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Motivation

e 36,000+ tracked debris items in Earth orbit (>10 cm)
* Estimated 1,000,000 untracked items (1 mm-10 cm)
* Kessler Syndrome

* Active debris removal
* Some techniques require docking for debris capture
* We consider SmallSats for cost-effective operations

* Mission failures are a contributing factor to debris
* Increasing spacecraft launches > more potential failures*

* We present an autonomous nonlinear optimal control
solution to an underactuated docking case study to

* Improve cost efficiency by reducing the number of
actuators

* Provide options in the event of actuation failures

* Stephen A Jacklin. Small-Satellite Mission Failure Rates. Technical Report NASA/TM—2018-220034, NASA Ames Research Center, Moffett Field, CA, 2019.
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/yD Underactuated 6U CubeSat

*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021.
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Research Challenge Problem

* The entire state space is defined as
X

y
6
*
"

0

* Letthe control-input be defined as

+=(52)

$ =As+ B(6)u
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Underactuated 6U CubeSat

*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021.
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Research Challenge Problem

* The entire state space is defined as  Reaction wheel actuation is used to

| |
| |
X : calculated angular acceleration using :
g | 0 _ Dzlpz |
S = x | z IZ I
y : « Coupling occurs in the control :
: . 9, =[SO o .
) . I Y Sm(H) |
* Letthe control-input be defined as L |
( F ) """"""""""
u = .
Y,
$ =As + B(O)u 0 0
0O 0 0 1 0O O 0 0
0O 0 0 0 1 0 0(9) 0
1 0 0 O 0 0 1 = 0
A= 31 00 0 2n O BO)=| m
sin(0)
O 0 0 —-2n 0 O 0
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*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021.
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The Problem Cannot Be Solved
with Classical Control

* Lie algebratells us*:

* When linearized, the system is neither controllable
nor stabilizable

* |tcannot be transformed into a controllable linear
system

* Even with state feedback
* The system is naturally unstable when no control is
applied
* These limitations mean that:
» Standard linear control methods won't work
* Linear Lyapunov-based control design isn't possible

* Smooth (continuous) state feedback control won't
stabilize the system
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*A. A. Soderlund and S. Phillips, “Hybrid Systems Approach to Autonomous Rendezvous and Docking of an Underactuated Satellite,” Journal of Guidance, Control, and Dynamics, vol. 46, no. 10, pp. 1901-1918, Oct. 2023
**A, Zaman, A. A. Soderlund, C. Petersen, and S. Phillips, “Autonomous Satellite Rendezvous and Proximity Operations via Model Predictive Control Methods,” Big Sky, Virtual, 2021
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Formulate as OCP: Direct,

minimize Cost i
Indirect

. C.)ptlmlze:. . U= [uk;uk+1; ""uk+H]
root finding, Hamiltonian, R
Interior point, primal dual,
quadratic programming

Subject to:
Sk+1 = f(Sk, Uke)

*D. Garg, M. A. Patterson, C. Francolin, C. L. Darby, G. T. Huntington, W. W. Hager, and A. V. Rao, “Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control
problems using a Radau pseudospectral method,”Computational Optimization and Applications, vol. 49, no. 2, pp. 335-358, Jun. 2011.[Online]. Available: http://link.springer.com/10.1007/s10589-009-9291-0
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Add Recursion

Formulate as OCP:

minimize Cost Indirect/Direct

Optimize:
Subject to: root finding, Hamiltonian,
Sk+1 = f (Sk, Ux) Interior point, primal dual,
quadratic programming

U= [u, U1, Sk+n]

St+1 . Uy = Ui
Environment

A

*L. Gr"une and J. Pannek, Nonlinear model predictive control: theory and algorithms, second edition ed., ser. Communications and control engineering. Cham, Switzerland: Springer, 2017
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Stability of nMPC with Terminal Constraints

* Previous research identified concerns with stability
* We were able to generate trajectories with monotonicity
* However, they were sensitive to initializations

* Weakens requirement that the Lyapunov function must be
continuous in the state

* We can enforce stability by including a terminal state
constraint

Theorem 1*: For a discrete-time MPC problem with a terminal
state condition sy = 0, and if Vyy is continuous at s; = 0 and L
satisfies Requirements 1 and 2, then the originis an

asymptotically stable equilibrium of the discrete-time system.

