Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies

Pingcheng Jian¹ Easop Lee¹ Zachary Bell² Michael M. Zavlanos¹ Boyuan Chen¹ ¹Duke University ²Air Force Research Laboratory

Motivation

• How to share the learned knowledge of the same task under different visual observations?

Fisheye Camera

RGBD Camera

Broken Lens

Motivation

- Directly stitch the perception encoder to another visuomotor policy.
- Zero-shot transfer of the trained visuomotor policies to a novel combination of perceptual configurations.

• How to align the latent representations of different visual encoders?

Latent Representation

Latent Representation

Method

Method

Method

Method

Method: Anchor Images Selection

Method: Disentanglement Regularization

• Encode the distinct factors with independent latent variables in the latent feature space.

Xin Wang, et al. "Disentangled Representation Learning." arXiv Preprint arXiv: 2211.11695 (2022)

Method: Disentanglement Regularization

• Calculate the covariance of the k^{th} and l^{th} dimension of the batch of embedded representations with:

$$\operatorname{cov}(z_k, z_l) = \frac{1}{N-1} \sum_{i=1}^{N} (z_{ik} - \bar{z}_k) \cdot (z_{il} - \bar{z}_l),$$

where \bar{z}_k is the mean of the k^{th} dimension feature across all N data points in the batch, calculated as $\bar{z}_k = \frac{1}{N} \sum_{i=1}^N z_{ik}$.

• Then the disentanglement loss is calculated by:

$$L_{\text{disent}} = \frac{1}{Z(Z-1)} \sum_{k=1}^{Z} \sum_{l=1, l \neq k}^{Z} |\text{cov}(z_k, z_l)|,$$

• The final loss function we adopt for our PeS method is:

$$L_{PeS} = L_{BC} + \lambda L_{disent}$$

• This loss encourage the features at the latent space to be independent with each other. Therefore, it disentangles the underlying factors hidden in the observable data in representation form.

Real-World Experiments

Stack – Camera Positions

Policy 1: Left View **Front View** Policy 2: Left View **Right View** Stitch Stitched Policy: **Front View Right View**

Lift – Camera Positions

Stack – Camera Positions

Lift – Camera Positions

Baseline Success rate: 0%

Push – Masked Lens Camera Reach – Broken Lens Camera

5x speed

5x speed

Push – Masked Lens Camera

Reach – Broken Lens Camera

Real-World Experiments Results

	Reach	Push	Lift	Stack	
	broken lens	masked lens	different positions	different positions	
PeS	100.0	85.0	80.0	45.0	
Devin et al. 2017	0.0	0.0	0.0	0.0	

