Perception Stitching:
 Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies

Pingcheng Jian ${ }^{1}$ Easop Lee ${ }^{1}$ Zachary Bell ${ }^{2}$ Michael M. Zavlanos ${ }^{1}$ Boyuan Chen ${ }^{1}$
${ }^{1}$ Duke University ${ }^{2}$ Air Force Research Laboratory

Duke

Motivation

- How to share the learned knowledge of the same task under different visual observations?

Motivation

- Directly stitch the perception encoder to another visuomotor policy.
- Zero-shot transfer of the trained visuomotor policies to a novel combination of perceptual configurations.

Challenge

- How to align the latent representations of different visual encoders?

Latent Representation

Latent Representation

Method

ーーーー
Method
 Method

 I
 都 \qquad

I

Method
 Method

\square
\square
\square
\square

．
號號號
蹅路號號

Method

Method

Method

 (

Method

Method

Method

Method

Method: Anchor Images Selection

Method: Disentanglement Regularization

Observable Data Feature Space Factors of Variation

- Encode the distinct factors with independent latent variables in the latent feature space.

Method: Disentanglement Regularization

- Calculate the covariance of the $k^{t h}$ and $l^{t h}$ dimension of the batch of embedded representations with:

$$
\operatorname{cov}\left(z_{k}, z_{l}\right)=\frac{1}{N-1} \sum_{i=1}^{N}\left(z_{i k}-\bar{z}_{k}\right) \cdot\left(z_{i l}-\bar{z}_{l}\right),
$$

where \bar{z}_{k} is the mean of the $k^{t h}$ dimension feature across all N data points in the batch, calculated as $\bar{z}_{k}=\frac{1}{N} \sum_{i=1}^{N} z_{i k}$.

- Then the disentanglement loss is calculated by:

$$
L_{\text {disent }}=\frac{1}{Z(Z-1)} \sum_{k=1}^{Z} \sum_{l=1, l \neq k}^{Z}\left|\operatorname{cov}\left(z_{k}, z_{l}\right)\right|,
$$

- The final loss function we adopt for our PeS method is:

$$
L_{P e S}=L_{B C}+\lambda L_{\text {disent }}
$$

- This loss encourage the features at the latent space to be independent with each other. Therefore, it disentangles the underlying factors hidden in the observable data in representation form.

Real-World Experiments

Stack - Camera Positions

Policy 2:

Stitch

Stitched Policy:

Front View

Ours Success rate: 45\%

I
I
I
I
I
I
I

Stitch

Ours Success rate: 80\%

Stack - Camera Positions

Lift - Camera Positions

Ours
Success rate: 80\%

Push - Masked Lens Camera

Policy 1:

Normal Lens

Policy 2:

Stitch

Stitched Policy:

Normal Lens

Ours Success rate: 85\%

I

I

I

I
I
I

Ours Success rate: 100\%

Reach - Broken Lens Camera

Stitch

Ours Success rate: 85\%

Policy 2:

Stitched Policy:

Ours
Success rate: 100\%

Real-World Experiments Results

	Reach broken lens	Push masked lens	Lift different positions	Stack different positions
PeS	$\mathbf{1 0 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{8 0 . 0}$	$\mathbf{4 5 . 0}$
Devin et al. 2017	0.0	0.0	0.0	0.0

Zero-Shot Transfer Success Rates in Real World

Simulation Experiments

Can - Camera Type

Policy 2:

Fisheye Lens

Stitch

Stitched Policy:

Normal Lens

Normal Lens

Ours Success rate: 92.7\%

Can - Camera Type

Stack - Blurry Camera

Ours
Success rate: 90.0\%

Push - Camera Positions

Push - Camera Positions

Lift -Gaussian Noise

Stitch

I
I

[^0]

Policy 2:

Ours
Success rate: 91.3\%

Door Open - Camera Positions

Policy 2:

Stitched Policy:

