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1. Safety

P Safety Certificates

ACC23a, CDC23a, CDC23b, TAC (accepted) w/ Warren Dixon
> Reinforcement Learning

.. . RLC 2024 w/ Zachary Bell poster here!
2. Optimization
» Dynamical systems approach
ACC23c, Optimization journal (almost ready)
Automatica 2023, ACC23d w/ Matt Hale

> Optimization with Computational Constraints
CPSWeek-loT 24 Workshop

3. Motion Planning for Hybrid Systems
P> RRT for feasibility and optimality
CDC22, CCTA22b, CDC23c, ADHS24 poster here!
4. Learning-based Hybrid Control

> Learning Lyapunov functions for hybrid systems
HSCC 2024 Carlos will present it next
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Quadruped Robot. Mutiple time domains.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/23



Motivation

Control Theory + Learning

Unitree Robotits S}

Quadruped Robot. Mutiple time domains.

» Synthesis of Lyapunov(-like) functions for dynamical systems is complex

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/23



Motivation

Control Theory + Learning

Quadruped Robot. Mutiple time domains.
» Synthesis of Lyapunov(-like) functions for dynamical systems is complex

» Existing numerical methods only apply to limited classes of systems (to certify
formal guarantees)

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/23



Motivation

Control Theory + Learning

Quadruped Robot. Mutiple time domains.

» Synthesis of Lyapunov(-like) functions for dynamical systems is complex

» Existing numerical methods only apply to limited classes of systems (to certify
formal guarantees)

» Challenges: Hybrid systems pose additional challenges due to interaction of
discrete and continuous dynamics

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/23



Motivation

Control Theory + Learning

Quadruped Robot. Mutiple time domains.

» Synthesis of Lyapunov(-like) functions for dynamical systems is complex

Thus, we propose a learning-based approach to certify stability for systems
with such complex dynamics.

discrete and continuous dynamics
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

24 T = F(z) zeC
v = G(x) z€D
» (' is the flow set > D is the jump set
» F'is the flow map > (G is the jump map
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et P, 7)

x = F(z

s -
vt o= Gl t1 ta  t3 =ty
v t

» (' is the flow set =
» [ is the flow map %
Solutions parametrized by (t, j): ¢ : Solution to H

» t € [0,00), time elapsed during flows
» je€{0,1,...}, number of jumps that have occurred

Domain of a solution of the form

([0,t1] x {0H) U ([ta. t2] x {IH V...,
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Switched Systems

z :fU(t)<x)
o(t) €{1,2,...}

Differential-Algebraic Equations

:f(wi)
0 =n(z,w

Impulsive Systems

& =f(z(t))
z(tT) =g(z(t)) te€ {t1,t2,...}

Hybrid Automata

) &)
D
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Switched Systems Impulsive Systems

& =fo ) () & =f(x(t))
g {12 ! z(tT) =qlz(t) te{tito.. ..}

To the best of our knowledge, there does not exist previous work to synthesize
Lyapunov functions based on learning methods for hybrid systems modeled
in such framework.

(a0 DD
0 =n(z,w) %
)
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» Stability for Hybrid Systems
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Stability for Hybrid Systems

Coverings via e-nets

Learning-based Lyapunov functions
Extending Lyapunov conditions from samples

Application to an oscillator with impacts
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Pre-asymptotic stability (pAS)
Given a hybrid system H = (C, F, D, &), a nonempty set A C R" is said to be

» stable for H if, for each € > 0, there exists § > 0 such that
|#(0,0)|a <0 = |d(t,7)|la <€ V(t,j) €dom¢

for each solution ¢ to H;
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» stable for H if, for each € > 0, there exists § > 0 such that
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Pre-asymptotic stability (pAS)
Given a hybrid system H = (C, F, D, &), a nonempty set A C R" is said to be
» stable for H if, for each € > 0, there exists § > 0 such that
19(0,0)[a <6 = |6, 4)la<e V(j) € dome
for each solution ¢ to H;

> pre-attractive (pA) for H if there exists £ > 0 such that every solution ¢ to H with

|¢(0,0)|a < ¢
is such that (¢, ) — |¢(t,5)|.4 is bounded and if ¢ is complete ( )lirgl . lp(t, 5)|.a = 0O;
t,j)€dom
t+j—o00

> pre-asymptotically stable (pAS) for  if it is stable and pre-attractive for .
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Theorem. Sufficient Lyapunov conditions for pre-asymptotic stability
Consider
» Aset U C R™ and a compact set A C R™,

» a function V' : dom V' — R defining a Lyapunov function candidate on I/ with respect to
A for a system H.