Zero-Shot Transfer Success Rates in Real World

Simulation Experiments

Can – Camera Type

Stack – Blurry Camera

Baseline Success rate: 29.3%

Baseline Success rate: 0.7%

Can – Camera Type

Stack – Blurry Camera

Ours Success rate: 90.0%

Baseline Success rate: 0.7%

Push – Camera Positions

Lift –Gaussian Noise

Success rate: 9.3%

Push – Camera Positions

Lift –Gaussian Noise

Ours Success rate: 91.3%

Baseline Success rate: 9.3%

Door Open – Camera Positions

Front View

In-Hand View

Ours Success rate: 48.7%

Baseline Success rate: 0.0%

Simulation Experiments Results

		Mask	Zoom in	Blurred	Noise	Fisheye	Camera Position	Average
Push	Devin et al. 2017	60.7 ± 10.6	8.7±4.99	16.7 ± 3.77	$59.3 {\pm} 6.80$	29.3 ± 7.36	19.3±5.73	32.3
	Cannistraci et al. 2024 (linear)	89.3±4.11	$94.0{\pm}2.83$	$64.7 {\pm} 1.89$	$74.7 {\pm} 6.18$	$74.0{\pm}2.83$	$78.7 {\pm} 2.49$	79.2
	Cannistraci et al. 2024 (non-linear)	$12.7 {\pm} 1.89$	$18.7 {\pm} 4.99$	$42.8 {\pm} 3.27$	$23.3 {\pm} 0.94$	$6.0{\pm}4.32$	$5.3{\pm}2.49$	18.1
	PeS (w/o disent. loss)	$100.0{\pm}0.0$	$86.0{\pm}2.83$	$80.7 {\pm} 9.84$	$100.0{\pm}0.0$	$100.0{\pm}0.0$	$100.0{\pm}0.0$	94.5
	PeS (w. 11 & 12 loss)	$88.7 {\pm} 4.99$	$95.3 {\pm} 1.89$	$90.0{\pm}5.66$	$100.0{\pm}0.0$	$93.3 {\pm} 0.94$	$80.7 {\pm} 4.99$	91.3
	PeS	$100.0{\pm}0.00$	$100.0{\pm}0.00$	95.3±0.94	$100.0{\pm}0.0$	$92.7 {\pm} 2.50$	$100.0 {\pm} 0.00$	98
Lift	Devin et al. 2017	$0.0{\pm}0.00$	5.3 ± 2.49	48.0 ± 5.89	9.3±4.11	14.7 ± 4.99	36.0±1.63	18.9
	Cannistraci et al. 2024 (linear)	72.7 ± 3.77	$64.0 {\pm} 2.83$	86.0 ± 4.32	$68.7 {\pm} 1.88$	$88.7 {\pm} 1.88$	57.3 ± 2.49	72.9
	Cannistraci et al. 2024 (non-linear)	89.3±2.49	36.0 ± 3.27	52.7 ± 3.40	$93.3 {\pm} 2.49$	$16.7 {\pm} 2.49$	21.3 ± 0.94	51.6
	PeS (w/o disent. loss)	$83.3 {\pm} 6.60$	$80.7 {\pm} 5.73$	93.3±0.94	$91.3 {\pm} 5.73$	$79.3 {\pm} 2.49$	93.3±2.49	86.9
	PeS (w. 11 & 12 loss)	97.3±2.49	$85.3 {\pm} 0.94$	$90.7 {\pm} 0.94$	$86.0 {\pm} 4.32$	$88.0{\pm}1.63$	84.7±3.77	88.7
	PeS	$92.7 {\pm} 2.50$	94.7±1.89	89.3±4.11	96.0±1.63	88.7±0.94	93.0±0.03	92.4

Zero-Shot Transfer Success Rates in basic Simulation tasks

		Mask	Zoom in	Blurred	Noise	Fisheye	Camera Position	Average
Can	Devin et al. 2017	19.3±5.25	24.7 ± 1.89	$2.67{\pm}1.89$	$6.0{\pm}4.32$	29.3 ± 3.40	1.3 ± 1.89	13.9
	Cannistraci et al. 2024 (linear)	33.3±0.94	$48.0 {\pm} 1.63$	$48.7 {\pm} 2.49$	$65.3 {\pm} 0.94$	26.7 ± 3.77	34.7 ± 3.77	42.8
	Cannistraci et al. 2024 (non-linear)	72.7 ± 0.94	$24.7 {\pm} 2.49$	$37.3 {\pm} 4.99$	42.7 ± 3.40	$8.7 {\pm} 1.89$	39.3 ± 1.89	37.6
	PeS (w/o disent. loss)	44.7 ± 8.06	89.3 ± 4.11	$34.7 {\pm} 4.11$	$30.7{\pm}6.80$	92.7±2.50	44.7 ± 3.40	56.1
	PeS (w. 11 & 12 loss)	47.3 ± 0.94	$58.7 {\pm} 1.88$	54.0 ± 8.64	$36.0{\pm}7.12$	$58.7 {\pm} 1.88$	$64.7 {\pm} 6.60$	53.2
	PeS	83.3±5.24	89.3±2.49	$\textbf{74.0}{\pm}\textbf{2.83}$	78.7±4.11	$56.0{\pm}2.83$	78.7±2.49	76.7
Stack	Devin et al. 2017	0.7 ± 0.94	$8.0{\pm}1.63$	$0.7 {\pm} 0.94$	$24.0{\pm}2.83$	$0.0{\pm}0.00$	14.0 ± 3.27	7.9
	Cannistraci et al. 2024 (linear)	47.3 ± 0.94	62.0 ± 4.32	32.7 ± 3.77	$30.7 {\pm} 0.94$	54.0 ± 8.64	$14.7 {\pm} 6.18$	40.2
	Cannistraci et al. 2024 (non-linear)	10.0 ± 1.63	$12.0 {\pm} 0.00$	$0.0{\pm}0.00$	3.3 ± 0.94	$0.0 {\pm} 0.00$	$0.7{\pm}0.94$	4.3
	PeS (w/o disent. loss)	34.0 ± 11.43	10.7 ± 4.11	$62.0{\pm}10.71$	34.0 ± 7.12	22.7 ± 3.77	26.0 ± 4.32	31.6
	PeS (w. 11 & 12 loss)	92.7 ± 0.94	98.0±0.00	$62.7 {\pm} 6.60$	24.0 ± 4.90	59.3 ± 7.36	58.7 ± 1.88	65.9
	PeS	94.7±0.94	$96.7 {\pm} 0.94$	90.0±1.63	96.7±1.89	97.3±2.49	80.0±4.90	92.6
Door Open	Devin et al. 2017	9.3±4.11	5.3 ± 0.94	$0.0{\pm}0.00$	$4.0{\pm}1.63$	$0.7 {\pm} 0.94$	$0.0{\pm}0.00$	3.2
	Cannistraci et al. 2024 (linear)	$0.0{\pm}0.00$	1.3 ± 0.94	$10.7 {\pm} 2.49$	$10.7 {\pm} 4.99$	$2.0{\pm}1.63$	47.3 ± 9.29	12
	Cannistraci et al. 2024 (non-linear)	$26.0{\pm}2.83$	31.3 ± 4.99	49.3 ± 8.22	$48.0{\pm}5.89$	62.7 ± 3.40	44.7 ± 3.40	43.7
	PeS (w/o disent. loss)	24.7 ± 7.71	$44.0 {\pm} 2.83$	34.7 ± 3.77	$0.7 {\pm} 0.94$	36.7 ± 0.94	23.3 ± 3.40	27.4
	PeS (w. 11 & 12 loss)	$4.0{\pm}1.63$	$78.0{\pm}5.66$	3.3 ± 0.94	$2.0{\pm}1.63$	42.7 ± 4.99	6.0 ± 3.26	22.7
	PeS	58.7±4.11	$68.7 {\pm} 0.94$	70.7±0.94	52.7±3.40	64.7±4.99	48.7±3.40	60.7

