Protecting the Privacy of Computing Operations and Data in Autonomous Environments

Kevin Butler & Caroline (Fedele) Brandon University of Florida

April 2025

- Conjunction analysis: how to address potentially undisclosed satellites?
- More general question: How to prevent collisions without revealing what's in the air?
- Even more general: How to ensure data communicated by autonomous agents stays secure and private?

https://www.nasa.gov/cara/

- Conjunction analysis: how to address potentially undisclosed satellites?
- More general question: How to prevent collisions without revealing what's in the air?
- Even more general: How to ensure data communicated by autonomous agents stays secure and private?
 - Data
 - System
 - Platform
 - Decision-making
 - User (real-time or training)

- Washington Garcia (ACT3/AFRL) UDRI/ACT3
- Caroline (Fedele) Brandon (2022/2023 AFRL/RV) *L3Harris*
- Grant Hernandez Qualcomm L3Harris
- Brendan David-John Virginia Tech
- Joel Hirschmann

Authentication

Examining limitations of authentication systems that employ machine learning and rely on "brittle" features

NIVERSITY of

 Query-efficient fuzzing for adversarial sample crafting through feature extractor and heuristics for finding brittle features

Hard-label adversarial machine learning attacks are a "grand-prize":

- Adversary only needs *query access* to generate "label-flipped" samples (e.g., through compromised user)
- Hard-label attacks are gaining popularity, but not well characterized apart from convergence guarantees.

Adversary

Autonomous Agent

- Questions we sought to answer:
 - What advantages does search subsampling give the adversary?
 - How can we generalize the idea of search subsampling?
- We addressed this as an information-theoretic problem, leveraging the data processing inequality to derive a close—form solution of manifold-gradient mutual information

$$I(\mathcal{G}, \mathcal{M})_{\epsilon} = 2 \int_{\mathcal{M}^{+}} p(1, x^{+}) \log(\frac{p(1, x^{+})}{p_{\mathcal{G}}(1)p_{\mathcal{M}}(x^{+})}) dx^{+} + 2 \int_{\mathcal{M}^{+}} p(-1, x^{+}) \log(\frac{p(-1, x^{+})}{p_{\mathcal{G}}(-1)p_{\mathcal{M}}(x^{+})}) dx^{+}.$$

$$I(\mathcal{G}, \mathcal{M})_{\epsilon} = \frac{2}{\sqrt{2\pi}\sigma^{2}} \sum_{i=1}^{||\mathcal{M}^{+}||} \exp(-\frac{(x_{i}^{*} - \theta)^{2}}{2\sigma^{2}}) \cdot \beta_{i}^{+} \Delta_{i} + \frac{2}{\sqrt{2\pi}\sigma^{2}} \sum_{i=1}^{||\mathcal{M}^{+}||} \exp(-\frac{(x_{i}^{*} + \theta)^{2}}{2\sigma^{2}}) \cdot \beta_{i}^{-} \Delta_{i}.$$

Adversarial

Results of Dimensionality Reduction

HSJA

BiLN+HSJA

AE+Sign-OPT

Diff

Protecting Platforms and Users

 Reducing re-identification risk through differential privacy eye tracking mechanisms for both postprocessed and real-time streaming data

 Information protection through access control on embedded/mobile platforms

The Final Security Frontier: Securing Satellite Rendezvous and Proximity Operations with Secure Multi-party Computation

Caroline (Fedele) Brandon

L3Harris Technologies | University of Florida

April 2025

Security in Space

Congested & Contested

- Rapidly growing number of and dependence on satellites
- Protection of critical infrastructure
- Rendezvous & Proximity Operations (RPO) and In-Space Servicing, Assembly, Manufacturing (ISAM)
- Motivates autonomy needs
- Need to develop security standards and protocols

The Aerospace Corporation, 2019

Using privacy preserving computation to secure data during satellite rendezvous & proximity operations (RPO)