If H satisfies the hybrid basic conditions, V € PD(A)?, and

(VV(z),F(z)) <0 VYze(CnU)\A
V(G(x))—V(z) <0 Vze(DNU)\A

then A is pAS for H.

!We say that a function ¢ : dom g — R>g is positive definite with respect to a set K, also written as
g € PD(K), if g(z) =0 for any € domgN K and g(z) > 0 for any z € domg \ K.
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Theorem. Sufficient Lyapunov conditions for pre-asymptotic stability
Consider
» Aset U C R™ and a compact set A C R™,

» a function V' : dom V' — R defining a Lyapunov function candidate on I/ with respect to
A for a system H.

If 2/ caticfioc tho hyuheid hagic canditiang 17 & DD /1\1 and

Hybrid basic conditions:
» (' and D are closed sets of R"
» F'is a single-valued continuous map defined on C

» ( is a single-valued continuous map defined on D

!We say that a function ¢ : dom g — R>g is positive definite with respect to a set K, also written as
g € PD(K), if g(z) =0 for any € domgN K and g(z) > 0 for any z € domg \ K.
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Modeling Lyapunov functions using function approximators has been studied:
» Through feature maps? z — n(z) == [n1(z),...,n(z)] " € R,

l
Vo(a) = 0;m;(x) = (0, n())
j=1

2Beard, Saridis, and Wen, ‘Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation’, 1997.
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Modeling Lyapunov functions using function approximators has been studied:
» Through feature maps? z — n(z) == [n1(z),...,n(z)] " € R,

Z%m (0, n(x))

> Stacking generalized linear models (GLMs) yields a neural network?, described
by the following recursive equations

=z, D =pWEF 408, ke {0,....0—1}, Vy(x) =W’ +b’

where 6 = (W*,b%) and z — ¢(z) denotes the activation function.

2Beard, Saridis, and Wen, ‘Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation’, 1997.

3Literature is EXTENSIVE!
Montenegro G., J. Leudo, and Sanfelice - UCSC - 9/23



Modeling Lyapunov functions using function approximators has been studied:
» Through feature maps? z — n(z) == [n1(z),...,n(z)] " € R,

l
Vo(a) = 0;m;(x) = (0, n())
j=1

> Stacking generalized linear models (GLMs) yields a neural network?, described
by the following recursive equations

=z, D =pWEF 408, ke {0,....0—1}, Vy(x) =W’ +b’

where 6 = (W*,b%) and z — ¢(z) denotes the activation function.
> We will denote by 6 the parameters of a Lyapunov function 179()
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I ine-based L Functi

N

We define the notion of complexity of a function. E.g., every finite dimensional
reproducing kernel Hilbert space (RKHS) Hx can be described as

f(@) = k(- 2), [( gy, Ve e, VfeHk

where, for all z, 2’ € X,

Kz, 2') = (n(@),n(z’))

Then, it follows

£ = (Fs Fac

\.

> We will denote by 6 the parameters of a Lyapunov function YA/@()

2Beard, Saridis, and Wen, ‘Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation’, 1997.

