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Protecting Information - Motivation
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• Conjunction analysis: how to address potentially undisclosed satellites?

• More general question: How to prevent collisions without revealing what’s 
in the air?

• Even more general: How to ensure data communicated by autonomous 
agents stays secure and private?
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https://www.nasa.gov/cara/



Protecting Information - Motivation
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• Conjunction analysis: how to address potentially undisclosed satellites?

• More general question: How to prevent collisions without revealing what’s 
in the air?

• Even more general: How to ensure data communicated by autonomous 
agents stays secure and private?

• Data

• System

• Platform

• Decision-making

• User (real-time or training)
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Authentication 
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• Examining limitations of authentication systems that employ machine 
learning and rely on “brittle” features 
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• Query-efficient fuzzing for adversarial 
sample crafting through feature extractor 
and heuristics for finding brittle features



Hard-label adversarial machine learning attacks are a “grand-prize”:
• Adversary only needs query access to generate “label-flipped” samples (e.g., 

through compromised user)

• Hard-label attacks are gaining popularity, but not well characterized apart from 
convergence guarantees.

Sample

Label

Adversary Autonomous 
Agent

Hard-Label Attacks



Subsampling and query efficiency

• Questions we sought to answer:
• What advantages does search subsampling give the adversary?
• How can we generalize the idea of search subsampling?

• We addressed this as an information-theoretic problem, leveraging the data 
processing inequality to derive a close—form solution of manifold-gradient 
mutual information



Results of Dimensionality Reduction
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Protecting Platforms and Users
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• Reducing re-identification risk 
through differential privacy eye 
tracking mechanisms for both post-
processed and real-time streaming 
data
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• Information protection through access 
control on embedded/mobile platforms
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Security in Space

11

Congested & Contested
• Rapidly growing number of 

and dependence on satellites

• Protection of critical 
infrastructure

• Rendezvous & Proximity 
Operations (RPO) and In-
Space Servicing, Assembly, 
Manufacturing (ISAM)

• Motivates autonomy needs

• Need to develop security 
standards and protocols

The Aerospace Corporation, 2019
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Recap
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Using privacy preserving computation to secure data during satellite 
rendezvous & proximity operations (RPO) 

• Explored methods and tools for secure multi-party computation (SMC) 

• Worked with Kirtland AFRL to determine commonly-used satellite 
algorithms (hence RPO) and embedded hardware that is operable in space

• Determined the need for privacy during RPO, little existing research

• Demonstrated that SMC is a feasible approach and can be done in 
RPO algorithms given space constraints

• Optimized SMC protocol parameters for in-space constraints, and 
customized underlying cryptography for different algorithmic functions  
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Motivation: RPO

Ground station On-Board

Distance between 
satellites

1-10 Mm < 500 km

Time needed Days-weeks < 1 day

Speed km /sec m /sec

Method conjunction analysis RPO
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Rendezvous & proximity operations (RPO)
• On-orbit trajectory operation & replanning

• Servicing (e.g., docking, refuel, repair), inspection, reconnaissance, 
formation flying, collision avoidance, debris removal

• Occurs autonomously on-board in guidance navigation and control (GNC)



Problem: Proprietary Design Inference

Example: collision avoidance
• Data to share with other satellites

  position       velocity    covariance

• Covariance matrices quantify uncertainty
• Calculated using intrinsic sensor variance

• Measure of trust in probabilistic system

Problem: knowledge of covariance matrices can 
lead to knowledge of sensors on board 

à inference of satellite capabilities, purpose, etc.
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Covariance = 10-20 km

⁄! "# accuracy
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Solution:  protect sensitive values using 
 privacy-preserving computation

Sensitive Values* Threat Assumptions

Covariance matrices Infer proprietary sensor 
info

Fuel levels May infer satellite 
capacity/mission objectives

State-of-health telemetry 
(e.g. power, heat use)

Infer propulsion system, 

Installation/servicing 
technology parameters

Infer IP (e.g. IC design, 
robotic arm capability)