Ours Success rate: 48.7\%

Simulation Experiments Results

		Mask	Zoom in	Blurred	Noise	Fisheye	Camera Position	Average
Push	Devin et al. 2017	60.7 ± 10.6	8.7 ± 4.99	16.7 ± 3.77	59.3 ± 6.80	29.3 ± 7.36	19.3 ± 5.73	32.3
	Cannistraci et al. 2024 (linear)	89.3 ± 4.11	94.0 ± 2.83	64.7 ± 1.89	74.7 ± 6.18	74.0 ± 2.83	78.7 ± 2.49	79.2
	Cannistraci et al. 2024 (non-linear)	12.7 ± 1.89	18.7 ± 4.99	42.8 ± 3.27	23.3 ± 0.94	6.0 ± 4.32	5.3 ± 2.49	18.1
	PeS (w/o disent. loss)	100.0 ± 0.0	86.0 ± 2.83	80.7 ± 9.84	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	94.5
	PeS (w. 11 \& 12 loss)	88.7 ± 4.99	95.3 ± 1.89	90.0 ± 5.66	100.0 ± 0.0	93.3 ± 0.94	80.7 ± 4.99	91.3
	PeS	$\mathbf{1 0 0 . 0} \pm \mathbf{0 . 0 0}$	$\mathbf{1 0 0 . 0} \pm \mathbf{0 . 0 0}$	$\mathbf{9 5 . 3} \pm \mathbf{0 . 9 4}$	$100.0 \pm \pm .0$	92.7 ± 2.50	$\mathbf{1 0 0 . 0} \pm \mathbf{0 . 0 0}$	98
Lift	Devin et al. 2017	0.0 ± 0.00	5.3 ± 2.49	48.0 ± 5.89	9.3 ± 4.11	14.7 ± 4.99	36.0 ± 1.63	18.9
	Cannistraci et al. 2024 (linear)	72.7 ± 3.77	64.0 ± 2.83	86.0 ± 4.32	68.7 ± 1.88	88.7 ± 1.88	57.3 ± 2.49	72.9
	Cannistraci et al. 2024 (non-linear)	89.3 ± 2.49	36.0 ± 3.27	52.7 ± 3.40	93.3 ± 2.49	16.7 ± 2.49	21.3 ± 0.94	51.6
	PeS (w/o disent. loss)	83.3 ± 6.60	80.7 ± 5.73	$\mathbf{9 3 . 3} \pm \mathbf{0 . 9 4}$	91.3 ± 5.73	79.3 ± 2.49	$\mathbf{9 3 . 3} \pm 2.49$	86.9
	PeS (w. 11 \& 12 loss)	$\mathbf{9 7 . 3} \pm 2.49$	85.3 ± 0.94	90.7 ± 0.94	86.0 ± 4.32	88.0 ± 1.63	84.7 ± 3.77	88.7
	PeS	92.7 ± 2.50	$\mathbf{9 4 . 7} \pm 1.89$	89.3 ± 4.11	96.0 ± 1.63	88.7 ± 0.94	93.0 ± 0.03	92.4

Zero-Shot Transfer Success Rates in basic Simulation tasks

		Mask	Zoom in	Blurred	Noise	Fisheye	Camera Position	Average
Can	Devin et al. 2017	19.3 ± 5.25	24.7 ± 1.89	2.67 ± 1.89	6.0 ± 4.32	29.3 ± 3.40	1.3 ± 1.89	13.9
	Cannistraci et al. 2024 (linear)	33.3 ± 0.94	48.0 ± 1.63	48.7 ± 2.49	65.3 ± 0.94	26.7 ± 3.77	34.7 ± 3.77	42.8
	Cannistraci et al. 2024 (non-linear)	72.7 ± 0.94	24.7 ± 2.49	37.3 ± 4.99	42.7 ± 3.40	8.7 ± 1.89	39.3 ± 1.89	37.6
	PeS (w/o disent. loss)	44.7 ± 8.06	$\mathbf{8 9 . 3} \pm \mathbf{4 . 1 1}$	34.7 ± 4.11	30.7 ± 6.80	$\mathbf{9 2 . 7} \pm \mathbf{2 . 5 0}$	44.7 ± 3.40	56.1
	PeS (w. 11 \& 12 loss)	47.3 ± 0.94	58.7 ± 1.88	54.0 ± 8.64	36.0 ± 7.12	58.7 ± 1.88	64.7 ± 6.60	53.2
	PeS	$\mathbf{8 3 . 3} \pm \mathbf{5 . 2 4}$	$\mathbf{8 9 . 3} \pm \mathbf{2 . 4 9}$	$\mathbf{7 4 . 0} \pm \mathbf{2 . 8 3}$	$\mathbf{7 8 . 7} \pm \mathbf{4 . 1 1}$	56.0 ± 2.83	$\mathbf{7 8 . 7} \pm \mathbf{2 . 4 9}$	76.7
Stack	Devin et al. 2017	0.7 ± 0.94	8.0 ± 1.63	0.7 ± 0.94	24.0 ± 2.83	0.0 ± 0.00	14.0 ± 3.27	7.9
	Cannistraci et al. 2024 (linear)	47.3 ± 0.94	62.0 ± 4.32	32.7 ± 3.77	30.7 ± 0.94	54.0 ± 8.64	14.7 ± 6.18	40.2
	Cannistraci et al. 2024 (non-linear)	10.0 ± 1.63	12.0 ± 0.00	0.0 ± 0.00	3.3 ± 0.94	0.0 ± 0.00	0.7 ± 0.94	4.3
	PeS (w/o disent. loss)	34.0 ± 11.43	10.7 ± 4.11	62.0 ± 10.71	34.0 ± 7.12	22.7 ± 3.77	26.0 ± 4.32	31.6
	PeS (w. 11 \& 12 loss)	92.7 ± 0.94	$\mathbf{9 8 . 0} \pm \mathbf{0 . 0 0}$	62.7 ± 6.60	24.0 ± 4.90	59.3 ± 7.36	58.7 ± 1.88	65.9
	PeS	$\mathbf{9 4 . 7} \pm \mathbf{0 . 9 4}$	96.7 ± 0.94	$\mathbf{9 0 . 0} \pm \mathbf{1 . 6 3}$	$\mathbf{9 6 . 7} \pm \mathbf{1 . 8 9}$	$\mathbf{9 7 . 3} \pm \mathbf{2 . 4 9}$	$\mathbf{8 0 . 0} \pm \mathbf{4 . 9 0}$	92.6
Door Open	Devin et al. 2017	9.3 ± 4.11	5.3 ± 0.94	0.0 ± 0.00	4.0 ± 1.63	0.7 ± 0.94	0.0 ± 0.00	3.2
	Cannistraci et al. 2024 (linear)	0.0 ± 0.00	1.3 ± 0.94	10.7 ± 2.49	10.7 ± 4.99	2.0 ± 1.63	47.3 ± 9.29	12
	Cannistraci et al. 2024 (non-linear)	26.0 ± 2.83	31.3 ± 4.99	49.3 ± 8.22	48.0 ± 5.89	62.7 ± 3.40	44.7 ± 3.40	43.7
	PeS (w/o disent. loss)	24.7 ± 7.71	44.0 ± 2.83	34.7 ± 3.77	0.7 ± 0.94	36.7 ± 0.94	23.3 ± 3.40	27.4
	PeS (w. 11 \& 12 loss)	4.0 ± 1.63	$\mathbf{7 8 . 0} \pm \mathbf{5 . 6 6}$	3.3 ± 0.94	2.0 ± 1.63	42.7 ± 4.99	6.0 ± 3.26	22.7
	PeS	$\mathbf{5 8 . 7} \pm \mathbf{4 . 1 1}$	68.7 ± 0.94	$\mathbf{7 0 . 7} \pm \mathbf{0 . 9 4}$	$\mathbf{5 2 . 7} \pm \mathbf{3 . 4 0}$	$\mathbf{6 4 . 7} \pm \mathbf{4 . 9 9}$	$\mathbf{4 8 . 7} \pm \mathbf{3 . 4 0}$	60.7