SLiterature is EXTENSIVE!
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Coverings via e-nets

(CnU\NAC | ) o/ +ecB
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Coverings via e-nets
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Coverings via e-nets

(DNU)\NAC | o' +epB

z'€Fp
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Coverings via e-nets

(CnNU)\AC U ' +ecB (DNU)\ AC U ' +epB

x! eFc x'€Fp
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Optimization Problem for Lyapunov Functions
Robust Program (RP)

. . 512
minimize Vol 3,

subject to Vg( ) <0 along flows
AVQ( ) <0 along jumps
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Optimization Problem for Lyapunov Functions

Robust Program (RP)

. . . g 2
mlmemlze ||V9 HHK

subject to 179 (

AT, (

><0
)<o

Scenario Program (SP)

. . . - 2
mlmemlze ||V9 | | Hy

along flows  subject to Vg( ) <0
along jumps AV@( ) <0
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Optimization Problem for Lyapunov Functions

Robust Program (RP) Scenario Program (SP)
miniemize ||{70H%K miniemize ||I79|]?,,[K
subject to Vg( ) <0 along flows  subject to ‘70( ) <0

AV@( ) <0 along jumps AV@( ) <0

» Does solving the SP guarantee Lyapunov constraints satisfaction for points that
were not sampled?
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I ine-based L Functi

Optimization Problem for Lyapunov Functions

Robust Program (RP) Scenario Program (SP)
minimize 110]|2 minimize 10]|2
st. Ve(x)<0 Vz e (CNU)\ A, st. V(') <0 Vo' € Fo\ A,
AVy(x)< 0 Vze(DNU)\A AVy(a') <0 Vo' e Fp\ A
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Optimization Problem for Lyapunov Functions

Robust Program (RP) Scenario Program (SP)
minimize 110]|2 minimize 10]]2
s.t. Vo(z)< 0 Voe (CnU)\ A, st. Vo) < —1¢ Vo' € Fo \ (A+ uB),
AVy(x)< 0 Vze(DNU)\A AVy(z') < —1p Vo' € Fp\ (A+ uB)
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Optimization Problem for Lyapunov Functions

Robust Program (RP) Scenario Program (SP)
minimize 110]|2 minimize 10]]2
s.t. Vo(z)< 0 Voe (CnU)\ A, st. Vo) < —1¢ Vo' € Fo \ (A+ uB),
AVy(x)< 0 Vze(DNU)\A AVy(z') < —1p Vo' € Fp\ (A+ uB)

Slack variables. ]
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» Goal: Generalize from sample data to
compact set U.
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Goal: Generalize from sample data to
compact set U.

Prerequisites: ¢ > 0 defining 7~ and
Fp as e—nets over x NU, x € {C, D}

Approach: Choose 7 and 7 such
that constraints hold at all points in
(*NU)\ (A+uB), € {C,D}
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AVy(a') < —1p Vz' € Fp \ (A+ uB)
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Goal: Generalize from sample data to Vi(z)
compact set U. A

Prerequisites: ¢ > 0 defining 7~ and

Fp as e—nets over x NU, x € {C, D} —T

Approach: Choose 7 and 7p such

that constraints hold at all points in

(*HU)\(A—I—,U,B),*E{C,D} b ! b : —
' 52 | b |
(Cnu)\ (A+ pB)
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Lipschitz Continuity
Consider

> the function Vj defined as a neural network with d layers and network parameter 6,
» a hybrid system H = (C, F, D, &), and
> a compact set Y C R™ (sample set).
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> the function Vj defined as a neural network with d layers and network parameter 6,
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Lipschitz Continuity
Consider

> the function Vj defined as a neural network with d layers and network parameter 6,
» a hybrid system H = (C, F, D, @), and
> a compact set U C R™ (sample set).

Lemma. Lipschitz continuity of the Lyapunov function 179

If the activation function ¢ is L. -Lipschitz continuous, then ‘79 is L‘767Lipschitz continuous.

Lemma. Lipschitz continuity of the gradient of the Lyapunov function 179

If the activation function ¢ is C?, then V‘A/g is Lv%—Lipschitz continuous.
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Lipschitz Continuity
Consider

> the function Vj defined as a neural network with d layers and network parameter 6,
» a hybrid system H = (C, F, D, &), and
> a compact set Y C R™ (sample set).

Proposition. Lipschitz continuity of ‘79
If
» the flow map F is Lg-Lipschitz,
> there exists ng > 0 such that ||F(x)| < np for all z € C NU, and

» the activation function ¢ is L,-Lipschitz and its gradient Vi is Ly, —Lipschitz,
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Lipschitz Continuity
Consider

> the function Vj defined as a neural network with d layers and network parameter 6,
» a hybrid system H = (C, F, D, &), and
> a compact set Y C R™ (sample set).