*not exhaustive list, values are mission dependent

Problem: Proprietary Design Inference

Example: in-space manufacturing
• Integrated circuits, advanced materials, bioengineering, large assembly (Luvoir telescope)  



Privacy-Preserving Computation

Secure Multiparty Computation (SMC): 
• Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a 

function on their inputs, without revealing information about inputs (millionaire’s problem)

Privacy-Preserving Computation
• Allows for data to remain encrypted during computation
• Protect physical integrity of satellite during RPO and data privacy keeping data encrypted
• Promising for other constrained systems (wireless sensor network, embedded devices)
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Underlying Primitives
• Secret Sharing
• Oblivious Transfer
• Homomorphic Encryption
• Garbled Circuits

Computation Domain
Mathematical structure of secret info
• Binary circuits or arithmetic circuits
• Ring or finite field defined by integer 

operation with modulus prime or 2!



Security Model
Adversarial Settings

• Honest vs. dishonest majority – assumption of behavior of parties
• Semi-honest vs. malicious corruption – passive vs. active adversary
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Case 1: Honest majority, semi-honest model
• MPC operation within organization, trusted computing parties
• Preventing accidental leakage

Case 2: Dishonest majority, semi-honest model
• Compromised coalition of multiple stakeholders with common 

mission goal
• Prevent passive adversaries from learning proprietary information

Case 3: Dishonest majority, malicious model
• MPC done between untrustworthy organizations
• Expectation of attack on protocol itself



Implementation

Hardware setup: 3 Nvidia Nanos – each 4 ARM 
CPUs, 1.47GHz clock speed, over 1 Gbps port
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Benchmarks
• Small satellites assumed for this research

• “passively safe” model – optimizes 
calculations for time and fuel levels

• Network emulates latency and bandwidth in 
space communications (500km distance, 10 
Mbsp bandwidth)

Finding hardware for use in space
o Commercial off-the-shelf (COTS)
o Sufficient radiation tolerance 

o e.g. 1-1.5 years for small satellites
o Sufficient power & efficiency with limited 

resources



Table of protocols 

SMC Configurations

MP-SPDZ SMC Compiler
• Dishonest majority, semi-honest:

       hemi, semi, semi2k*, soho, temi
• Dishonest majority, malicious:

       mascot, mama, spdz2k

• Honest majority**, semi-honest:

      rep-field, rep-ring, shamir

• Honest majority, malicious:
      maliciously-secure variations of 

rep-field, rep-ring, and shamir
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Protocol Specifics Other protocols in 
family

mascot GF(p) field-based, OT-based 
preprocessing

mama, 
SPDZ2k (mod 2^k)

semi GF(p), stripped version of 
mascot, OT for preprocessing 

(hemi/soho/temi use SHE)

semi2k (mod 2^k), 
hemi, temi, soho

replicated-field Replicated secret shares over 
field GF(p), supports all 

arithmetic (+/-/x/÷), minimal 
communication

mal-rep-field, ps-rep-
field, sy-rep-field

replicated-ring Replicated secret shares over 
ring (mod 2^k), faster mult & 
bitwise ops, does not support 

division

mal-rep-ring, ps-rep-
ring, sy-rep-ring

shamir Threshold secret sharing over 
field, higher comms, stronger 

security capabilities

mal-shamir, sy-shamir



Collision Avoidance

Artificial Potential Function (APF): 

• Docking, servicing, collision avoidance
• On-board trajectory control

• Assume linear orbital dynamics: one satellite 
stationary relative to other

2010.1007/978-981-10-2963-9_5

Satellite trajectory to avoid obstacle

Chaser

Object



Collision Avoidance

How it works:

• 2 satellites: Chaser and Obstacle
• 3 positions (3x3 in space): chaser, obstacle, target
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Attractive Potential

𝜙$ =
𝑘$
2
𝒓%&𝑸$𝒓%&

Repulsive Potential

𝜙' = exp[
−𝒓%(𝑵𝒓𝒄𝒐

𝜎
]

