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MOTIVATION

How Russia Is Trying To Complicate Ukraine's Drone
Defenses

Published Mar 07,2024 at 11:33 AM EST Updated Mar 07, 2024 at 5:21 PM EST

How drone
combat in Tl
Ukraineis e

o
PORTABLE ANTI-DRONE CONTROL
SYSTEM 3 OR 5 CHANNELS
f Portable 5-channel jammer. It can be used

The Invisible War in Ukraine Being Fought

Over Radio Waves

with both omnidirectional and directional
antennas mounted on a rifle mount.

Designed for jamming signals in the range
from 428 MHz to 5800 MHz.

o

https://piranha-tech.net
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MOTIVATION

How can agents coordinate their
actions without direct
communication in a cooperative
jamming scenario?
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SYSTEM MODEL — JAMMING AGENTS

= Multiple agents at fixed locations in a
region they are tasked to protect

= Each agent has a fixed-beam directional
antenna modelled as a single lobe of
width B°

= Fixed beamwidth with main lobe

= |f adversary is in main lobe from any
agent, it is jammed

= Consider discrete angular positions at
each antenna dividing covered area into

o

subsections

[e]

= Each agent learns resulting adversary
position and beam position of fellow
agents after choosing their own action
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SYSTEM MODEL — ADVERSARY

= Consider movement on gridded space with
discrete actions: up, down, left, right, .
stationary |
* Momentum parameter, u, equal to 401

probability agent repeats previous action .
35 1

= Smaller momentum probability . IE 63 363 S
corresponds to more evasive S
maneuvers/stochasticity '

= General pattern of left-to-right and then =
right-to-left Y I T . I T

20 25 30 35 40 45 50
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MOTIVATING ANALYSIS — ONE-D INFINITE MARKOV MOTION MODEL

= Consider simplified 1-D, unidirectional motion
model on infinite quantized line

= Adversary moves with probability g, remains
with probability 1-q

= Assume agents begin by pointing at adversary

= Let agents point at the next state with

probability p, or continue pointing at current
statewith1l —p

= Agents have knowledge of g

" If there are N-1 agents, choose p to maximize
probability of at least one agent pointing at
adversary
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MOTIVATING ANALYSIS— MARKOV CHAIN MODEL FOR AGENTS’ STATE

(1-q)1—-p")+q(1-(1-p)")

Some Point

All Point Behind All Point Ahead

q 1=4q
= Can model state of agents’ jamming as simple finite-state Markov chain

" If an agent points behind the adversary, it deterministically moves to the next position
to “catch up”

" If an agent points ahead of the adversary, it deterministically remains stationary to wait
for the adversary to “catch up”
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ANALYSIS—OPTIMALITY

= Solve for the optimal p interms of g and n

1—q
Popt — 1
P Ln—l
1—q

= Note that as the number of agents rises, p becomes more random to eliminate redundancy
Plot of 3 pursuers with g=0.7
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MOTIVATING ANALYSIS — EXPANSION OF MARKOV CHAIN

" Previous Markov chain can be expanded to
reveal recurrent subchain (outer states)

Some Point,
Some Behind

* |n this subchain, at least one agent is always Fys
pointing at the adversary, resulting in optimum
performance

F33

= Reaching recurrent states requires stochastic
policy

= Deterministic agents make same decision &
thus can never reach this optimal
configuration

Some Point,
Some Ahead

" Note that in this recurrent subchain, agents
may still switch their roles (which ones
advance where they point and which ones are
stationary)

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING 9 —



SIMULATION—FINITE MARKOV CHAIN

= Simulation is completed of the expanded
Markov chain

= Reinforcement learning to see if the agents
could learn optimal policy

" Four metrics (%):
1) An agent points at the adversary
2) The agents are in the same state
3) A deterministic policy is used

4) The agents are in the absorbing states
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TRAINED Q-TABLEEXAMPLE
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TRAINED Q-TABLEEXAMPLE
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TRAINED Q-TABLEEXAMPLE
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Stochastic Cooperation with Two Antenna Beamwidths
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SIMULATION—SYSTEM MODEL

= Two agents adjacently placed near the center of the environment
= Beamwidths of 36° with 10 distinct radial positions

= Two action space strategies:
= Three deterministic-only pmfs (e.g [1.0,0.0,0.0])
" Thirteen stochastic and deterministic pmfs (e.g. [0.7,0.3,0.0])

= Simulation run for three values of adversary momentum:
u=09u=07u=0.5
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SIMULATION—RESULTS

= Consider deterministic policies first
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SIMULATION—RESULTS

* Now allow stochastic policies (solid lines):
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SIMULATION - ENTROPY

= States where beams are in overlap and adversary momentum was leaving were collected to

analyze trained decisions
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