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Motivation

• 36,000+ tracked debris items in Earth orbit (>10 cm)

• Estimated 1,000,000 untracked items (1 mm – 10 cm) 

• Kessler Syndrome

• Active debris removal 
• Some techniques require docking for debris capture
• We consider SmallSats for cost-effective operations

• Mission failures are a contributing factor to debris

• Increasing spacecraft launches → more potential failures*

• We present an autonomous nonlinear optimal control 
solution to an underactuated docking case study to

• Improve cost efficiency by reducing the number of 
actuators 

• Provide options in the event of actuation failures

2
* Stephen A Jacklin. Small-Satellite Mission Failure Rates. Technical Report NASA/TM—2018–220034, NASA Ames Research Center, Moffett Field, CA, 2019. 



Research Challenge Problem

3*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021. 



Research Challenge Problem

• The entire state space is defined as

𝐬 ≔

𝑥
𝑦
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ሶ𝑥
ሶ𝑦 
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• Let the control-input be defined as

𝒖 =
𝐹x

ሷ𝜓𝑧 

ሶ𝒔 = 𝐀𝐬 + 𝐁 𝜃 𝒖       

4*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021. 
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• Reaction wheel actuation is used to 
calculated angular acceleration using

ሷ𝜃𝑧 = −
𝐷𝑧

ሷ𝜓𝑧

𝐼𝑧

• Coupling occurs in the control 

𝐹𝑥𝑦
𝒪 =

𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜃

𝐹𝑥
𝒟

*C. D. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,” in Proc. AAS/AIAA space flight mechanics meeting, Virtual, 2021. 



The Problem Cannot Be Solved 
with Classical Control
• Lie algebra tells us*: 

• When linearized, the system is neither controllable 
nor stabilizable

• It cannot be transformed into a controllable linear 
system

• Even with state feedback
• The system is naturally unstable when no control is 

applied

• These limitations mean that:
• Standard linear control methods won't work
• Linear Lyapunov-based control design isn't possible
• Smooth (continuous) state feedback control won't 

stabilize the system
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NMPC solution**

*A. A. Soderlund and S. Phillips, “Hybrid Systems Approach to Autonomous Rendezvous and Docking of an Underactuated Satellite,” Journal of Guidance, Control, and Dynamics, vol. 46, no. 10, pp. 1901–1918, Oct. 2023 
**A. Zaman, A. A. Soderlund, C. Petersen, and S. Phillips, “Autonomous Satellite Rendezvous and Proximity Operations via Model Predictive Control Methods,” Big Sky, Virtual, 2021 



Take a Generic Optimal Control Problem (OCP)
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑜𝑠𝑡
Formulate as OCP: Direct, 

Indirect

Subject to: 
𝑠𝑘+1 = 𝑓(𝑠𝑘 , 𝑢𝑘)

Optimize: 
root finding, Hamiltonian, 
Interior point, primal dual, 

quadratic programming 

𝒔0 

𝑼 = [𝒖𝑘, 𝒖𝑘+1, … , 𝒖𝑘+𝐻]

* D. Garg, M. A. Patterson, C. Francolin, C. L. Darby, G. T. Huntington, W. W. Hager, and A. V. Rao, “Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control 
problems using a Radau pseudospectral method,”Computational Optimization and Applications, vol. 49, no. 2, pp. 335–358, Jun. 2011.[Online]. Available: http://link.springer.com/10.1007/s10589-009-9291-0



Add Recursion
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑜𝑠𝑡
Formulate as OCP: 

Indirect/Direct

Subject to: 
𝑠𝑘+1

 = 𝑓(𝑠𝑘 , 𝑢𝑘)

Optimize: 
root finding, Hamiltonian, 
Interior point, primal dual, 

quadratic programming 

𝒔t+1

𝑼 = [𝒖𝑘, 𝒖𝑘+1, … , 𝒖𝑘+𝐻]

𝒖𝑡 =  𝒖k

𝒔t

Environment

*L. Gr¨une and J. Pannek, Nonlinear model predictive control: theory and algorithms, second edition ed., ser. Communications and control engineering. Cham, Switzerland: Springer, 2017 



Stability of nMPC with Terminal Constraints

• Previous research identified concerns with stability

• We were able to generate trajectories with monotonicity

• However, they were sensitive to initializations

• Weakens requirement that the Lyapunov function must be 
continuous in the state 

• We can enforce stability by including a terminal state 
constraint

Theorem 1*: For a discrete-time MPC problem with a terminal 
state condition 𝒔𝑵 = 0, and if 𝑉𝑁  is continuous at 𝒔𝟎 = 0 and 𝐿 
satisfies Requirements 1 and 2, then the origin is an 
asymptotically stable equilibrium of the discrete-time system. 

