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Motivation

Control Theory + Learning

Quadruped Robot. Mutiple time domains.

▶ Synthesis of Lyapunov(-like) functions for dynamical systems is complex
▶ Existing numerical methods only apply to limited classes of systems (to certify

formal guarantees)
▶ Challenges: Hybrid systems pose additional challenges due to interaction of

discrete and continuous dynamics
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Control Theory + Learning

Quadruped Robot. Mutiple time domains.

▶ Synthesis of Lyapunov(-like) functions for dynamical systems is complex
▶ Existing numerical methods only apply to limited classes of systems (to certify

formal guarantees)
▶ Challenges: Hybrid systems pose additional challenges due to interaction of

discrete and continuous dynamics

Thus, we propose a learning-based approach to certify stability for systems
with such complex dynamics.
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Modeling Hybrid Dynamics
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

H
{

ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times.
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ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 4/23



Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

H
{

ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times. Montenegro G., J. Leudo, and Sanfelice - UCSC - 4/23



Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

H
{
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Connections to Other Frameworks

Switched Systems

ẋ =fσ(t)(x)

σ(t) ∈{1, 2, . . . }

Differential-Algebraic Equations

ẋ =f(x,w)

0 =η(x,w)

Impulsive Systems

ẋ =f(x(t))

x(t+) =g(x(t)) t ∈ {t1, t2, . . . }

Hybrid Automata
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Differential-Algebraic Equations

ẋ =f(x,w)

0 =η(x,w)

Impulsive Systems

ẋ =f(x(t))

x(t+) =g(x(t)) t ∈ {t1, t2, . . . }

Hybrid Automata

To the best of our knowledge, there does not exist previous work to synthesize
Lyapunov functions based on learning methods for hybrid systems modeled
in such framework.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 5/23



Data-Driven Stability Certificates

▶ Stability for Hybrid Systems

▶ Coverings via ε-nets

▶ Learning-based Lyapunov functions

▶ Extending Lyapunov conditions from samples

▶ Application to an oscillator with impacts
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Stability for Hybrid Systems

Pre-asymptotic stability (pAS)

Given a hybrid system H = (C,F,D,G), a nonempty set A ⊂ Rn is said to be

▶ stable for H if, for each ϵ > 0, there exists δ > 0 such that

|ϕ(0, 0)|A ≤ δ =⇒ |ϕ(t, j)|A ≤ ϵ ∀(t, j) ∈ domϕ

for each solution ϕ to H;

▶ pre-attractive (pA) for H if there exists ℓ > 0 such that every solution ϕ to H with

|ϕ(0, 0)|A ≤ ℓ

is such that (t, j) 7→ |ϕ(t, j)|A is bounded and if ϕ is complete lim
(t,j)∈domϕ
t+j→∞

|ϕ(t, j)|A = 0;

▶ pre-asymptotically stable (pAS) for H if it is stable and pre-attractive for H.
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Stability for Hybrid Systems

Theorem. Sufficient Lyapunov conditions for pre-asymptotic stability

Consider

▶ A set U ⊂ Rn and a compact set A ⊂ Rn,

▶ a function V : domV → R defining a Lyapunov function candidate on U with respect to
A for a system H.

If H satisfies the hybrid basic conditions, V ∈ PD(A)1, and

⟨∇V (x), F (x)⟩ < 0 ∀x ∈ (C ∩ U) \ A
V (G(x))− V (x) < 0 ∀x ∈ (D ∩ U) \ A

then A is pAS for H.

1We say that a function g : dom g → R≥0 is positive definite with respect to a set K, also written as
g ∈ PD(K), if g(x) = 0 for any x ∈ dom g ∩K and g(x) > 0 for any x ∈ dom g \K.
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V (G(x))− V (x) < 0 ∀x ∈ (D ∩ U) \ A

then A is pAS for H.

Hybrid basic conditions:

▶ C and D are closed sets of Rn

▶ F is a single-valued continuous map defined on C

▶ G is a single-valued continuous map defined on D
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Learning-based Lyapunov Functions

Modeling Lyapunov functions using function approximators has been studied:

▶ Through feature maps2 x 7→ η(x) := [η1(x), . . . , ηℓ(x)]
⊤ ∈ Rℓ,

V̂θ(x) :=

ℓ∑

j=1

θjηj(x) = ⟨θ, η(x)⟩

2Beard, Saridis, and Wen, ‘Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation’, 1997.
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x0 = x, xk+1 = φ(W kxk + bk), k ∈ {0, . . . , ℓ− 1}, V̂θ(x) = W ℓxℓ + bℓ

where θ = (W ℓ, bℓ) and z 7→ φ(z) denotes the activation function.