- Explored methods and tools for secure multi-party computation (SMC)
- Worked with Kirtland AFRL to determine commonly-used satellite algorithms (hence RPO) and embedded hardware that is operable in space
- Determined the need for privacy during RPO, little existing research
- Demonstrated that SMC is a feasible approach and can be done in RPO algorithms given space constraints
- Optimized SMC protocol parameters for in-space constraints, and customized underlying cryptography for different algorithmic functions

Rendezvous & proximity operations (RPO)

- On-orbit trajectory operation & replanning
 - Servicing (e.g., docking, refuel, repair), inspection, reconnaissance, formation flying, collision avoidance, debris removal
- Occurs autonomously on-board in guidance navigation and control (GNC)

	Ground station	On-Board
Distance between satellites	1-10 Mm	< 500 km
Time needed	Days-weeks	< 1 day
Speed	km /sec	m /sec
Method	conjunction analysis	RPO

Problem: Proprietary Design Inference

Example: collision avoidance

• Data to share with other satellites

velocity

covariance

- Covariance matrices quantify uncertainty
 - Calculated using intrinsic sensor variance
 - Measure of trust in probabilistic system

Problem: knowledge of covariance matrices can lead to knowledge of sensors on board

 \rightarrow inference of satellite capabilities, purpose, etc.

Problem: Proprietary Design Inference

Example: in-space manufacturing

• Integrated circuits, advanced materials, bioengineering, large assembly (Luvoir telescope)

Sensitive Values*	Threat Assumptions
Covariance matrices	Infer proprietary sensor info
Fuel levels	May infer satellite capacity/mission objectives
State-of-health telemetry (e.g. power, heat use)	Infer propulsion system,
Installation/servicing technology parameters	Infer IP (e.g. IC design, robotic arm capability)

*not exhaustive list, values are mission dependent

Solution: protect sensitive values using privacy-preserving computation

15

Privacy-Preserving Computation

- Allows for data to remain encrypted during computation
- Protect **physical integrity** of satellite during RPO and **data privacy** keeping data encrypted
- Promising for other constrained systems (wireless sensor network, embedded devices)

Secure Multiparty Computation (SMC):

• Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a function on their inputs, without revealing information about inputs (millionaire's problem)

Computation Domain

Mathematical structure of secret info

- Binary circuits or arithmetic circuits
- Ring or finite field defined by integer operation with modulus prime or 2^k

Underlying Primitives

- Secret Sharing
- Oblivious Transfer
- Homomorphic Encryption
- Garbled Circuits

Adversarial Settings

- Honest vs. dishonest majority assumption of behavior of parties
- Semi-honest vs. malicious corruption passive vs. active adversary

Case 1: Honest majority, semi-honest model

- MPC operation within organization, trusted computing parties
- Preventing accidental leakage

Case 2: Dishonest majority, semi-honest model

- Compromised coalition of multiple stakeholders with common mission goal
- Prevent passive adversaries from learning proprietary information

Case 3: Dishonest majority, malicious model

- MPC done between untrustworthy organizations
- Expectation of attack on protocol itself

17

Implementation

Benchmarks

- Small satellites assumed for this research
- "passively safe" model optimizes calculations for time and fuel levels
- Network emulates latency and bandwidth in space communications (500km distance, 10 Mbsp bandwidth)

Hardware setup: 3 Nvidia Nanos – each 4 ARM CPUs, 1.47GHz clock speed, over 1 Gbps port

On Board		Network	
Execution	30 sec - 5 min	Frequency	S, X, Ku, Ka,
time			optical
Memory	10 MB	Rate	10 Mbps – 1
			Gbps
Examples	Dove constellation, OneWeb and		
	SpaceX's Ku-Ka-band satellites, Kepler		
	system, Spire's small satellites		

Finding hardware for use in space

- Commercial off-the-shelf (COTS)
- o Sufficient radiation tolerance
 - e.g. 1-1.5 years for small satellites
- Sufficient power & efficiency with limited resources