Requirement1: L(0,0) =0

Requirement 2: There exists a non-decreasing function
y:[0,0) = [0,) such thaty(0) = 0and 0 < y(||s,u||) <
L(s,u) for all (s,u) # 0, in which ||*,|| is a norm on the pair

(s,u)

*E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Receding horizon control and discontinuous state feedback stabilization,” International Journal of Control, vol. 62, no. 5, pp. 1217-1229, Nov. 1995, publisher: Taylor & Francis 9

**H, H. Sohrab, Basic Real Analysis, 2nd ed., ser. SpringerLink B“ucher. New York, NY: Birkhauser, 2014
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NMPC without terminal constraints

Adding a terminal state does a lot

* Guarantees asymptotic stability 106
* Explicit handling of constraints
5
* Fillsthe gap in understanding in the literature 5 10
« However = 10
« Requires a long prediction horizon = " —— Value Function
* Larger problem % Average Value Function Bound
=102 4
* Longer computation time ® 10
a¥ :
* Can we solve this without a terminal state? = 10!
* Linear MPC rules don’t apply 109
e Can’tinduce monotonicity
* Use the average cost to bound the value function 0.0 0.5 1.0 1.5 2.0 2.5
: 1 = I Time (sec) x10°
I
I VH S N VHTL :
I n=0 :
e e o o e e e e e e

10
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Benchmark Simulation Setup 10°
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Benchmark Simulation Setup 10°
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Benchmark Simulation Setup 10°
o 105 4
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% 104 J
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su prrd - 102 4
s
= 10"
S.T.  Spy1 = f(Sp,uy) 100
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\ —— General MPC
Averaged Value MPC

Comparison 10°]

—_
o
=

* General vs averaged value MPC approaches 102

* Similar looking trajectories

* General MPC
* Consistently more optimal
* Drives the deputy to the docking state in fewer timesteps 00 05 0 C
* Potential discontinuity captured Time (sec)
« Takes 17,569 seconds to complete in simulation 10°

* Average 9.34 seconds of computation per mission timestep ond

(2 seconds allowable) —— General MPC
Averaged Value MPC

].0“ ]

MPC Value Function

—_
o
|
o

=

x 107

9 ° start

[N]

* Averaged value MPC
* Longer mission time
* Takes 971 seconds to complete in simulation 11 /
* Average 0.58 seconds of computation per mission timestep _
* 16-fold reduction in computational time 0] &—

0.0 —0.5 1.0 1.5 2.0
Yo |m] %107

zo [m]

14
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What happens if we make the constraints more realistic?

H-1

minimize Jy(so, u(x)) = z stOs; + ulRu,
s,u

k=0
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Add Damping to the Orientatio

* The orientation equations,

5, = _Devr
I
* become
.. D c . kB
QZ=_ zl/)z__e_l__
I, I I,
* ¢ = internalfriction/hysteresis loss
« kB = magnetorquer torque constant

* u,, = the control effort
kBu,, = —kBK#®

N

Um

x 10" x 107!
— 07 .
= Sy
L Q "
=5 =
m T T T {] | T T T
0 1 2 0 1 2
Time [s] %107 Time [s] %102
x 10}
2.0
start
1.5 1
. end
= EEl docking port
=10y = trajectory

B thrust direction

0.0

16
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Future Work

* Elliptical orbits
— 3 —_

5% —kw2x + 2wz + 0z + w?x
. 3
H ) —kwzy +ay
Z 3
2kw?2z — 2wx — wx + w?z

* Explore additional constraints
* Keep deputy within the line of sight of the chief
e Sun exclusion angles

* Safe modes
* Varying reference/uncooperative chief

* Expand this to a real-time solutions
* non-linear model predictive control
* model-based reinforcement learning
* With a3c
* Imitation learning

100 —

50

2y [m]

-50 4

-150

s Initial deputy location
@ Chieflocation
Trajectory

-100

50 Go [m]

o [m] 100 100
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Questions

18
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3 Ingredients for Stability with No Terminal Cost or Constraints

1. Is the optimal stage cost bounded above and below by suitable Kappa infinity functions?

a (s =s™) < I'(s) < az(Is —s™|)

* for suitable a4, 0, € Ko

2. Thevalue function is upper bounded by some asymptotic/exponential function
I(sy(n,s),u(n)) < BU*(s),n)
* we can’t solve this explicitly

 Butwe can use the requirement to tune our controller
3. What level of optimality are we looking for?
Vw(n,x) = af(n,x,uy(n,x)) + Vy (n + 1, f (%, un(n, x)))

« fora € (0,1]

19
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Stability Through
Numerical Approaches

e Timetoimplement: 302 s

*  Previous: Over night

*  Overall, trajectory is completed faster

e Converges to 0.2 m box instead of 0.5
m box

e ~2-degree error

20
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Autonomous Debris Capture

e % Angles-only

\ Rendezvous

* Building guidance algorithms for capture/docking — __ Range capam}\

. Rendezvous
* State of the art works well in static environments
e Model Predictive Control

e Artificial Potential Functions ‘

Docking \

+f

* Mixed Integer Linear Programming

* Technical challenges:
* Nonlinear/discontinuous dynamics
* Constrained actuation problems

Concept of operations for some ARPOD missions*

*C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for hybrid control and estimation,” in 2016 |IEEE 55th Conference on Decision and Control (CDC), Dec. 2016, pp. 3300-3305. 21
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