▶ We will denote by θ the parameters of a Lyapunov function V̂θ(·).

We define the notion of complexity of a function. E.g., every finite dimensional
reproducing kernel Hilbert space (RKHS) HK can be described as

f(x) = ⟨κ(·, x), f(·)⟩HK
∀x ∈ X , ∀f ∈ HK

where, for all x, x′ ∈ X ,

κ(x, x′) = ⟨η(x), η(x′)⟩

Then, it follows
∥f∥2HK

:= ⟨f, f⟩HK

2Beard, Saridis, and Wen, ‘Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation’, 1997.
3Literature is EXTENSIVE!
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⋃

x′∈FC
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Coverings via ε-nets

(D ∩ U) \ A ⊆
⋃

x′∈FD

x′ + εDB
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Learning-based Lyapunov Functions

Optimization Problem for Lyapunov Functions

along flows

along jumps

Robust Program (RP)
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Learning-based Lyapunov Functions

Optimization Problem for Lyapunov Functions

along flows

along jumps

Robust Program (RP) Scenario Program (SP)

▶ Does solving the SP guarantee Lyapunov constraints satisfaction for points that
were not sampled?
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Learning-based Lyapunov Functions

Optimization Problem for Lyapunov Functions

Robust Program (RP) Scenario Program (SP)

minimize
θ∈Rr

∥θ∥2

s.t.
˙̂
V θ(x)< 0 ∀x ∈ (C ∩ U) \ A,

∆V̂θ(x)< 0 ∀x ∈ (D ∩ U) \ A

minimize
θ∈Rr

∥θ∥2

s.t.
˙̂
V θ(x

′) < 0 ∀x′ ∈ FC \ A,

∆V̂θ(x
′) < 0 ∀x′ ∈ FD \ A
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Slack variables.
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Extending Lyapunov Conditions from Samples

▶ Goal: Generalize from sample data to
compact set U .
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Extending Lyapunov Conditions from Samples

Lipschitz Continuity
Consider

▶ the function V̂θ defined as a neural network with d layers and network parameter θ,

▶ a hybrid system H = (C,F,D,G), and

▶ a compact set U ⊂ Rn (sample set).

Proposition. Lipschitz continuity of
˙̂
V θ

If

▶ the flow map F is LF -Lipschitz,

▶ there exists ηF > 0 such that ∥F (x)∥ ≤ ηF for all x ∈ C ∩ U , and
▶ the activation function φ is Lφ-Lipschitz and its gradient ∇φ is L∇φ−Lipschitz,

then, the function
˙̂
V θ(x) := ⟨∇V̂θ(x), F (x)⟩ is L ˙̂

V θ
−Lipschitz with L ˙̂

V θ
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Extending Lyapunov Conditions from Samples

Main Result

Proposition. Generalized Lyapunov Conditions

Given

▶ compact sets U ⊂ Rn (sample set) and A ⊂ Rn (set to render stable),

▶ a hybrid system H = (C,F,D,G), with F locally LF−Lipschitz on C ∩ U and G locally
LG−Lipschitz on D ∩ U ,

▶ an LV̂θ
− Lipschitz function V̂θ defined by a neural network over (C ∪D) ∩ U , and

L ˙̂
V θ

−Lipschitz time derivative on C ∩ U , and
▶ ε > 0 defining FC and FD as ε−nets over C ∩ U and over D ∩ U , respectively,
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−Lipschitz time derivative on C ∩ U , and
▶ ε > 0 defining FC and FD as ε−nets over C ∩ U and over D ∩ U , respectively,

if, for some τC > L ˙̂
V θ

ε, τD > LV̂θ
(1 + LG)ε, µ > ε, we have
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′) ≤ −τD ∀x′ ∈ FD \ (A+ µB),
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LG−Lipschitz on D ∩ U ,

▶ an LV̂θ
− Lipschitz function V̂θ defined by a neural network over (C ∪D) ∩ U , and

L ˙̂
V θ

−Lipschitz time derivative on C ∩ U , and
▶ ε > 0 defining FC and FD as ε−nets over C ∩ U and over D ∩ U , respectively,

then,

˙̂
V θ(x) < 0 ∀x ∈ (C ∩ U) \ (A+ µB),

∆V̂θ(x) < 0 ∀x ∈ (D ∩ U) \ (A+ µB).
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Extending Lyapunov Conditions from Samples

Bootstrap Evaluation
Iterative search for a learning-based Lyapunov function.