SMC Configurations

Table of protocols

Protocol	Specifics	Other protocols in family
mascot	GF(p) field-based, OT-based preprocessing	mama, SPDZ2k (mod 2^k)
semi	GF(p), stripped version of mascot, OT for preprocessing (hemi/soho/temi use SHE)	semi2k (mod 2^k), hemi, temi, soho
replicated-field	Replicated secret shares over field GF(p), supports all arithmetic (+/-/x/÷), minimal communication	mal-rep-field, ps-rep- field, sy-rep-field
replicated-ring	Replicated secret shares over ring (mod 2^k), faster mult & bitwise ops, does not support division	mal-rep-ring, ps-rep- ring, sy-rep-ring
shamir	Threshold secret sharing over field, higher comms, stronger security capabilities	mal-shamir, sy-shamir

MP-SPDZ SMC Compiler

- Dishonest majority, semi-honest: hemi, semi, semi2k*, soho, temi
- Dishonest majority, malicious: mascot, mama, spdz2k
- Honest majority**, semi-honest: rep-field, rep-ring, shamir
- Honest majority, malicious: maliciously-secure variations of rep-field, rep-ring, and shamir

Collision Avoidance

20

10.1007/978-981-10-2963-9_5

Artificial Potential Function (APF):

- Docking, servicing, collision avoidance
 - On-board trajectory control
- Assume linear orbital dynamics: one satellite stationary relative to other

Parameter	Value	Privacy
$\mathbf{c}_{pos}, \mathbf{o}_{pos}, \mathbf{t}_{pos}$	vectors of chaser, object, tar-	public
	get positions respectively	
k_a, \mathbf{K}_{acc}	Gain values	public
B _{inv}	Input guidance parameter	private
Qa	Target covariance matrix	private
c _{vel}	Chaser's velocity	private
ψ, σ	Chaser's height, width	private
Ν	Object's covariance matrix	private

Satellite trajectory to avoid obstacle

Collision Avoidance

How it works:

- 2 satellites: Chaser and Obstacle
- 3 positions (3x3 in space): chaser, obstacle, target

Attractive Potential

Repulsive Potential

$$\phi_a = \frac{k_a}{2} \boldsymbol{r}_{ct} \boldsymbol{Q}_a \boldsymbol{r}_{ct} \qquad \phi_r = \exp[\frac{-\boldsymbol{r}_{co} \boldsymbol{N} \boldsymbol{r}_{co}}{\sigma}]$$

 r_{ct} , r_{co} = distance between chaser and target, obstacle respectively; k_a , σ , ψ are constants; Q_a = covariance matrix of Target, N = covariance of obstacle