Proposition. Lipschitz continuity of ‘79
If
» the flow map F is Lg-Lipschitz,
> there exists ng > 0 such that ||F(x)| < np for all z € C NU, and

» the activation function ¢ is L,-Lipschitz and its gradient Vi is Ly, —Lipschitz,
then, the function Vy(z) == (VVy(x), F(x)) is L‘x/e—Lipschitz with L% = Lgy,nr + Ly, Lr.
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Main Result
Proposition. Generalized Lyapunov Conditions

Given

> compact sets U C R™ (sample set) and A C R™ (set to render stable),
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Main Result
Proposition. Generalized Lyapunov Conditions
Given
» compact sets Y C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F locally Lr—Lipschitz on C NU and G locally
Lg—Lipschitz on D NU,

> an Ly, — Lipschitz function Vo defined by a neural network over (C'U D) N, and
L‘A/ —Lipschitz time derivative on C' N, and
6

» ¢ > 0 defining o and Fp as e—nets over C' U and over D NU, respectively,

if, for some 7o > LG e, Tp > L%(l + Lg)e, p > €, we have
2]

‘70(17/) < —1¢ N\ Fo \ (.A ol MB),

~

AV@(:L’/) < —7p V' € Fp \ (A+MB),
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Main Result
Proposition. Generalized Lyapunov Conditions
Given
» compact sets Y C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F locally Lr—Lipschitz on C NU and G locally
Lg—Lipschitz on D NU,

> an Ly, — Lipschitz function Vo defined by a neural network over (C'U D) N, and
L‘A/ —Lipschitz time derivative on C' N, and
6

» ¢ > 0 defining o and Fp as e—nets over C' U and over D NU, respectively,
then,
Vo(z) <0 Vze (CnU)\(A+ uB),
AVy(z) <0 Vze (DNU)\ (A+ uB).
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Bootstrap Evaluation
Iterative search for a learning-based Lyapunov function.

Initialize network SP:
parameters § € R” minimize 6],
1 ferr

* &5 ! /
Choose new parameters st Vo(a') < =10 V' € Fo \ (A+ pB),

7c, 7D > 0 AVp(z') < —mp Vo' € Fp \ (A+ uB)
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Bootstrap Evaluation
Iterative search for a learning-based Lyapunov function.

Initialize network SP:
parameters § € R” minimize 6],
ﬁ 0cRT
o & w; /
Choose new parameters st. Vy(a') < —1¢ Vo' € Fo \ (A+ uB),
7c,Tp > 0 AVy(z') < —mp Va2’ € Fp\ (A+ uB)

Is SP feasible?
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Bootstrap Evaluation
Iterative search for a learning-based Lyapunov function.

Initialize network SP:
parameters § € R” minimize 6],
ﬁ OcR™
o & w; /
Choose new parameters st Vy(a') < —1¢ Vo' € Fo \ (A+ uB),
7c,Tp > 0 AVy(2') < —mp Va' € Fp \ (A+ uB)

Is SP feasible?

Solve SP
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Bootstrap Evaluation

Iterative search for a learning-based Lyapunov function.

Initialize network
parameters § € R”
!

Choose new parameters
T, ™p >0

Is SP feasible?

Solve SP

SP:

miglei%izc |0]2

st V(@) < -1 Vo' € Fo\ (A+ uB),
AVp(z') < —mp Vo' € Fp \ (A+ uB)

Take

Ly (1) = [VV(@)], z € C U

Lyg, (@) % VAV ()], » € DU,
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Iterative search for a learning-based Lyapunov function.

Initialize network
parameters § € R”
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Choose new parameters
7o, Tp >0

Is SP feasible?

