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1. Trainin real world: expensive, dangerous, and time-intensive - a limit set of training scenarios

2. Train in simulation: Sim-to-Real gap (reality of simulation) > not robust to modeling errors



Duke

Introduction
ENGINEERING
Training Testing
State s IActiona ~ mgla|s State s Action a; ~ mg(a|s
g > Agent Policy ’ olalst) g > Agent Policy i olalst)
Reward 74 T Reward 74 o

-
"E‘\‘
-

(@ P

)

Dy L2
_/0\9

Robust RL takes the uncertainty of internal parameters and external disturbances into account
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Robustness in Reinforcement Learning
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Sources of uncertainty/errors:

1. Sensing: observed states may be
different from the true states

2. Modeling errors: Transitions
dynamics may change

3. Actuation: Applied actions may
be different from the agent’s
intention
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Pros

1. Optimize the worst-case performance of RL agents under disturbance
2. Empirical success

Cons

1. Inner minimization problem is difficult to solve - local-optimum
2. worst-case optimization can result in over-conservation if adversary is overly capable




Robust Control Design Duke

With 2-P|ayer Game DeSign PRATT SCHOOL of

ENGINEERING

R(@, ¢) = ESO ~Po |: Z;)io ,yt T(St , af : a? )]] () Robustness in Reinforcement Learning

State sy Agent Policy Action a; ~ mg(alss)
. Reward 7 v’ @
maXgce MINycp R(H, qb) (2)
Environment

P(st415¢,a4)

[NeurlPS24*] Adversarial herding for better approximation of the optimal adversary

[ICRA24] Adaptive adversary for unknown adversary strength

R(0, $1) = Eayopy [ 2%, 7‘*@ a)ay @ﬂ]

[LADC24] Efficient exploration via Langevin Monte Carlo with robustness

1. ) Dong* and HL Hsu* et al., "Robust Reinforcement Learning through Efficient Adversarial Herding", under review, 2024.

HL Hsu et al., "REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances" in IEEE International Conference on
Robotics and Automation (ICRA), 2024.

HL Hsu et al., "Robust Exploration with Adversary via Langevin Monte Carlo" in Learning for Dynamics and Control Conference (L4DC), 2024
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1. Adversarial ensemble which involves a group of adversaries [1]

a. Special case in noisy action robust MDP: Adaptive adversary for unknown
adversary strengths [2]

2. Efficient exploration via Langevin Monte Carlo with robustness [3]

MaXgce min¢e<1> R(ea ¢)

1. ) Dong* and HL Hsu* et al., "Robust Reinforcement Learning through Efficient Adversarial Herding", under review, 2024.

2.  HLHSsuetal., "REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances" in IEEE International Conference on
Robotics and Automation (ICRA), 2024.

3.

HL Hsu et al., "Robust Exploration with Adversary via Langevin Monte Carlo" in Learning for Dynamics and Control Conference (L4DC), 2024
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1. Adversarial ensemble which involves a group of adversaries [1]
a.

1. ) Dong* and HL Hsu* et al., "Robust Reinforcement Learning through Efficient Adversarial Herding", under review, 2024.

2.  HLHSsuetal., "REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances" in IEEE International Conference on
Robotics and Automation (ICRA), 2024.

3.

HL Hsu et al., "Robust Exploration with Adversary via Langevin Monte Carlo" in Learning for Dynamics and Control Conference (L4DC), 2024
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Update a single adversary with
first-order optimization method
to solve inner optimization
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Update a single adversary with
first-order optimization method
to solve inner optimization

Employ a set of fixed adversaries

& = {#;}™, where m is the total

number of adversaries and for all
iem], ;e P
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Update a single adversary with Employ a set of fixed adversaries
first-order optimization method ® = {¢:}i, where m is the total
to solve inner optimization number of adversaries and for all

i€m|, ¢ € P

The gradient of R(0, ¢) with 1-dimensional R(6, ¢) needs to
respect to the adversary’s be approximated
parameter is d-dimensional
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Robustnhess with Adversarial Ensembles
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Efficiently approximate?

