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• 4th collaborative year with AFRL (RV) 
• Transition from NSF GRFP to SMART 
• Publications

• A. Aborizk, N. G. Fitz-Coy, “Multiphase Autonomous Docking via Model-Based and 
Hierarchical Reinforcement Learning”, Journal of Spacecraft and Rockets, 2024

• A. Aborizk, N. G. Fitz-Coy, A. Soderlund, “3d Underactuated Spacecraft Docking 
using Legendre Gauss Radau Collocation”, IEEE Aerospace Conference, Big Sky, 
2024

• A. Aborizk, A. Soderlund, N. G. Fitz-Coy, “An On-Line Global Search Approach to 
Underactuated Docking Operations Via Model Predictive Control and the Cross-
Entropy Method”, International Symposium of Space Flight Dynamics, Darmstadt, 
2024

2024 Accomplishments



Motivation
Goals of the benchmark problem
• Autonomy

• Proliferation of spacecraft in orbit 
• Overburdened ground control operators 
• Advancing a critically needed space-based technology

• Weight reduction 
• Small satellites are becoming more prevalent 
• Lower cost and lightweight
• Removal of superfluous actuators can reduce mass and/or 

allow more room for scientific instrumentation
• Fault tolerance

• Some satellites experience actuator faults during the launch 
process

• The autonomous rendezvous, proximity operations, and docking 
(ARPOD) field seeks to enable technologies like on-orbit satellite 
servicing, refueling, and constellations management

• This research provides an on-line global search solution to a 
benchmark problem introduced by researchers at the U.S. AirForce 
Research Laboratory Depiction of a docking maneuver [3]
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The goal of this case study is to conjoin two orbiting spacecraft

• The chief is passive and cooperative 

• The deputy is active but underactuated

Underactuated

• The deputy has thrust about a unilateral axis

• Attitude is constrained to the �𝒁𝒁𝐷𝐷-axis via a gimbaled sensor

• Attitude is controlled by a flywheel 

Reference Frames

• Reference frame 𝒪𝒪 is fixed to the center of mass of the Chief

• Frame 𝒞𝒞 aligns with the principal axes of the Chief

• Frame 𝒟𝒟 aligns with the principal axes of the Deputy

The Case Study

Chief reference frame (top) [3]. Deputy reference frame (bottom)[2]
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• Let the control-input be defined as
𝒖𝒖𝒅𝒅𝓓𝓓 = 𝐹𝐹x, 𝜓̇𝜓 𝑇𝑇

• The entire state space is defined as

𝐱𝐱 ≔ 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿,𝜃𝜃, δ𝑥̇𝑥, δ𝑦̇𝑦, 𝜃̇𝜃 𝑇𝑇 ∈ 𝑅𝑅6

𝒙̇𝒙 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁 𝜃𝜃 𝒖𝒖𝒅𝒅𝓓𝓓

• Flywheel actuation is used to calculated angular 

acceleration using

𝜃̈𝜃 = −
𝐷𝐷𝜓̇𝜓
𝐼𝐼𝑧𝑧

• Coupling occurs in the control 

𝐹𝐹𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝐹𝐹𝑥𝑥

The Dynamics are Coupled!
• where,

𝐀𝐀 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3η2 0 0 0 2η 0
0 0 0 −2η 0 0
0 0 0 0 0 0

 

𝑩𝑩 𝜃𝜃 =

0 0
0 0
0 0

cos θ
𝑚𝑚𝑐𝑐

0

sin θ
𝑚𝑚𝑐𝑐

0

0
−𝐷𝐷
𝐼𝐼𝑧𝑧
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The Problem Cannot Be 
Solved with Classical Control
Let the deputy be defined as 

𝑥𝑥 ≔ 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿, δ𝑥̇𝑥, δ𝑦̇𝑦,𝜃𝜃, 𝜃̇𝜃 𝑇𝑇 ∈ 𝑅𝑅6

The underactuated ARPOD problem is solved if, given 
prescribed state constraint set 𝒳𝒳 ⊆ ℝ6 and input 
constraint set 𝒰𝒰 ⊆ ℝ2, a control trajectory 𝑢𝑢(𝑡𝑡):ℝ≥0 → 𝒰𝒰 
can be found such that  x ∈ 𝒳𝒳 ∀ 𝑡𝑡 ≥ 0 and x → 0 as 𝑡𝑡 →
∞.