Zero-Shot Transfer Success Rates in difficult Simulation tasks

Latent Space at Module Interface

Latent Space at Module Interface

- Red dots: robot's end effector is at higher positions
- Green dots: medium heights
- Blue dots: lower positions near the cube.
- The 256D representations are reduced to 3D with PCA.
- PeS: similar latent representation shapes with each other.
- Devin baseline: approximately isometric transformation (rotation in this case) relationship with each other.

Latent Space at Module Interface

- One representation is from the second view encoder of policy 1 and the other is from the second view encoder of policy 2.
- Cosine distance: PeS significantly smaller than Devin baseline.
- L2 distances: PeS smaller than Devin baseline, but the differences are not pronounced in some cases.

Ours

In-Hand View

Side View

Baseline

In-Hand View

Side View

Conclusion

- **Perception Stitching (PeS)** is a method for zero-shot visuomotor policies transfer via latent spaces alignment.
- Aligns the latent spaces of different visual encoders and allows the trained visual encoders to be reused in a plug-and-go manner.
- Evaluation on 30 simulation experiments and 4 real-world experiments shows the pronounced advantage of PeS, and our analysis further reveals the mechanism of its superior performance.

Thank You!

- We modify the Gradient-weighted Class Activation Mapping (Grad-CAM) approach to highlight the regions that the policies pay attention to.
- Replace the before-softmax score y^c for class c of the image classification networks with the log-likelihood l(a) of the robot action a in the training dataset.

- Denote the *k*th feature map activation output from the last convolutional layer as *A*^k.
- The backpropagated gradient of l(a) with respect to A^k is computed as $\frac{\partial l(a)}{\partial A^k}$.
- do global average pooling of these gradients over the width (indexed by i) and height (indexed by j) dimensions of the feature map to get the neuron importance weight α_k^a :

$$\alpha_k^a = \underbrace{\frac{1}{Z}\sum_{i}\sum_{j}}_{j} \underbrace{\frac{\partial l(a)}{\partial A_{ij}^k}}_{\text{and ionts wis bask}}$$

gradients via backprop

• This weight α_k^a captures the 'importance' of feature map k for robot action a.

• Then, the attention map Grad-CAM is calculated as the weighted combination of forward activation maps followed by a ReLU:

$$L^{a}_{\text{Grad-CAM}} = \text{ReLU}\left(\sum_{k} \alpha^{a}_{k} A^{k}\right)$$

linear combination

- We apply ReLU because we are only interested in the features that have a positive influence on the actions.
- This $L^a_{Grad-CAM}$ is a heatmap of the same size as the convolutional feature maps A^k . We upsample it to the input image size with bilinear interpolation to get the final attention heatmap of the input image.
- A larger value on this heatmap means this pixel contributes to a larger gradient of the log-likelihood of the robot action.

Limitations and Future Work

Limitations and Future Work

• Limitations:

• Replaying the trajectories takes about twice the time as collecting data with random sampling.