Control Forces

𝒖 𝒙𝒄, 𝒙𝒕, 𝒙𝒗𝒆𝒍 = −𝑩/!𝑲$ 𝒙𝒗𝒆𝒍 + ∇𝜙&(& ,      where 

      ∇𝜙&(& = 𝑘$𝑸$𝒓%& +
01
#
exp[/𝒓"#𝑵𝒓𝒄𝒐

#
]𝑵𝒓𝒄𝒐

𝒓&' , 𝒓&(= distance between chaser and target, obstacle 
respectively; 𝑘) , σ, 𝜓 are constants; 𝑸)= covariance 
matrix of Target, 𝑵	= covariance of obstacle
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APF Pseudocode

expensive
operation



Algorithm 2: Quadratic Program

Quadratic Program: multi-point inspection
• Sensor Fusion optimization algorithm
• Need 3+ parties for 3 dimensional accuracy
• Allows for preprocessing expensive computations
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𝑥*, 𝑃*

QP𝑥+, 𝑃+

𝑥,, 𝑃,

𝒙𝒐𝒖𝒕, 𝑷𝒐𝒖𝒕

Shared parameters 

• Measured positions: 𝑥*, 𝑥+, 𝑥, 

• Position covariance:	𝑃*, 𝑃+, 𝑃,

Public

Private
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QP Pseudocode

expensive
operation



MPC Optimizations
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• CODE: reduced computational complexity and redundancy in both APF and QP code

• Represent 3x3 diagonal matrices as 3x1 vectors

• Vectorized multiplications, comparisons, other operations

• Imported pre-computed values from Chaser and Object, rather than hardcode

• Eliminated code “fluff”, unused variables, and redundancy (i.e. combined loops)

• Used fixed point (sfix, cfix) over floating point (expensive in MP-SPDZ)

• Removed unnecessarily privatized variables, making them public instead

• i.e. positions in space are not particularly sensitive



MPC Optimizations
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• NETWORK: used MP-SPDZ optimization parameters 

• --direct: instructs protocol to bypass usual preprocessing steps for certain 
gates, enabling direct communication between parties, typically for input or 
output gates 

• --batch size: controls how many independent inputs or operations are 
processed together in a single batch; optimizes preprocessing 

• Ex. For HE, 1 multiplication costs same as 10,000. Can reduce batch size 
to reduce comms cost, though potentially increasing number of rounds

• --budget: sets limit for number of preprocessing elements (e.g., triples, bits, 
etc.) to be used or generated, preventing overuse of resources in constrained 
environments. 

• Controls tradeoff between compile speed/memory usage and 
communication rounds during execution 



Previous APF evaluation
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Semi-honest model

dis
(Malicious model 

omitted)



Evaluation – APF Benchmarks
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Total execution 
time

Communication 
rounds

 semi2k, spdz2k

 soho, mascot

 semi2k, spdz2kData shared



Previous QP Evaluation
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Semi honest model

(Malicious model 
omitted)



Evaluation: QP Benchmarks
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Dishonest Majority

 hemi, mama



Evaluation: QP Benchmarks
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Honest Majority

 hemi, mama



32

Observations

• Number of communication rounds

o Varies based on computation 

o Lowering round complexity of implementation à very important

o Optimized using the --budget parameter, i.e. set to 100,000 instead of default 1,000

• 3 party dishonest & honest majority protocols

o Semi-honest and malicious settings have comparable performance for online time

o Reasonable to use malicious-secure setting if preprocessing is possible

• Honest majority protocols

o Shamir is fastest online for malicious-secure protocols

o Optimized shamir using --direct parameter to implement direct communications 
between parties rather than interpolation and “star-shaped” communications  



Takeaway

Source: verdict.co.uk

Conclusion:
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• Space is highly constrained à security & privacy 
solutions must be highly customized

o Parameters can be tweaked to improve given 
protocol for given algorithm

o Lowering round complexity of implementation 
à very important

• Values are very reasonable for RPO constraints of    
< 5 minutes and < 10 MB:
o 2 party: 1.81 sec, 0.97 MB (1.2x faster)

o 3 party (DM, online): 1.79 sec, 0.13 MB (7.4x faster)

o 3 party (HM, online): 0.79 sec, 0.03 MB (3.3x faster)
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Questions?


