
Perception Stitching: 
Zero-Shot Perception Encoder Transfer 

for Visuomotor Robot Policies



Motivation

• How to share the learned knowledge of the same task under different 
visual observations?
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Motivation

• Directly stitch the perception encoder to another visuomotor policy.

• Zero-shot transfer of the trained visuomotor policies to a novel 
combination of perceptual configurations.



Challenge

• How to align the latent representations of different visual encoders?

Latent Representation Latent Representation
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Method: Anchor Images Selection



Method: Disentanglement Regularization 

• Encode the distinct factors with independent latent variables in the 
latent feature space.

Xin Wang, et al. “Disentangled Representation Learning.” arXiv Preprint arXiv: 2211.11695 (2022)



• Calculate the covariance of the 𝑘𝑡ℎ and 𝑙𝑡ℎ dimension of the batch of 
embedded representations with:

where ҧ𝑧𝑘 is the mean of the 𝑘𝑡ℎ dimension feature across all 𝑁 data points 
in the batch, calculated as ҧ𝑧𝑘 =

1

𝑁
σ𝑖=1

𝑁 𝑧𝑖𝑘. 

• Then the disentanglement loss is calculated by:

• The final loss function we adopt for our PeS method is:

• This loss encourage the features at the latent space to be independent with 
each other. Therefore, it disentangles the underlying factors hidden in the 
observable data in representation form.  

Method: Disentanglement Regularization 



Real-World Experiments
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Real-World Experiments Results

Zero-Shot Transfer Success Rates in Real World



Simulation Experiments
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Simulation Experiments Results

Zero-Shot Transfer Success Rates in basic Simulation tasks

Zero-Shot Transfer Success Rates in difficult Simulation tasks



Latent Space at Module Interface



Latent Space at Module Interface

• Red dots: robot’s end effector is at 
higher positions

• Green dots: medium heights 

• Blue dots: lower positions near the 
cube.

• The 256D representations are reduced 
to 3D with PCA.

• PeS: similar latent representation 
shapes with each other. 

• Devin baseline: approximately 
isometric transformation (rotation in 
this case) relationship with each other.



Latent Space at Module Interface

• One representation is from the second view encoder of policy 1 and the other is 
from the second view encoder of policy 2.

• Cosine distance: PeS significantly smaller than Devin baseline.

• L2 distances: PeS smaller than Devin baseline, but the differences are not 
pronounced in some cases.



Attention Heatmap with Grad-CAM



Attention Heatmap with Grad-CAM
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Conclusion

• Perception Stitching (PeS) is a method for zero-shot visuomotor 
policies  transfer via latent spaces alignment.

• Aligns the latent spaces of different visual encoders and allows the 
trained visual encoders to be reused in a plug-and-go manner.

• Evaluation on 30 simulation experiments and 4 real-world 
experiments shows the pronounced advantage of PeS, and our 
analysis further reveals the mechanism of its superior performance.



Thank You!



Attention Heatmap with Grad-CAM

• We modify the Gradient-weighted Class Activation Mapping (Grad-CAM) 
approach to highlight the regions that the policies pay attention to.

• Replace the before-softmax score 𝑦𝑐  for class 𝑐 of the image classification 
networks with the log-likelihood 𝑙(𝑎) of the robot action a in the training 
dataset. 



Attention Heatmap with Grad-CAM
• Denote the 𝑘𝑡ℎ feature map activation output from the last convolutional layer 

as 𝐴𝑘.

• The backpropagated gradient of 𝑙(𝑎) with respect to 𝐴𝑘 is computed as 
𝜕𝑙(𝑎)

𝜕𝐴𝑘 .

• do global average pooling of these gradients over the width (indexed by 𝑖) and 
height (indexed by 𝑗) dimensions of the feature map to get the neuron 
importance weight 𝛼𝑘

𝑎:

• This weight 𝛼𝑘
𝑎 captures the ‘importance’ of feature map 𝑘 for robot action 𝑎.



Attention Heatmap with Grad-CAM
• Then, the attention map Grad-CAM is calculated as the weighted combination 

of forward activation maps followed by a ReLU:

• We apply ReLU because we are only interested in the features that have a 
positive influence on the actions.

• This 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑎  is a heatmap of the same size as the convolutional feature 

maps 𝐴𝑘. We upsample it to the input image size with bilinear interpolation to 
get the final attention heatmap of the input image.

• A larger value on this heatmap means this pixel contributes to a larger gradient 
of the log-likelihood of the robot action.



Limitations and Future Work



Limitations and Future Work

• Limitations:

• Replaying the trajectories takes about twice the time as collecting data with 
random sampling.
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