Control Forces

$$\boldsymbol{u}(\boldsymbol{x_{c}}, \boldsymbol{x_{t}}, \boldsymbol{x_{vel}}) = -\boldsymbol{B}^{-1}\boldsymbol{K}_{a}(\boldsymbol{x_{vel}} + \nabla\phi_{tot}), \quad \text{where}$$
$$\nabla\phi_{tot} = k_{a}\boldsymbol{Q}_{a}\boldsymbol{r}_{ct} + \frac{2\psi}{\sigma}\exp[\frac{-r_{co}Nr_{co}}{\sigma}]N\boldsymbol{r}_{co}$$


```
Public parameters: k_a \in \mathbb{R}, K_{acc} \in \mathbb{R}^3 (gain and shaping factors)
  All matrices (Kacc, Qa, N, Binv) are assumed to be diagonal and
              replaced with vectors of their diagonal elements
  1: procedure APF(c_{pos}, o_{pos}, t_{pos} \in \mathbb{R}^3, [[c_{vel}]], [[Q_a]], [[N]],
       \llbracket \mathbf{B_{inv}} \rrbracket \in \mathbb{R}^3, \llbracket \sigma \rrbracket, \llbracket \psi \rrbracket \in \mathbb{R})
                                                                \triangleright coordinates c_{pos}, o_{pos}, and
      tpos are public; private N is contributed by the object; private
      \mathbf{c_{vel}}, \mathbf{Q}_{a}, \mathbf{B}_{inv}, \sigma, \text{ and } \psi are contributed by the chaser
             rCt \leftarrow t_{pos} - c_{pos}
                                                                         chaser-target distance
  2:
             if (rCt[2] > \pi) then
                                                          ▶ wrap angle between -\pi and \pi
  3:
                   rCt[2] \leftarrow rCt[2] - 2\pi
  4:
             else if (rCt[2] < -\pi) then
  5:
                   rCt[2] \leftarrow rCt[2] + 2\pi
  6:
            end if
  7:
                                                                         chaser-object distance
             rCo \leftarrow o_{pos} - c_{pos}
  8:
             if (rCo[2] > \pi) then
                                                          ▶ wrap angle between -\pi and \pi
  9:
                   rCo[2] \leftarrow rCo[2] - 2\pi
 10:
             else if (rCo[2] < -\pi) then
 11:
                   rCo[2] \leftarrow rCo[2] + 2\pi
12:
             end if
 13:
             \llbracket \nabla \phi_{\mathbf{A}} \rrbracket \leftarrow (k_a \cdot \mathbf{rCt}) \cdot \llbracket \mathbf{Q_a} \rrbracket \triangleright attractive potential gradient
 14:
             \llbracket x \rrbracket \leftarrow (\mathbf{rCo} \cdot \mathbf{rCo}) \odot \llbracket \mathbf{N} \rrbracket
15:
             [constVio] = 0
 16:
             if ([x] < 1) then
 17:
                    [constVio] = 1
 18:
             end if
 19:
             [x] \leftarrow -[x]/[\sigma]
 20:
            \llbracket \nabla \phi_{\mathbf{R}} \rrbracket \leftarrow 2\llbracket \psi \rrbracket / \llbracket \sigma \rrbracket \cdot e^{\llbracket x \rrbracket} \cdot (\mathbf{rCo} \cdot \llbracket \mathbf{N} \rrbracket)
                                                                                                ▶ repulsive
 21:
      potential gradient
             \llbracket \mathbf{u} \rrbracket \leftarrow (-\mathbf{K}_{\mathbf{acc}}) \cdot \llbracket \mathbf{B}_{\mathbf{inv}} \rrbracket \cdot (\llbracket \mathbf{c}_{\mathbf{vel}} \rrbracket + \llbracket \nabla \phi_{\mathbf{A}} \rrbracket + \llbracket \nabla \phi_{\mathbf{R}} \rrbracket)
22:
                                                                                                                 ⊳
      compute control force
             return [[u]], [[constVio]]
 23:
 24: end procedure
```

APF Pseudocode

NIVERSITY of

Algorithm 2: Quadratic Program

NIVERSITY of

Sensor Fusion optimization algorithm Need 3+ parties for 3 dimensional accuracy Allows for preprocessing expensive computation: ۲ x_1, P_1 x_2, P_2 QP x_{out}, P_{out} x_{3}, P_{3} miner 2 **Shared parameters** Measured positions: x_1, x_2, x_3 Public Position covariance: P_1, P_2, P_3 **Private**

Quadratic Program: multi-point inspection

23

Algorithm 2 Quadratic Program

1: procedure $QP(pos_1, pos_2, pos_3) \in \mathbb{R}^3, [P_1^{-1}], [P_2^{-1}], [P_2^$ $[P_3^{-1}] \in \mathbb{R}^{3 \times 3}$ > measured coordinates **pos**₁, **pos**₂, **pos**₃ are public; private inverse covariance matrix $[\![\mathbf{P}_i^{-1}]\!]$ is contributed by participant *i*