Update a single adversary with Employ a set of fixed adversaries
first-order optimization method ® = {4i}2, where m is the total
to solve inner optimization number of adversaries and for all

i€m|, ¢ € P

The gradient of R(0, ¢) with 1-dimensional R(6, ¢) needs to
respect to the adversary’s be approximated
parameter is d-dimensional
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Definitions and Take-aways

—

[ Definition 1: For a function h : X — R, we defineits L norm as ||h| |oo = SUPgcx |h(:13)|

Definition 2: Let (Z,{, d) be a metric spacewhere d : U X U — R Tis the metric function. Then a finite
set X C U is an €- packing if no two distinct elements in X are €-close to each other, i.e.,

inf, yexzre d(z,2') > €

(& )

Insights from the theoretical results

e When the adversaries in the ensemble are distinct to each other, the accuracy for approximating the
true worst-case performance can be improved with increased number of adversaries

e Robust optimization with an adversary ensemble solves the initial optimization problem!
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Let Ry denote a function class as Re = {Ry = R(0,¢) : © — R|¢ € &}.
- The number of adversaries needed to approximate the inner optimization problem is in
approximately linear order of the desired precision if the set of adversaries are different enough.

Assumption 1: Assume that R has finite radius under this metric, i.e., SUPy 4 c® d(R¢, R¢') L T
where 7. < oois a finite number.

Interpretation of Assumption 1
e The performance of any protagonist policy in two different environments cannot vary infinitely

e The number of adversaries needs for approximation is about O(%)

Theorem 1: Consider the metric space (R@7 H || )Where for any two functions R¢7 R¢’ S R<I>, the

if 3 is a maximal €- packing then |Rgz| >

[R(6,¢*) — R(6, )| <
k €

distance between them is defined as d(Ry, fﬁ) = ||Rg — Ry || With assumption 1, let & = {¢,}™, C &,

~

/
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Upper Bound of Approximation with High Probability

/Theorem 2: Assume that® is a metric space with a distance function d : & x & — R . Let O be any \
probability measure on ®. Letd = {qﬁi}iﬁl be a set of independently sampled elements from following
identical measure ¢ . consider a fixed § ¢ @ and assume thatR(6,$) isan Ly -Lipschitz continuous
function of with respect to the metric space (®,d). Let ¢ and ¢* be defined the same as in Theorem 1.
For presentation simplicity, assume that o({¢ : d(¢,¢*) < €}) > Lye. Let0 < § < 1 denote the probability
of a bad event. Then with probability 1 — §, the approximation error of $ on the inner optimization

kproblem is bounded by € if m > log(8)log * (1 — 2_26) J
Now let ¢; € ® be learners (@ is an adversary ensemble), instead of fixed adversaries.
maxgee Minges R(6, ¢) 2)
maXgee Mily, ¢, cp Mingegyyr R(0,4) @)

Lemma 1: The solution set to the optimization problem (2) is identical to the solution set of
the optimization problem (3).




Adversarial Herd with Optimization Over Worst-k Adversaries

Duke

PRATT SCHOOL of
ENGINEERING

maxgeo min¢1a- P €D min(be{%};ﬁl R(e’ ¢)

&

_
\&

optimal adversary

1.Efficient approximation of the inner optimization
i.e., the size of adversary herd is upper-bounded
to obtain sufficient approximation precision.
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IRl (e 2.Resolving Potential Over-Pessimism
i.e., modify the objective from optimizing its worst-
& case performance, to optimizing its average

& performance over the worst-k adversaries
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Algorithm 1 RObust reinforcement Learning with Adversarial Herds (ROLAH) We can use any D R L a |go rith ms to tra i N age nt &

Input: m: size of the adversarial herd ; k: the number of the worst adversaries to use; A,: step size
for updating the agent policy: A,: step size for updating the adversary herd; a dve rsa ry
Output: 0: parameter for the agent policy.
Randomly initialize # and {o; }!" ,
t« 0,0 0, (_'): «— ¢; Vie [IH]
fort =0:7 — 1do
{ Update the adversarial herd. }
fori=1:mdo
Estimate R(6", ¢}) by rolling out the agent my: with the adversary 7,
end for

Construct 19,(1),;; with the estimations.

(t+1 it t it . N
;T 05— AVsR(O .L)J) Vi€l 54
{ Update the agent policy. }
fori=1:mdo
Estimate R(6", ¢!™") by rolling out the agent g with the adversary Myt +1
end for
Construct 1, 5 , with the estimations.
Ot 0 - N Yer, . VoR(6',¢5™)
end for
0«67
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Adversarial Herd with Optimization Over Worst-k Adversaries
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Algorithm 1 RObust reinforcement Learning with Adversarial Herds (ROLAH) I N p ra Ctice’ we Can ensure th ea dve rsa ri es are

