Ensuring Safety via Computation Regulation and Reference Switching

Mr. Faraz Abed Azad
PhD Student
Mr. Channing Ludden
PhD Student

UF
Dr. Christopher "Chrispy" Petersen
Assistant Professor
8

Outline

- Lab, Success, Recent Publications
- Real-time Refresher

- Enhancing Safety via Computation Regulation
- Enhancing Safety via Reference Switching

Spacecraft Technology And Research (STAR) Lab Students

- Graduate Students

Diverse pool of idea and successful transition for workforce development in AFRL

Matt Krininger

All progress here is due to them

Recent Publications and Success

- Lab Successes
- Lab Processor Infrastructure Up and Running
- Work on COE enabled SFFP
- Student Engagement via Space Cyber Reading Group

- Multiple Space Autonomy Sessions
- Assured autonomy interface work made it to final rounds of AFRL hub

- Publications:

1. Ludden, C., Petersen, C., "Characterizing Computational Resources of GNC Algorithms," Space Mission Challenges for Information Technology/Space Computing Conference, IEEE, Accepted, 2024
2. Azad, F., Petersen, A., Petersen C., "Autonomous Satellite Operational Mode Switching for Anomalies and Sace Weather Effects Mitigation," Proceedings of the AIAA SciTech/Spaceflight Mechanics Meeting, AIAA/AAS , 2024.
3. Petersen C., "A Coupled Guidance \& Navigation Optimization to Improve Rendezvous and Proximity Operations," Proceedings of the AIAA SciTech/Spaceflight Mechanics Meeting, AIAA/AAS , 2024

UF

TEXAS
The University of Texas at Austir

Refresher on Real-time

Aspects of Time for Assured Autonomy

Real-time - The ability for a vehicle to make decisions with the allocated computational resources on time fames necessary to complete the mission

- This is mission and vehicle dependent
- Does not imply sufficiently fast decisions at constant rate, real-time can imply decisions made asynchronously

Real-time Spacecraft Autonomy Enabled via Computation Regulation

Enhancement via Computation Considerations

Problem: One large barrier to implementation of autonomy is complexity, yet only one metric (computation time) is ever assessed and always treated as if it cannot be fixed in situ

Hypothesis: Computation metrics can be quantified with their own "dynamics" which are functions of the complexity of the algorithm. These metrics can be adjusted in situ for real-time implementationTEXAS
The University of Texas at Austi

STAR Labs Computation Set-up

Objective:

- Assess computationally limited HW vs. computationally expensive SW
- Deployment to Space GNC separate with separate satellite digital twin
- Measure \& assess metrics: Power consumption, memory, CPU\%, etc.

Expected Outcomes:

- Can we generate a predictive model of computation?
- Can we freely adjust computation?
- Can we impose optimization constraints on computation?

Lab Processor Range

[^0]Raspberry-Pi

- Micro-Processor
- Raspbian-OS (Linux) or Command Line Interface (CLI)
- Complex Background Environment - Interactive OS environment

- Development Board
- CPU, GPU, RAM, etc.
- Stated to be a COTS option that has some RADHAZ-like features (1-5 years, though not tested)

BAE RAD 750

- True Flight Rad Processor
- BAE development harness (VXWorks-like)
- Used on a several long-duration flight missions (25+ years)

Rad Tolerant \& Hardened, Custom Computationally Limited

Wide range of processors that are not just for spacecraft

Test Scenario

- Two satellites within RPO regime
- One satellite is trying to optimally point \& inspect (LQR cost) another satellite
- There are safety constraints
- Real-time MPC controller based on accelerated gradient
- Code flew previously with <24 kb but was not executed (sat did not turn on)

Raw UX120-018 Data (HOBO SW .hobo file)

Processed Data

Data shows trends on Raspberry Pi similar to those we see on the computer other processors like on computer

uF

Next Steps

- Continue testing on variety of boards
- Determine a preliminary integrator-like system
- Investigate control of positive systems for computational control

- Other AF/USSF Synergies > SFFP
- "Enabling Spacecraft Autonomy through Metrics and Computation-In-The-Loop"
- Will assess NN/ML methods for spacecraft real-time (AFRL/RY ACT3)
- Will see if "computational throttling" can provide a software solution for implementation

Duke

Real-time Spacecraft Autonomy Enabled via Regulation Switching

Enhancement via Mode Switching

- Credit: Faraz Abed Azad (G), Nick Furiso (G), Dr. Alica Petersen (AP)

Problem: External effects such as space weather can force a satellite into safe mode, keeping it safe but destroying the mission

Hypothesis: A mode switching paradigm can be used to keep the satellite safe while achieving mission objectives "as much as possible"

Duke

Resiliency via Prevention, Degradation \& Recovery Set-up

- Safe mode will take you off mission
- Safe but not resilient
- Drifting can take satellites tremendously off mission
- When preparing or experiencing a fault, what is the best decision to make for
- Preventing - Ensuring an impending impact does not hurt the satellite in the future
- Safe degradation - Fail so that the mission can be achieved back to X\% > 0\%
- Recovery Set-up - Fail so that you can get back on mission easier

Example - Changing satellite rotation and reducing on-board computations to reduce spacecraft potential.