When linearized about the equilibrium point 𝑥𝑥∗ = 0, the 
system is not controllable

𝒞𝒞 = 𝐵𝐵 0  𝐴𝐴𝐴𝐴 0 …𝐴𝐴5𝐵𝐵 0

Additionally, linearization about the origin shows it is not 
stabilizable 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜆𝜆𝑙𝑙𝐼𝐼 − 𝐴𝐴 𝐵𝐵 0 = 𝑛𝑛 

 ∀𝑅𝑅𝑅𝑅 𝜆𝜆𝑙𝑙 ≥ 0, 𝑙𝑙 = 1,2, … , 6
Depiction of a docking maneuver [3]
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Stability Through Numerical 
Approaches
• Local asymptotic stability was determined feasible 

via hybrid methods through analyses done in 
geometric control, Floquet theory, and 
homogeneity [3]

• However, numerical approaches have experienced 
challenges

• nMPC was used to solve this problem in [4] but 
was unable to produce a monotonically decreasing 
cost function especially near the origin

∀𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡.  𝑥𝑥 ≤ 𝑦𝑦,  𝑓𝑓 𝑥𝑥 ≤ 𝑓𝑓 𝑦𝑦
nMPC trajectory presented in [4]

[4] A. Zaman, A. Soderlund, C. Petersen, S. Phillips, “Autonomous Satellite Rendezvous and Proximity Operations via Model Predictive 
Control Methods,” in AAS/AIAA Astrodynamics Specialist Conference, Big Sky, 2021. 
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nMPC vs CEMPC

Optimizer: fmincon 
→ Cross-Entropy 

Method

Model: 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵(𝜃𝜃)𝑢𝑢

Cost function 
structure: LQR

Iterative method: 
Direct shooting, 

collocation

Collects initial state 
from environment

Execute first action 
in environment

Cross-Entropy Method Model Predictive Control (CEMPC) 
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• CEM is a gradient-free optimization strategy that 
produces a global search of the state space during 
optimization [12]. 

• It typically lend itself well to bypassing shallow local 
optima with a higher probability than most gradient-
based solvers

How it works 

• Perform random shooting

• Select the 𝐽𝐽 highest scoring action sequences

• utilizes them to compute a multivariate mean, 𝜇𝜇, and 
covariance, Σ of the Gaussian trajectory distribution

𝝁𝝁𝑡𝑡′
𝑚𝑚+1 = 𝛼𝛼 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑨𝑨𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + + 1 − 𝛼𝛼 𝝁𝝁𝑡𝑡′

𝑚𝑚

𝚺𝚺𝑡𝑡′
𝑚𝑚+1 = 𝛼𝛼 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑨𝑨𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1 − 𝛼𝛼 𝚺𝚺𝑡𝑡′

𝑚𝑚 

Methodology: The Cross-Entopy 
Method (CEM)

Image credit, MathWorks
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Stability/Feasibility Near 
Equilibrium
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Numerical Stability

Not only is monotonicity achievable with 
this algorithm but trajectories are 
reproducible with a variable seed. 
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Analysis of Numerical Stability and Over 
Longer Time Periods
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More Stability



• Nonlinear, deterministic, discrete time 
system

• The point 𝟎𝟎𝟖𝟖 must be contained in 𝒳𝒳 × 𝒰𝒰

• 𝒳𝒳 × 𝒰𝒰 must be closed and continuous
• Let 𝐿𝐿(𝑥𝑥,𝑢𝑢) be the stage cost

• 𝐿𝐿 is continuous, 𝐿𝐿 0,𝑢𝑢 → ∞ as 𝑢𝑢 → ∞
• This implies the existence of a bounded open-

loop optimal control sequence
• L(0,0) 
• There exists non-decreasing 𝛾𝛾: 0,∞ →

0,∞  such that 𝛾𝛾 0 = 0 and 0 < 𝛾𝛾 𝑥𝑥,𝑢𝑢 ≤
𝐿𝐿 𝑥𝑥,𝑢𝑢  for all 𝑥𝑥,𝑢𝑢 ≠ 0,0  

• If the optimal cost, Φ𝑁𝑁
∗ , is continuous at 

the origin, x=0, and 𝐿𝐿 satisfies the 
conditions above then the origin is an 
asymptotically stable equilibrium point 

Stability



Future Work
• Expand CEMPC to a Model-Based Reinforcement Learning Algorithm 

to Enable System Identification

• Expand the simulation to 6 degrees of freedom to account for �𝒛𝒛𝑂𝑂-axis 
effects

• Explore stability and convergence proofs further

• Explore methods to improve robustness to initial conditions

• Explore methods to improve computation time

Orientation capabilities have been 
expanded in [6] using MRPs
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Questions
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