosGC/
ceD ps BMR
s o
Rep4 N/A
Dealer N/A

Table of supported protocols
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Sharemind vs.MP-SPDZ

Y
B <S> ,’

Ease of use for industry & non-security professionals Prominent tool for academic research uses
C++ and proprietary SecreC code Python
1 SMC approach — linear secret sharing (3+ parties) Over 30 SMC variants (GC, OT, FHE, SS)
1 security model (semi-honest) 3 security models (semi-honest, malicious, covert)
1 trust option (honest majority) 2 trust options (honest or dishonest majority)
Black box — cannot see or modify source code White box — can see and modify source code
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- ’, MP-SPDZ and Python

* MP-SPDZ can execute python code but only at compile time

* This means we lose access to the large library of python math functions for any

values that are secret

* We implemented many custom functions in MP-SPDZ including

Eigenvalues and Eigenvector solver

def simpsons_rule(f, a, b, n):
if n% 2 !=0:

° Integratlon Appr0X|mat|on USing Simpsonls Rule L l(-ziiea\)la}uiError("Number of subintervals (n) must be even.")
x_values = [a + i * h for i in range(n + 1)]
H H H um = f(a) + f(b)
* An Error Function Approximation for 1 in range(t, n. 21
sum += 4 x f(x_values[il])
° CrOSS PI’OdUCtS for i in range(2, n-1, 2):

sum += 2 *x f(x_values[il)
sum *x= h / 3
return sum

5
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,gj\.g./, Program Selection

P1_inverse = ml.mr(P1,1)

* We investigated three programs for test P2_inverse = mL.nr(¢2,1)
. . . . . P3_inverse = ml.mr(P3,1)
i. Alfano’s Algorithm for Conjunction Analysis
M = P1_inverse + P2_inverse + P3_inverse
ii. Artificial Potential Function V = P1_inversexxhatl + P2_inversexxhat2 + P3_inversexxhat3
. M_inverse = ml.mr(M,1)
iii. Quadratic Program e = M_inversexV

* We found Alfano’s method required higher accuracy for float
representations than the default value for MP-SPDZ
* To achieve accurate results we had to raise the number of bits for the floating
point representation
* This severely impacted the execution time so we excluded Alfano’s from our
later tests
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*\/’, Methodology: hardware

Finding hardware for deployment in space
* Considerations:

o Commercial off-the-shelf (COTS)

o Sufficient radiation tolerance

o Sufficient power & efficiency with limited resources

*  Current findings:

o NVIDIA Jetson Nano boards (ARM processors)

Emulate satellite cluster
*  Prototype with 3 NVIDIA nano boards
* Networked to communicate with each other

* 3 satellites minimum needed for secret sharing
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—-g\.-./J orithm 1: Artificial Potential Function

Artificial Potential Function (APF): conjunction analysis

e Autonomous Robotic Control algorithm

» Docking, service, collision avoidance Shared parameters

* On-board trajectory control « Control forces : f,, f,, t = Public

* Assume linear orbital dynamics: one satellite
stationary relative to other

* Vehicles’ covariance: P,, P, ===p Private

fo fy'

utput to

subsystem inputs
¥ P ctrl

(vehicle dynamics)

Uncertainty of controls P c' P

(covariance matrices) "—)p U (for [0 T PC, P,, ... x4, static param)
D encrypted values

v

control parameters
(static table)

human control

(on-board flexibility) D = diagnostics, v= optimizations

10.1007/978-981-10-2963-9_5
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4:\,3'/} Algorithm 2: Quadratic Program

Quadratic Program: multi-point inspection
* Sensor Fusion optimization algorithm

* Need 3+ parties for 3 dimensional accuracy Sat 2 Sat 3
(secret sharing or homomorphic encryption) a3 A i
xl,Pl % —— \ {x3JP3}
XZ; PZ % ﬁ }xout' Pout Sat 1 " ) { e P }
i A % Xopt» Fopt
x3, P ——> J

Shared parameters

* Measured positions: x;, x,, X; === Public

* Position covariance: P;, P,,P;  ===p Private
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tuation — APF Initial Benchmarks

~ Dishonest Majority
B Semi-Honest 409.94
400 mmm Malicious
300
Local ;;i J33q1 246.68
execution §200
time
100
o 1.12 62 ¢ 062 \_856 3.2
hemi semi \semizk’ soho temi mama mascot  spdz2k
(a) Execution time comparison for the two-party MPC protocols
running APF
25001 mmm Semi-Honest 2406
Il Malicious
. . § 2000
Communication :
§ 1500
rounds 5
E 1000
£

500

(b) Communication rounds comparison for the two-party MPC

protocols running APF
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BEST m==p semi2k

BEST === hemi, soho
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Honest Majority

6] mmm Semi-Honest
B Malicious

w

IS

Local
exec
time

rep-field

2.75

Seconds (s)
w

N

s rep rifg shamir brain mal mal mal ps ps sy sy sy
field rep rep shamir rep rep rep rep shamir
field ring field ring field ring