Solve SP
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Ly (1) = [VVo(@)], z € C U

Lyg, (@) % VAV ()], » € DU,
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Main Result
Theorem. Practical pre-Asymptotic Stability
Given
> compact sets U C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F locally Lz—Lipschitz on C'NU and G locally
La—Lipschitz on D NU,

» ¢ > 0 defining F¢ and Fp as e—nets over C' U and over D NU, respectively, and
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» a hybrid system H = (C, F, D, G), with F locally Lz—Lipschitz on C'NU and G locally
La—Lipschitz on D NU,

» ¢ > 0 defining F¢ and Fp as e—nets over C' U and over D NU, respectively, and
> a Ly, — Lipschitz function Vo over (CuD)NU, and L —Lipschitz time derivative on
6
C NU, such that ay(|z]4) < Vo(z) < as(|z]4) on (CUD)NU for some ay,as € K.
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Main Result
Theorem. Practical pre-Asymptotic Stability
Given
» compact sets Y C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F' locally Ly—Lipschitz on C'NU and G locally
Lg—Lipschitz on DNU,

» ¢ > 0 defining Fo and Fp as e—nets over C' U and over D NU, respectively, and
> a Ly, — Lipschitz function Vy over (CuD)NU, and L‘x/ —Lipschitz time derivative on
6
C NU, such that a;(|z]4) < Vy(z) < az(|z|4) on (CUD)NU for some oy, an € K.

If for 4 > ¢ and some 7¢ > Lf, &, Tp > L%(l + L¢)e, we have
/6

X*/(;(.r’) < —71¢ Vi'e Fo\ (A+ uB),

~

A‘/Q(T/) < -—7p N Fp \ (A—l-,u[B),
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Theorem. Practical pre-Asymptotic Stability
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> compact sets U C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F locally Lz—Lipschitz on C'NU and G locally
La—Lipschitz on D NU,

» ¢ > 0 defining F¢ and Fp as e—nets over C' U and over D NU, respectively, and
> a Ly, — Lipschitz function Vo over (CuD)NU, and L —Lipschitz time derivative on
6
C NU, such that ay(|z]4) < Vo(z) < as(|z]4) on (CUD)NU for some ay,as € K.

Then, A is practically pre-asymptotically stable (PpAS) for 7{ with respect to ¢.
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Main Result
Theorem. Practical pre-Asymptotic Stability
Given
» compact sets Y C R™ (sample set) and A C R™ (set to render stable),

» a hybrid system H = (C, F, D, G), with F' locally Ly—Lipschitz on C'NU and G locally
Lg—Lipschitz on DNU,

» ¢ > 0 defining Fo and Fp as e—nets over C' U and over D NU, respectively, and

> a Ly, — Lipschitz function Vy over (CuD)NU, and L‘x/ —Lipschitz time derivative on
0
C Ol such that oo (1] 4) Vol < ao(lal ) on (CLIDYA I for some o oo € KC

We say that a set A is PpAS for H with respect to ¢ if there exists 8 € KL such that
each solution ¢ to H from (C'U D) NU that stays in (C'U D UG(D)) NU, satisfies

o(t, 3)al < B(16(0,0)[ 4t +j) +p V(¢ j) € dom .

Montenegro G., J. Leudo, and Sanfelice - UCSC - 17/23



Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Given p > € > 0, and since for some 7¢ > L‘7 e and 7p > L%(l + L¢)e, we have
7}

‘79(:17/) < -1 V2’ e Fo \ (.A + ,uIB%),

~

AVQ(.T/) < —7tp V' € Fp \ (A—I—MB),
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Given p > € > 0, and since for some 7¢ > L‘7 e and 7p > L%(l + L¢)e, we have
7]

{}9(.’1,’/) < —1¢ V2' € Feo \ (.A + ,UIB),

~

AVg(l’/) < —7tp V' € Fp \ (A—I—MB),

then, from the Proposition on Generalized Lyapunov Conditions we have that

Vo(z) <0 Vze (CNU)\ (A+ uB),
AVp(z) <0 Vo e (DNU)\ (A+ uB).
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Since R
ag(|z|a) < Vo(x) < az(|z|a) forallz € (CUD)NU,
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Since R
ag(|z|a) < Vo(x) < az(|z|a) forallz € (CUD)NU,

it can be shown that there exist avc, ap € K such that

~

Vo(z) < —ac(Ve(z))  forall z € (CNU)\ (A+ uB),

and
AVy(z) < —ap(Ve(z))  forallz € (DNU)\ (A+ uB).
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Since R
ag(|z|a) < Vo(x) < az(|z|a) forallz € (CUD)NU,

it can be shown that there exist avc, ap € K such that

~

Vo(z) < —ac(Ve(z))  forall z € (CNU)\ (A+ uB),
and
AVy(z) < —ap(Ve(z))  forallz € (DNU)\ (A+ uB).