$$2: \quad \llbracket \mathbf{M} \rrbracket \leftarrow 2(\llbracket \mathbf{P}_{1}^{-1} \rrbracket + \llbracket \mathbf{P}_{2}^{-1} \rrbracket + \llbracket \mathbf{P}_{3}^{-1} \rrbracket)$$

$$3: \quad \llbracket \mathbf{v} \rrbracket \leftarrow 2(\llbracket \mathbf{P}_{1}^{-1} \rrbracket \llbracket \mathbf{pos}_{1} \rrbracket + \llbracket \mathbf{P}_{2}^{-1} \rrbracket \llbracket \mathbf{pos}_{2} \rrbracket + \llbracket \mathbf{P}_{3}^{-1} \rrbracket \llbracket \mathbf{pos}_{3} \rrbracket)$$

$$expensive operation$$

$$4: \quad \llbracket \mathbf{e} \rrbracket \leftarrow \llbracket \mathbf{M} \rrbracket^{-1} \llbracket \mathbf{v} \rrbracket$$

$$5: \quad \mathbf{return} \llbracket \mathbf{e} \rrbracket \qquad \triangleright \text{ position uncertainty}$$

6: end procedure

operation

- **CODE:** reduced computational complexity and redundancy in both APF and QP code
 - Represent 3x3 diagonal matrices as 3x1 vectors
 - Vectorized multiplications, comparisons, other operations
 - Imported pre-computed values from Chaser and Object, rather than hardcode
 - Eliminated code "fluff", unused variables, and redundancy (i.e. combined loops)
 - Used fixed point (sfix, cfix) over floating point (expensive in MP-SPDZ)
 - Removed unnecessarily privatized variables, making them public instead
 - i.e. positions in space are not particularly sensitive

MPC Optimizations

- **NETWORK:** used MP-SPDZ optimization parameters
 - --direct: instructs protocol to bypass usual preprocessing steps for certain gates, enabling direct communication between parties, typically for input or output gates
 - --batch size: controls how many independent inputs or operations are processed together in a single batch; optimizes preprocessing
 - Ex. For HE, 1 multiplication costs same as 10,000. Can reduce batch size to reduce comms cost, though potentially increasing number of rounds
 - --budget: sets limit for number of preprocessing elements (e.g., triples, bits, etc.) to be used or generated, preventing overuse of resources in constrained environments.
 - Controls tradeoff between compile speed/memory usage and communication rounds during execution

Previous APF evaluation

Evaluation – APF Benchmarks

Previous QP Evaluation

Evaluation: QP Benchmarks

Dishonest Majority

Honest Majority

→ hemi, mama

31

sy

shamir

sy

shamir

263

sy

shamir

Observations

- Number of communication rounds
 - Varies based on computation
 - \circ Lowering round complexity of implementation \rightarrow very important
 - Optimized using the --budget parameter, i.e. set to 100,000 instead of default 1,000
- 3 party dishonest & honest majority protocols
 - o Semi-honest and malicious settings have comparable performance for online time
 - Reasonable to use malicious-secure setting if preprocessing is possible
- Honest majority protocols
 - Shamir is fastest online for malicious-secure protocols
 - Optimized shamir using --direct parameter to implement direct communications between parties rather than interpolation and "star-shaped" communications

Source: verdict.co.uk

Conclusion:

- Space is *highly* constrained → security & privacy solutions must be *highly* customized
 - Parameters can be tweaked to improve given protocol for given algorithm
 - Lowering round complexity of implementation
 → very important
- Values are very reasonable for RPO constraints of < 5 minutes and < 10 MB:
 - 2 party: 1.81 sec, 0.97 MB (1.2x faster)
 - 3 party (DM, online): 1.79 sec, 0.13 MB (7.4x faster)
 - 3 party (HM, online): 0.79 sec, 0.03 MB (3.3x faster)

Acknowledgements

Kevin Butler

Marina Blanton

Chrispy Petersen

Carson Stillman

Joel Hirschmann

Sara Rampazzi

Questions?

uke

34