(a) Execution time comparison for the honest majority three-
party MPC protocols running QP

5000

I Semi-Honest
I Malicious

N
o
o
o

3000

Comm
rounds

rep-field

2242 2109

N
o
o
o

1950 1503 1820

Communication Rounds

1000

fas rep riflg shamir brain mal mal mal ps ps sy sy sy
field rep rep shamir rep rep rep rep shamir
field ring field ring field ring

(b) Communication rounds comparison for the honest majority
three-party MPC protocols running QP
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aluation: QP Initial Benchmarks

Dishonest Majority

I Semi-Honest 899.01

Il Malicious
800

o
o
o

520.4 530.06

IS
o
o

Seconds (s)

hemi

200
6.16 15.96 14.71 11.73

hemi semi soho temi mama mascot

o

spdz2k

(a) Execution time comparison for the dishonest majority three-
party MPC protocols running QP
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(b) Communication rounds comparison for the dishonest major-

ity three-party MPC protocols nning QP 23
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The local execution
time of the protocol

UF|

The propagation time of the signal.

500 km
C

t = comm rounds *

prop

The transmission time governed
by the radios.

_ data overhead (Mb)

ttT‘ClTlS - 10 (MTb)
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Semi2k no
longer the
most efficient

BEST ==» hemi

Why?
Comm rounds
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14
12
10

Time (s)
(@) N BN (@) oo

Evaluation: APF Space Factors

Semi-honest model

mex time 11 .99

® trans time

= prop time

= total time 8.62

7.59
6.29
6.09
3.76 3.29
2.03 78 46

0.74m0.9 113.1 1.25 plg 1.0 I)_g

11 N | P28 I H u
L Ssemi2k semi hemi temi soho ,

Y
dishonest majority
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00
600
500
Mascot no 400
longer the most - 300
efficient ~
g 200
BEST ==»spdz2k =
100
Why? 0

Comm rounds

UF [FL. ORIDA

Evaluation: APF Space Factors

Malicious model

mex time
® trans time 617.56
w prop time
m total time
410.2
361.39
233.5 03.37 247 .2
|
25.18
81.95
.2.75 4.01 .3_1 Q
mascot mama spdz2k

|
dishonest majority
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30
25
BEST ==p rep-field, 20
hemi
—~ 15
L
Q
E
Also lowest F 10

comm rounds
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Evaluation: QP Space Factors

Semi honest model

mex time 1
mtrans time : 25.11
= prop time | 22.33 22.49
m total time :
i
I
I
I 15.96 14.71
| 13.33
: 14.73
I
I
7.82 | 6.92 35
: .
4.86 1 '1(_)0 419 2
89 4
5 1 ’
”“Ilm dl=s1 1l R
10 1
ring rep-fislg atlas shamir : semi hemi temi soho
) 1\ J
Y ! Y
honest majority dishonest majority
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,g\.,.ﬁ» Evaluation: QP Space Factors

Malicious model

10000 ™=local ex time

m trans time | 1359.07
I .
1000 = prop time : 810.08 720.39
BEST ==» mal-rep- = total time :
ring, spdz2k 100 :
11.27 11.27 14.17!
10 > 576214 912 642  6.3%47 :
E 259 | 2. 77 2. 77 2. 83 n 79 " 79 |
] 1
- 1
0.1 :
¢ O O O o $ > @ A
RO S N f\\Q} \\\ f\\\ fo & ;}%00 &
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Conclusion:
 Communication rounds play a large role, but not sufficient themselves (sy-rep ring)

APF Program Quadratic Program
Semi-Honest Semi-Honest
Model, i Model, .
Dishonest >emi 2.05s Dishonest hemi 13.3s
Majority Majority
Malicious Malicious
Model, Model,
Dishonest spdz2k 3325 Dishonest spdz2k 720
Majority Majority
Semi-honest
Model, Honest rep-field 2.6s
Majority
Malicious
Model, .
Honest mal-rep-ring 5.21s
Majority
29
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,g\.z./, Takeaway
Conclusion:
 Communication rounds play a large role, but not sufficient themselves (sy-rep ring)

* Malicious, dishonest majority protocols may require further optimization to meet certain
mission criteria

APF Program Quadratic Program
Malicious Malicious
Model, Model,
Dishonest spdz2k 332 Dishonest spdz2k 7205
Majority Majority
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Current and Future Work

Current:
* ACSAC ‘24 Conference paper — in review
Future Work:

* Evaluate sensor robustness against EMI
injection

* Perform an electromagnetic analysis to
validate the correct execution of critical
operations on on-board MCUs

* Explore other areas for in-space privacy and
security applications

Source: verdict.co.uk
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*\,3’/, Current and Future Work

* EM emissions from microprocessors can be used to validate
operations in Microcontrollers such as those used to control
actuators for thrusters or reaction wheels
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