        Requirement 1: 𝐿 0,0 = 0

        Requirement 2: There exists a non-decreasing function 
𝛾: 0, ∞ → 0, ∞  such that 𝛾 0 = 0 and 0 < 𝛾 𝒔, 𝒖 ≤
𝐿(𝒔, 𝒖) for all 𝒔, 𝒖 ≠ 0, in which ∗,∗  is a norm on the pair 
(𝒔, 𝒖)
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𝑉𝐻 =  minimize
𝒔,𝒖

 𝐽𝐻 𝒔0, 𝒖 ∗ ≔ ෍

𝑘=0

𝐻−1

𝒔𝑘
𝑇𝑄𝒔𝑘 + 𝒖𝑘

𝑇𝑅𝒖𝑘

𝑆. 𝑇. 𝒔𝑘+1 = 𝑓 𝒔𝑘 , 𝒖𝑘  

𝒖 ∈ 𝒰

𝒔 ∈ 𝒮

𝒔𝑘+𝐻−1 = 𝟎𝟔

*E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Receding horizon control and discontinuous state feedback stabilization,” International Journal of Control, vol. 62, no. 5, pp. 1217–1229, Nov. 1995, publisher: Taylor & Francis 
**H. H. Sohrab, Basic Real Analysis, 2nd ed., ser. SpringerLink B¨ucher. New York, NY: Birkhauser, 2014 



• Adding a terminal state does a lot
• Guarantees asymptotic stability
• Explicit handling of constraints
• Fills the gap in understanding in the literature

• However
• Requires a long prediction horizon 

• Larger problem
• Longer computation time 

• Can we solve this without a terminal state? 
• Linear MPC rules don’t apply 
• Can’t induce monotonicity

• Use the average cost to bound the value function

𝑉𝐻 ≤
1

𝑁
෍

𝑛=0

𝑁−1

𝑉𝐻𝑛

NMPC without terminal constraints
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Benchmark Simulation Setup

𝑉𝐻 = minimize
𝒔,𝒖

 𝐽𝐻 𝒔0, 𝒖 ∗ ≔ ෍

𝑘=0

𝐻−1

𝒔𝑘
𝑇𝑄𝒔𝑘 + 𝒖𝑘

𝑇𝑅𝒖𝑘

𝑆. 𝑇.  𝒔𝑘+1 = 𝑓 𝒔𝑘, 𝒖𝑘  

 𝐹𝑥
 ≤ 2 𝑁

 ሷ𝜓𝑧  ≤ 1604.28 
𝑑𝑒𝑔

𝑠2

  |𝑥|, |𝑦| ≤ 5,000 𝑚

  | ሶ𝑥|, | ሶ𝑦| ≤ 10
𝑚

𝑠

 𝜃  ≤ 180 𝑑𝑒𝑔 

 ሶ𝜃  ≤ 2
𝑑𝑒𝑔

𝑠

  | ሷ𝜃|  ≤ 1
𝑑𝑒𝑔

𝑠2

 𝒔𝑘+𝐻−1 = 𝟎𝟔
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Benchmark Simulation Setup
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Actuation 
Constraints 



Benchmark Simulation Setup
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State  
Constraints 



Comparison 

• General vs averaged value MPC approaches

• Similar looking trajectories

• General MPC 
• Consistently more optimal
• Drives the deputy to the docking state in fewer timesteps
• Potential discontinuity captured
• Takes 17,569 seconds to complete in simulation
• Average 9.34 seconds of computation per mission timestep 

(2 seconds allowable)

• Averaged value MPC 
• Longer mission time
• Takes 971 seconds to complete in simulation 
• Average 0.58 seconds of computation per mission timestep
• 16-fold reduction in computational time
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What happens if we make the constraints more realistic?