Define
z — a(z) = min{ac(z), ap(x)}

and, without loss of generality, assume it is locally Lipschitz.
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Given a solution ¢ to H from ((C'U D) NU) \ (A + uB), by the comparison principle for
hybrid systems we have that

~

Va(0(t:9) < B (Va(6(0,0)),t+5)  forall (t,5) € domg,

where 8 € KL.
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Given a solution ¢ to H from ((C'U D) NU) \ (A + uB), by the comparison principle for
hybrid systems we have that

~

Va(0(t:9) < B (Va(6(0,0)),t+5)  forall (t,5) € domg,

where 8 € KL£.  This, together with
a1 (2l arum) < e1(|z]a) < Vo(a) < aa(lz]a)  forallz € (CUD)NU)\ (A+ uB).
implies that

1|9t )l asm) < Vo(@(t,)) < B (Vo(#(0,0)),t +3) < B (az (|60, 0)[.a) ¢ + ).
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Consequently,
6t D asumy < 7" (B(az (16(0,0).4) £+ 7))

where (r,t + 7) - ay ! (B (a2 (1), —|—j)> € KL.
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Consequently,
6t D asumy < 7" (B(az (16(0,0).4) £+ 7))

where (r,t +j) — o’ (B (ag (r),t —l—j)) € KL. Finally, notice that,

(a4 = lalasysy + 1 forany @€ (CUD)NU)\ (A -+ iB).
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Main Result
Proof Sketch. Practical pre-Asymptotic Stability

Consequently,
6t D asumy < 7" (B(az (16(0,0).4) £+ 7))

where (r,t +j) — o’ (B (ag (r),t +j)> € KL. Finally, notice that,
2l = lelarum +1 foranyz e (CUD)NU)\ (A+ uB).
Then, the desired L bound follows:
[6(t, )| = 186, Dl arumy + 1 < @ (B (02 (19(0,0)|4) £+ 1)) + s

for every (t,j) € dom ¢.
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(zf,23) = (0,Apwy) z1=0and 25 <0

» Goal: Design learning-based Lyapunov
function to certify stability of A := 0.
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2 (@1,%2) = (22,—x1 —Acwa) 21 >0
(zf,23) = (0,Apwy) z1=0and 25 <0

» Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

» Sampling set

U={zeR?|a3/h}+a3/v} <1}

where hg,vg > 0.
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2 (#1,42) = (w2,—x1 —Acw2) 2120
(zf,23) = (0,Apwy) z1=0and 25 <0

» Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

» Sampling set

U={zeR?|a3/h}+a3/v} <1}

where hg,vg > 0.

> Strategically chosen samples to cover

(CcnU)\ (A+ pB) and
(DNU)N\ (A uB)
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(@1,%2) = (22,—x1 —Acwa) 21 >0

H{ (@,25) = (0, \pa2)

T2

xy
We enforce conditions at the centers of the

balls, and generalize them to every point in
(cuD)NU)\ (A+ uB).

x1:0and J,‘QSO

» Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

> Sampling set
U={z eR?|2}/hj+23/v] <1}
where hg,vg > 0.

> Strategically chosen samples to cover
(CnuU)\ (A+ uB) and
(DNU)N\ (A uB)
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2 (@1,%2) = (x2,—x1 — Aow2)
(xi‘r’x;r) = (0,/\[)372)

)

gl
We enforce conditions at the centers of the

balls, and generalize them to every point in
(CcuD)yNU)\ (A+ uB).

x120
x1:Oand J,‘QSO

Goal: Design learning-based Lyapunov
function to certify stability of A := 0.