Input: m: size of the adversarial herd ; k: the number of the worst adversaries to use; A,: step size
for updating the agent policy: A,: step size for updating the adversary herd; i i n n h ri n
Output: 0: parameter for the agent policy. d St Ct enou g d u g u pd ate *
Randomly initialize # and {¢; }!" ,
t« 0,0 0, (_'): «— ¢; Vie [III]
fort =0:7 — 1do

saritherd}
fori=1:mdo

Estimate R(6", ¢}) by rolling out the agent my: with the adversary 7,
end for

Construct 19,&,;; with the estimations.

o' ot — \VLR(0'.0) Yiel,z,  Train adversary
{Update the agent policy. ]
fori=1:mdo

Estimate R(6", o:‘l ) by rolling out the agent 7y with the adversary 7+
end for '
Construct 1, 5 , with the estimations.

0 0t - N,y VeR(eLe)  Train agent

end for
0« o7
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Evaluation on Standard Learning Benchmarks

1. Tasks: 5 MulJoCo environments in continuous action space
2. Core learning algorithms: TRPO (results in the slides), PPO, DDPG

3. Method comparison:

Baseline (e.g., TRPO itself w/o adversarial learning) [1]
RARL (1 adversary) [2]

RAP (population adversaires) [3]

M2TD3 (known uncertainty parameter set) [4]

ROSE (ours)

© oo oW

J. Schulman et al., "Trust region policy optimization”, in ICML 2015

L. Pinto et al., “Robust Adversarial Reinforcement Learning, in ICML 2017

E. Vinitsky et al., “Robust reinforcement learning using adversarial populations”, arXiv preprint arXiv:2008.01825, 2020

T. Tanabe et al., “Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness to Model Misspecification”, in NeurIPS, 2022

PwnPE
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1. Set both the friction and mass coefficients equal to 1.0 during training
2. Our method ROSE has competitive performance under varying test conditions
a. M2TD3 is not reported because it is already provided with the uncertainty parameter set for

training.
b. Stein Variational Policy Gradient
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1. Overall, our method ROSE outperforms other methods.
2. M2TD3 is additionally provided with the uncertainty parameter set for training.

a.

attacks

ROSE still outperforms M2TD3 in most scenarios with disturbances/adversarial

Method | Baseline (0 adv) RARL (1adv) RAP M2TD3 (extra info) ROSE-S (ours) ROSE (ours)
Ant (No disturbance) 0.774+0.16 0.81+0.12 0.834+0.08  0.84+0.22 0.87+0.13 0.8440.14
Ant (Action noise) 0.66+0.19 0.67+0.16 0.67+0.09 0.66+0.16 0.70+0.14 0.69+0.15
Ant (Adversary) 0.214+0.18 0.25+0.17 0.304+0.14  0.2940.11 0.384+0.16 0.444+0.23
InvertedPendulum (No disturbance) | 1.00+£0 0.9640.11 0.99:4+0.04 1.00::0 0.99+40.03 0.9940.08
InvertedPendulum (Action noise) 0.91:+0.13 0.914+0.15 0.9540.10  097+0.16 0.9640.13 0.96:4+0.11
InvertedPendulum (Adversary) 0.86:4+0.16 0.88+0.18 0.90£0.19  0.90+£0.21 0.9240.12 0.94::0.15

Hopper (No disturbance) 0.78+0.003 0.7940.02 0.84+0 0.974+0.11 0.954+0.01 0.98::0.07
Hopper(Action noise) 0.714+0.001 0.74:40.004 0.80:4+0 0.7740.07 0.91:+0.006 0.87:40.01
Hopper (Adversary) 0.42:4+0.03 0.54:4+0.04 0.704£0.007  0.83+40.25 0.84:40.14 0.85:£0.09
Half-Cheetah (No disturbance) 0.7740.05 0.7240.03 0.76:+:0.02  0.81+0.06 0.87+0.05 0.82:40.08
Half-Cheetah(Action noise) 0.5940.2 0.76:0.04 0.67+0.1 0.68+0.13 0.76:+0.16 0.7340.13
Half-Cheetah (Adversary) 0.16:+0.1 0.1940.05 0.244+0.36  0.50+£0.10 0.5240.21 0.58-+0.30
Walker2d (No disturbance) 0.8540.27 0.8440.43 0.43+0.02  0.88+0.31 0.84+0.44 0.86:+0.38
Walker2d (Action noise) 0.78+0.31 0.804+0.28 0.36+0.04  0.79+0.21 0.83+0.37 0.844+0.23
Walker2d (Adversary) 0.364+0.26 0.34+0.12 0.34+0.22  0.21+043 0.684+0.23 0.704+0.17
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ROSE/RARL: Adversaries that incorporate domain knowledge

— action space can be different between protagonist and adversary
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What if we do not have any domain knowledge for the action space?