Concept of Safety

" Safety commonly is divided into "hard" and "soft" constraints

- Hard constraints: Those that must not be violated
- Soft constraints: Those that can be violated a little
" Both above have notions of boundaries that "stop" at safety

- However, there is another type of safety which we are calling risk accumulation safety
- You have to traverse an area, accumulating risk as you maneuver through space
- This is similar to an integral gain in
- Such a philosophy is akin to space weather, where there are regions in orbit of high activity

Avoiding these areas is not necessary, but durations of intensity can harm satellites (think sun burn)
UF TLORTD'A

Reference Governors in Safety Modes

$$
\min _{v(t)}\|r-v(t)\|
$$

- A reference governor acts upon a closed-loop stable system, continually modifying the reference to satisfy constraints.
- Tie to assured autonomy: the closed-loop system could be automated, NN/AI/ML, complex optimization, etc.
- Safety constraints are imposed via safe positive invariant sets (i. e. , O_{∞})

- We append the traditional reference governor with a weighting term on the risk-accumulation, $S(v(k))$, which maps reference to risk

Applying a governor scheme enables "as close as possible" to the objective while weighting risk due to space weather

Intuitive for military operators to understand the autonomy

Duke

Mathematical Hypothesis

Hypothesis 1

Given a closed-loop asymptotically system with a risk-accumulation reference governor scheme using a closed and bounded function \boldsymbol{S}, there exists a sufficiently large α to have the actual reference $v(t)$ converge arbitrarily close to the desired reference asymptotically.

$$
\forall \delta>0, \exists \alpha>0 \mid \lim _{t \rightarrow \infty}\|r-v(t)\| \leq \delta
$$

I can get close enough if I want to

Hypothesis 2

Given a closed-loop asymptotically system with a risk-accumulation reference governor scheme. Let S be closed, bounded, and have a global minima at \boldsymbol{r}. Then there exists a sufficiently large α to have the actual reference $v(t)$ converge to the desired reference asymptotically.

$$
\exists \alpha>0 \mid \lim _{t \rightarrow \infty}\|r-v(t)\|=0
$$

Duke

Test Scenario

- Satellites are maneuvering in an area where there are pockets of high solar activity
- Satellite is trying to get to its desired orbit for its mission
- Only use a single mode

Objective: Get "as close as possible" to goal while mitigating risk accumulation

Trajectory with pockets of solar activity

3D plot with just reference

Results show that the spacecraft will modify the reference to get "close" but is not afraid to skirt through regions of activity

TGEUNIVERSITY of
Duke

Next Steps

- Incorporate the solar model from SWIFT Lab
- Hot off the presses results
- Use this idea of reference switching when multiple satellite modes are in the mix

- Demonstrate "stability-like" properties,
- Convergence to the "best" solution when accumulating risk
- Convergence to exact solution under nominal properties

- Look at synergies in other domain
- Traversing in domains with RF risk (air/ocean)

End Goal: Smart Fault Mitigation

Questions

Other Side Projects

Decision-Making Under Ignorance

- Credit:Joseph Derienzo (G)

Problem: USSF satellites will need to act autonomous, optimizing over several objective, when information is not fully known

Solution: Multi-objective techniques that a) balance mission goals and objective b) retain constraint enforcement and consistency during operations to enforce safety (even if conservative), and c) gain information when not available

Focus Areas

- Develop stochastic optimization methods that are relatively quick (e.g. do not rely on extensive Monte Carlo) and provide consistent solutions
- Leverage lexicographic optimization to make decisions over multiple metrics
- Develop metrics to quantify obtaining information in order to act under ignorance

Challenges

- Stochastic optimizations are difficult to ensure consistent safety
- How to optimize over information when structure of ignorance is not exactly known

Duke

Digital Twinning of HW/SW using Category Theory • Collab: Dr: ames Fairbank

Problem: USSF satellites will need to be able to verify, validate, and mission plan using as-close-aspossible realistic systems in as close to their operational environment on real-time time frames
Solution: Leverage category theory (CT), we will describe a) a physic engine for satellites and its hardware and b) the bus digital twin that is a software simulation of the software.

Focus Areas

- CT theory for appropriate modeling of physics and software
- Memory safe language coding for rapid transition of verifiable code given WH directives
- Integration with data and systems at AFRL

Challenges

- Security of data and IP of realistic systems
- How close to "real-time" can the simulation get

> Looking at NSF Digital Twin Call

Duke

Backup

Implementation of Autonomy

This understanding comes from understanding control and optimization are two coupled processes, not one
Understanding of what is easily accessible enables full system exploitation in unique ways by standard algorithms
Is there a correlation between what is accessible and "real-time"

Scenario

- Satellite is docking with another satellite
- Two algorithms are implemented
- One with obstacle avoidance
- One without obstacle avoidance
- Both have control constraints
- Path is solved using QCLC formulation
- Obstacle is dealt using convex hyperplane technique
- Solver is custom made QP
- Useful parameters
- Satellite ~ 30 m away, stagged for docking

- Control rate/discretization 60 seconds
- Horizon length is 100 steps (\sim greater than 1 orbit)
- Computation metrics measure on Microsoft Surface 3, executed as if in "real time"

Objective: How do the computational metrics vary and evolve temporally?

- Computer measured with minimal processes too

CPU Load

Total CPU Load $>2 \mathrm{x}$ most time

CPU appears as an asymptotically stable system with small disturbance and impulse input, some transients before It's a positive system as well

[^0]: - Micro-Controller
 - C/C++ Uploaded through DE
 - Reduced background noise
 - "Isolated" processor / breadboard