Sampling set
U= {z¢€ R? | 22 /h2 + 23 /v2 < 1}

where hg,vg > 0.

Strategically chosen samples to cover
(CnU)\ (A+ pB) and

(D AU\ (A+ yiB)

We guarantee practical asymptotic
stability of A for # with respect to €.
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(35171’.2) = (I27 —T1 — )\C$2) 1 Z 0 -
H{ (a7,23) = (0,Apw2) z1=0and 22 <0 ec =0.01

= S—
gf‘vQ
&//(77 l//mllzjiAE A‘ - N
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(1172, —x1 — )\c.’Eg) X Z 0
(0,)\[)1,‘2) xrp = 0 and T < 0

n{ wtad)

ECc = 0.01

4r\‘

05 10

1

7c =0.015, Ly =4.482 7c = 0. 028 LA = 3.862
Ve V9
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T2

(1172, —x1 — )\cxg) T Z 0

(0,)\[)1,‘2) T = 0 and T < 0 i Lan
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—

+ 5.
+S

SN—
[l

. o
\\\ ,2?%“2 r 0.0 §§<>
= W 4 ——\
-10 g%):‘?ﬁ/y?ﬁ‘\\\\\ ‘ o %% 'q -10 .
l/‘ \ Yo 12 /mﬂ“‘ 0 *l-i Y

x Ty zy

7c =0.015, Ly =4.482 7c =0.028, Ly = 3.862 7c =0.037, Ly =1.110
Vo Vo Vo
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2y (#1,42) = (w2, —x1—Acw2) 2120
(xf,x;) = (0,Apx2) 1 =0 and 22 <0

C 0.2
L~ ‘ \ 00 =
A 53‘ ()Z/{ \ \ 0 é\'

i ‘ ~

» Specific structure of a neural network that is positive definite with respect to
A={0} on (CUD)NU.
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» Specific structure of a neural network that is positive definite with respect to
A={0} on (CUD)NU.

» We solve the SP using JAX. Augmented Lagrangian to account for constraints.




2y (#1,42) = (w2, —x1—Acw2) 2120
(xf,x;) = (0,Apx2) 1 =0 and 22 <0

C 0.2
00 =
092 =

{43 auy 1A

» Specific structure of a neural network that is positive definite with respect to
A={0} on (CUD)NU.

» We solve the SP using JAX. Augmented Lagrangian to account for constraints.

» We apply bootstrap evaluation.

=y =Ty

0.0 10 0.0 - 10

. 0.5 ks
2z 1o —L5 27 10 —L5
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» We proposed a data-driven algorithm to synthesize a Lyapunov function to
guarantee asymptotic stability of a set of interest for a hybrid system.
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» Given a cost functional associated to solutions to a hybrid system, results are
extended to obtain an upper bound on the cost, with no computing of solutions.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 22/23



» We proposed a data-driven algorithm to synthesize a Lyapunov function to
guarantee asymptotic stability of a set of interest for a hybrid system.

» Given a cost functional associated to solutions to a hybrid system, results are
extended to obtain an upper bound on the cost, with no computing of solutions.

> Generalization to sample space from enforcing point-wise conditions at finite
strategically-spaced samples.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 22/23



» We proposed a data-driven algorithm to synthesize a Lyapunov function to
guarantee asymptotic stability of a set of interest for a hybrid system.

» Given a cost functional associated to solutions to a hybrid system, results are
extended to obtain an upper bound on the cost, with no computing of solutions.

> Generalization to sample space from enforcing point-wise conditions at finite
strategically-spaced samples.

» Application in oscillator with impacts.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 22/23



» We proposed a data-driven algorithm to synthesize a Lyapunov function to
guarantee asymptotic stability of a set of interest for a hybrid system.

» Given a cost functional associated to solutions to a hybrid system, results are
extended to obtain an upper bound on the cost, with no computing of solutions.

> Generalization to sample space from enforcing point-wise conditions at finite
strategically-spaced samples.

» Application in oscillator with impacts.

» Future work: Evaluating different data-driven methods to learn the Lyapunov and
value functions, and an extension to hybrid inclusions.
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