Duke

PRATT SCHOOL of
ENGINEERING

Noisy Action Robust MDPs (NR-MDPs)

R(07 ¢z) = E30~p0 [Z;io 7tr(5t, (1 - a)af + aa’?)IC], where C = {a,f ~ Tp, a,? ~ 7T¢‘}

protagonist and adversary action

C. Tessler et al., “Action Robust Reinforcement Learning and Applications in Continuous Control”, in ICML 2019
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Noisy Action Robust MDPs (NR-MDPs)

R(0, i) = Esyop, | 2220 ¥'7(s0(1 — @)af + aaf)|C] | where ¢ = {a? ~ 75, a2 ~ 74}

A

deployed action

Robustness in Reinforcement Learning

State s Action a; ~ mg(a|s
i > Agent Policy ! ( | t)

Reward 7 o @

(1—a)dd + aa?

Environment

LP(3t+1|3t, at) J‘
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a. Special case in noisy action robust MDP: Adaptive adversary for unknown
adversary strengths [2]

1. ) Dong* and HL Hsu* et al., "Robust Reinforcement Learning through Efficient Adversarial Herding", under review, 2024.

2.  HLHSsuetal., "REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances" in IEEE International Conference on
Robotics and Automation (ICRA), 2024.

3.

HL Hsu et al., "Robust Exploration with Adversary via Langevin Monte Carlo" in Learning for Dynamics and Control Conference (L4DC), 2024
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REFORMA: Robust RL via Adaptive Adversary (ICRA24)

Base Policy Training Training Environment

m ______ )

|
|
]
:
{ ! -
Protagonist| || ___
Policy g )
— MR /
<

Protagonist
Policy g

Problem: adversarial strength is
unknown during evaluation

paramgters
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REFORMA: Robust RL via Adaptive Adversary (ICRA24)
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Base Policy Training

Training Environment

‘ : Training modules

Drone/Environment

‘ Factor
parameters

p -
Sty St—1,Qy_1,a¢-1

- ‘ Encoder

1
' Adversary |
St
Policies g,

Protagonlst 011

Policy g

Adaptation Module Training

(8¢-300, a7 301> ) Ot 301} Adaptatloﬁ
}_ ) Module

14
[ Slatlatl

Y

A
Regress
$t,a —> :
Protagonist :
P | " [ ] i 11
1

3, Policy g

Adaptation module:

learn an adaptation module that
takes state/actions history to
capture drone and environment
parameters.
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REFORMA: Robust RL via Adaptive Adversary (ICRA24)

Base Policy Training Training Environment
L Training modules Adversary : Deployment:
Drone/Environment ,[F t POI'C'eS’T@ :t E prOtagoniSt pOIiCy Can be
) E?\Ec:)(;er Sr (] F\r;c-);;ﬁ]s : : i i i
L : z, E’o..‘cyg W / deployed with the inputs of the

Is/  current state, previous attacked
Adaptation Module Training Regress pl__!

- '} . action and the latent space from
(8300, 0130, e 301]'jAdaptatior{p"“ _>Protago'h'i§t”_____: E daptati dul ith
Module 1 E > 3 } )\POHCyﬂ'a : d ap ation moauie wi

([ snay a0}
unknown noise or attack.

Deployment and Testing Testing Environment

= At [ /
4 a : : /
: 2 1
[3, 300, @301, Gt sol]' Adaptation Protagonist j 1 A
7 0 - [ t
1
1

= licy
[ Sz,af,l,atfl ]_ Module Policy g




Robust Control Design
with 2-Player Game Design

Duke

PRATT SCHOOL of
ENGINEERING

MaXgce min¢e<1> R(ea ¢)

. 1
maxgee Ming, g, ce T Dicr . R(0: $)

0,3,k

Robustness in Reinforcement Learning

State s Action a; ~ mg(a|s
‘ Agent Policy ‘ olals:)
Reward 7 Ty @

Environment

P(st415¢,a4)

If the action space is discrete, improvement due to the use a group of adversaries is not

obvious.

[LADC] We also studied the better exploration strategy under adversarial training.
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Summary

* Propose robust RL via adversarial training with a group of adversaries
« Extend attackable actions in NR-MDP to adapt to a range of adversary strength

« Improve exploration under adversarial training for discrete action space using LMC
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