Zero-Shot Transfer Success Rates in difficult Simulation tasks

Latent Space at Module Interface

Latent Space at Module Interface

- Red dots: robot's end effector is at higher positions
- Green dots: medium heights
- Blue dots: lower positions near the cube.
- The 256D representations are reduced to 3D with PCA.
- PeS: similar latent representation shapes with each other.
- Devin baseline: approximately isometric transformation (rotation in

Pushing Task
ours - front view

baseline - front view

ours - side view

baseline - side view
 this case) relationship with each other.

Latent Space at Module Interface

- One representation is from the second view encoder of policy 1 and the other is from the second view encoder of policy 2.
- Cosine distance: PeS significantly smaller than Devin baseline.
- L2 distances: PeS smaller than Devin baseline, but the differences are not pronounced in some cases.

Attention Heatmap with Grad-CAM

Attention Heatmap with Grad-CAM

Conclusion

- Perception Stitching (PeS) is a method for zero-shot visuomotor policies transfer via latent spaces alignment.
- Aligns the latent spaces of different visual encoders and allows the trained visual encoders to be reused in a plug-and-go manner.
- Evaluation on 30 simulation experiments and 4 real-world experiments shows the pronounced advantage of PeS , and our analysis further reveals the mechanism of its superior performance.

Thank You!

Attention Heatmap with Grad-CAM

- We modify the Gradient-weighted Class Activation Mapping (Grad-CAM) approach to highlight the regions that the policies pay attention to.
- Replace the before-softmax score y^{c} for class c of the image classification networks with the log-likelihood $l(a)$ of the robot action a in the training dataset.

Attention Heatmap with Grad-CAM

- Denote the $k^{\text {th }}$ feature map activation output from the last convolutional layer as A^{k}.
- The backpropagated gradient of $l(a)$ with respect to A^{k} is computed as $\frac{\partial l(a)}{\partial A^{k}}$.
- do global average pooling of these gradients over the width (indexed by i) and height (indexed by j) dimensions of the feature map to get the neuron importance weight α_{k}^{a} :

$$
\alpha_{k}^{a}=\overbrace{\frac{1}{Z} \sum_{i} \sum_{j}}^{\text {global average pooling }} \underbrace{\frac{\partial l(a)}{\partial A_{i j}^{k}}}_{\text {gradients via backprop }}
$$

- This weight α_{k}^{a} captures the 'importance' of feature map k for robot action a.

Attention Heatmap with Grad-CAM

- Then, the attention map Grad-CAM is calculated as the weighted combination of forward activation maps followed by a ReLU:

$$
L_{\text {Grad-CAM }}^{a}=\operatorname{ReLU} \underbrace{\left(\sum_{k} \alpha_{k}^{a} A^{k}\right)}_{\text {linear combination }}
$$

- We apply ReLU because we are only interested in the features that have a positive influence on the actions.
- This $L_{G r a d-C A M}^{a}$ is a heatmap of the same size as the convolutional feature maps A^{k}. We upsample it to the input image size with bilinear interpolation to get the final attention heatmap of the input image.
- A larger value on this heatmap means this pixel contributes to a larger gradient of the log-likelihood of the robot action.

Limitations and Future Work

Limitations and Future Work

- Limitations:
- Replaying the trajectories takes about twice the time as collecting data with random sampling.

[^0]: Baseline Success rate: 19.3\%