Choose new parameters
τC , τD > 0

Initialize network
parameters θ ∈ R

r

SP:

minimize
θ∈Rr

|θ|2

s.t.
˙̂
V θ(x

′) ≤ −τC ∀x′ ∈ FC \ (A+ µB),

∆V̂θ(x
′) ≤ −τD ∀x′ ∈ FD \ (A+ µB)

Is SP feasible?
No

Take

L ˙̂
V θ

(x) ≈ ‖∇
˙̂
V θ(x)‖, x ∈ C ∩ U

L
∆V̂θ

(x) ≈ ‖∇∆V̂ (x)‖, x ∈ D ∩ U ,

Yes

ε−τC/L ˙̂
V θ

(x)
?

< 0 ∀x ∈ FC \(A+µB),

ε−τD/L∆V̂θ
(x)

?

< 0 ∀x ∈ FD\(A+µB).

Solve SP

No

END
Yes
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Learning-based Sufficient Conditions for Stability

Main Result

Theorem. Practical pre-Asymptotic Stability

Given

▶ compact sets U ⊂ Rn (sample set) and A ⊂ Rn (set to render stable),

▶ a hybrid system H = (C,F,D,G), with F locally LF−Lipschitz on C ∩ U and G locally
LG−Lipschitz on D ∩ U ,

▶ ε > 0 defining FC and FD as ε−nets over C ∩ U and over D ∩ U , respectively, and

▶ a LV̂θ
− Lipschitz function V̂θ over (C ∪D) ∩ U , and L ˙̂

V θ
−Lipschitz time derivative on

C ∩ U , such that α1(|x|A) ≤ V̂θ(x) ≤ α2(|x|A) on (C ∪D) ∩ U for some α1, α2 ∈ K.
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If for µ > ε and some τC > L ˙̂
V θ
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Montenegro G., J. Leudo, and Sanfelice - UCSC - 17/23



Learning-based Sufficient Conditions for Stability

Main Result

Theorem. Practical pre-Asymptotic Stability

Given

▶ compact sets U ⊂ Rn (sample set) and A ⊂ Rn (set to render stable),

▶ a hybrid system H = (C,F,D,G), with F locally LF−Lipschitz on C ∩ U and G locally
LG−Lipschitz on D ∩ U ,

▶ ε > 0 defining FC and FD as ε−nets over C ∩ U and over D ∩ U , respectively, and
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V θ

−Lipschitz time derivative on

C ∩ U , such that α1(|x|A) ≤ V̂θ(x) ≤ α2(|x|A) on (C ∪D) ∩ U for some α1, α2 ∈ K.

Then, A is practically pre-asymptotically stable (PpAS) for H with respect to ε.We say that a set A is PpAS for H with respect to ε if there exists β ∈ KL such that
each solution ϕ to H from (C ∪D) ∩ U that stays in (C ∪D ∪G(D)) ∩ U , satisfies

|ϕ(t, j)A| ≤ β(|ϕ(0, 0)|A, t+ j) + µ ∀(t, j) ∈ domϕ.
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Learning-based Sufficient Conditions for Stability

Main Result

Proof Sketch. Practical pre-Asymptotic Stability

Given µ > ε > 0, and since for some τC > L ˙̂
V θ

ε and τD > LV̂θ
(1 + LG)ε, we have

˙̂
V θ(x

′) ≤ −τC ∀x′ ∈ FC \ (A+ µB),

∆V̂θ(x
′) ≤ −τD ∀x′ ∈ FD \ (A+ µB),

then, from the Proposition on Generalized Lyapunov Conditions we have that

˙̂
V θ(x) < 0 ∀x ∈ (C ∩ U) \ (A+ µB),

∆V̂θ(x) < 0 ∀x ∈ (D ∩ U) \ (A+ µB).
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Learning-based Sufficient Conditions for Stability

Main Result

Proof Sketch. Practical pre-Asymptotic Stability

Since
α1(|x|A) ≤ V̂θ(x) ≤ α2(|x|A) for all x ∈ (C ∪D) ∩ U ,

Montenegro G., J. Leudo, and Sanfelice - UCSC - 18/23



Learning-based Sufficient Conditions for Stability

Main Result

Proof Sketch. Practical pre-Asymptotic Stability

Since
α1(|x|A) ≤ V̂θ(x) ≤ α2(|x|A) for all x ∈ (C ∪D) ∩ U ,

it can be shown that there exist αC , αD ∈ K such that

˙̂
V θ(x) ≤ −αC(V̂θ(x)) for all x ∈ (C ∩ U) \ (A+ µB),

and
∆V̂θ(x) ≤ −αD(V̂θ(x)) for all x ∈ (D ∩ U) \ (A+ µB).
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Learning-based Sufficient Conditions for Stability