minimize
𝒔,𝒖

 𝐽𝐻 𝒔0, 𝒖 ∗ ≔ ෍

𝑘=0

𝐻−1

𝒔𝑘
𝑇𝑄𝒔𝑘 + 𝒖𝑘

𝑇𝑅𝒖𝑘

𝑆. 𝑇.  𝒔𝑘+1 = 𝑓 𝒔𝑘 , 𝒖𝑘  

 𝐹𝑥
 ≤ 2 → 0.1 𝑁 

 ሷ𝜓𝑧  ≤ 1604.28 → 15
𝑑𝑒𝑔

𝑠2

 𝑥 , 𝑦 ≤ 5,000 𝑚

 ሶ𝑥 , ሶ𝑦 ≤ 10 → 2
𝑚

𝑠

 𝜃  ≤ 180 deg  

 ሶ𝜃  ≤ 2
𝑑𝑒𝑔

𝑠

  | ሷ𝜃|  ≤ 1 𝑑𝑒𝑔

𝑠2
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Add Damping to the Orientation

• The orientation equations,

ሷ𝜃𝑧 = −
𝐷𝑧

ሷ𝜓𝑧

𝐼𝑧
,

• become 

ሷ𝜃𝑧 = −
𝐷𝑧

ሷ𝜓𝑧

𝐼𝑧
−

𝑐

𝐼𝑧

ሶ𝜃 +
𝑘𝐵

𝐼𝑧
𝑢𝑚

• 𝑐 = internal friction/hysteresis loss 

• 𝑘𝐵 = magnetorquer torque constant

• 𝑢𝑚 = the control effort 

𝑘𝐵𝑢𝑚 = −𝑘𝐵𝐾 ሶ𝜃

ሷ𝜃𝑧 = −
𝐷𝑧

ሷ𝜓𝑧

𝐼𝑧
−

𝑐

𝐼𝑧

ሶ𝜃
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Future Work

• Elliptical orbits

ሷ𝑥
ሷ𝑦
ሷ𝑧

=

−𝑘𝜔
3
2𝑥 + 2𝜔 ሶ𝑧 + ሶ𝜔𝑧 + 𝜔2𝑥 

−𝑘𝜔
3
2

 𝑦

2𝑘𝜔
3
2𝑧 − 2𝜔 ሶ𝑥 − ሶ𝜔𝑥 + 𝜔2𝑧

+ 𝒂𝑓

• Explore additional constraints 
• Keep deputy within the line of sight of the chief
• Sun exclusion angles 
• Safe modes
• Varying reference/uncooperative chief

• Expand this to a real-time solutions 
• non-linear model predictive control
• model-based reinforcement learning

• With a3c 
• Imitation learning

17



Questions
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3 Ingredients for Stability with No Terminal Cost or Constraints

1.  Is the optimal stage cost bounded above and below by suitable Kappa infinity functions?

α1 𝐬 − 𝐬∗ ≤  l∗ 𝐬 ≤ α2 𝐬 − 𝐬∗

• for suitable α1, α2 ∈ κ∞

2. The value function is upper bounded by some asymptotic/exponential function

𝑙 𝑠𝑢 𝑛, 𝒔 , 𝑢 𝑛 ≤ 𝛽 𝑙∗ 𝒔 , 𝑛

• we can’t solve this explicitly

• But we can use the requirement to tune our controller

3.  What level of optimality are we looking for?

𝑉𝑁(𝑛, 𝑥) ≥ 𝛼ℓ(𝑛, 𝑥, 𝜇𝑁 𝑛, 𝑥 ) + 𝑉𝑁 𝑛 + 1, 𝑓 𝑥, 𝜇𝑁 𝑛, 𝑥

• for 𝛼 ∈ (0, 1]

19



Stability Through 
Numerical Approaches

20

• Time to implement: 302 s
• Previous: Over night 
• Overall, trajectory is completed faster
• Converges to 0.2 m box instead of 0.5 

m box
• ~2-degree error



Autonomous Debris Capture

• Building guidance algorithms for capture/docking

• State of the art works well in static environments
• Model Predictive Control
• Artificial Potential Functions
• Mixed Integer Linear Programming 

• Technical challenges:
• Nonlinear/discontinuous dynamics
• Constrained actuation problems

21

Concept of operations for some ARPOD missions*

*C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for hybrid control and estimation,” in 2016 IEEE 55th Conference  on Decision and Control (CDC), Dec. 2016, pp. 3300–3305.
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