Main Result

Proof Sketch. Practical pre-Asymptotic Stability

Since
α1(|x|A) ≤ V̂θ(x) ≤ α2(|x|A) for all x ∈ (C ∪D) ∩ U ,

it can be shown that there exist αC , αD ∈ K such that

˙̂
V θ(x) ≤ −αC(V̂θ(x)) for all x ∈ (C ∩ U) \ (A+ µB),

and
∆V̂θ(x) ≤ −αD(V̂θ(x)) for all x ∈ (D ∩ U) \ (A+ µB).

Define
x 7→ α(x) := min{αC(x), αD(x)}

and, without loss of generality, assume it is locally Lipschitz.
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Learning-based Sufficient Conditions for Stability

Main Result

Proof Sketch. Practical pre-Asymptotic Stability

Given a solution ϕ to H from ((C ∪D) ∩ U) \ (A+ µB), by the comparison principle for
hybrid systems we have that

V̂θ(ϕ(t, j)) ≤ β̃
(
V̂θ(ϕ(0, 0)), t+ j

)
for all (t, j) ∈ domϕ,

where β̃ ∈ KL.
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V̂θ(ϕ(t, j)) ≤ β̃
(
V̂θ(ϕ(0, 0)), t+ j

)
for all (t, j) ∈ domϕ,

where β̃ ∈ KL. This, together with
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)
≤ β̃ (α2 (|ϕ(0, 0)|A) , t+ j) .
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1

(
β̃ (α2 (|ϕ(0, 0)|A) , t+ j)

)

where (r, t+ j) 7→ α−1
1

(
β̃ (α2 (r) , t+ j)

)
∈ KL. Finally, notice that,

|x|A = |x|(A+µB) + µ for any x ∈ ((C ∪D) ∩ U) \ (A+ µB).

Then, the desired KL bound follows:

|ϕ(t, j)|A = |ϕ(t, j)|(A+µB) + µ ≤ α−1
(
β̃ (α2 (|ϕ(0, 0)|A) , t+ j)

)
+ µ

for every (t, j) ∈ domϕ. □
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Example: Oscillator with Impacts

H
{

(ẋ1, ẋ2) = (x2,−x1 − λCx2) x1 ≥ 0
(x+

1 , x
+
2 ) = (0, λDx2) x1 = 0 and x2 ≤ 0
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▶ Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

▶ Sampling set

U =
{
x ∈ R2 | x2

1/h
2
0 + x2

2/v
2
0 ≤ 1

}

where h0, v0 > 0.

▶ Strategically chosen samples to cover
(C ∩ U) \ (A+ µB) and
(D ∩ U) \ (A+ µB)
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We enforce conditions at the centers of the
balls, and generalize them to every point in

((C ∪D) ∩ U) \ (A+ µB).
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balls, and generalize them to every point in

((C ∪D) ∩ U) \ (A+ µB).

▶ Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

▶ Sampling set

U =
{
x ∈ R2 | x2

1/h
2
0 + x2

2/v
2
0 ≤ 1

}

where h0, v0 > 0.

▶ Strategically chosen samples to cover
(C ∩ U) \ (A+ µB) and
(D ∩ U) \ (A+ µB)

▶ We guarantee practical asymptotic
stability of A for H with respect to ε.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 19/23



Example: Oscillator with Impacts

H
{

(ẋ1, ẋ2) = (x2,−x1 − λCx2) x1 ≥ 0
(x+

1 , x
+
2 ) = (0, λDx2) x1 = 0 and x2 ≤ 0
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τC = 0.015, L ˙̂
V θ

= 4.482

εC = 0.01
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▶ Specific structure of a neural network that is positive definite with respect to
A = {0} on (C ∪D) ∩ U .

▶ We solve the SP using JAX. Augmented Lagrangian to account for constraints.

▶ We apply bootstrap evaluation.
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Conclusions and Future Work

▶ We proposed a data-driven algorithm to synthesize a Lyapunov function to
guarantee asymptotic stability of a set of interest for a hybrid system.

▶ Given a cost functional associated to solutions to a hybrid system, results are
extended to obtain an upper bound on the cost, with no computing of solutions.

▶ Generalization to sample space from enforcing point-wise conditions at finite
strategically-spaced samples.

▶ Application in oscillator with impacts.

▶ Future work: Evaluating different data-driven methods to learn the Lyapunov and
value functions, and an extension to hybrid inclusions.
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