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Security-Aware Autonomy

Vulnerability Analysis and Providing Resiliency
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Our Goal: Add resiliency to controls across different/all levels of the autonomy stack



Non-Secure Vehicle Platooning



Secure Vehicle Platooning
With Intermittent Integrity Guarantees



Fundamental Autonomy Limitations Under Attack 

(low-level control)

What can we say in general about resiliency of 
(perception-based) control & decision making?

• Khazraei, H. Meng, and M. Pajic, “Stealthy Perception-based Attacks on Unmanned Aerial Vehicles”, IEEE International Conference on 
Robotics and Automation (ICRA), pp. 3346-3352, June 2023. 

• A. Khazraei, H. Meng, and M. Pajic, “Black-box Stealthy GPS Attacks on Unmanned Aerial Vehicles”, 63rd IEEE Conf. on Decision and Control 
(CDC), Dec. 2024. 

• Khazraei, H. Pfister, and M. Pajic, “Attacks on Perception-Based Control Systems: Modeling and Fundamental Limits”, TAC, 2024.
• A. Khazraei, H. Pfister, and M. Pajic, “Attacks on Perception-Based Control Systems: Modeling and Fundamental Limits”, IEEE TAC, revised. 



General Vulnerability Analysis 

for False Data-Injection Attacks on Control Systems (TAC24, TAC24b*) 

The system is 𝜖, 𝛼 -attackable for arbitrarily large 𝛼 and arbitrarily small 𝜖, if the closed-
loop dynamics is incrementally exponentially stable (IES) in the set 𝑆 and the open loop 
dynamics is incrementally unstable in the set 𝑆. 

An attack sequence 

• is strictly stealthy iff 

        𝑲𝑳 𝑸 𝑌−∞
−1 , 𝑌0

𝑎: 𝑌𝑡
𝑎 ||𝑷 𝑌−∞: 𝑌𝑡 = 0 

for any 𝑡 ≥ 0, 

• is 𝝐-stealthy if 

        𝑲𝑳 𝑸 𝑌−∞
−1 , 𝑌0

𝑎: 𝑌𝑡
𝑎 ||𝑷 𝑌−∞: 𝑌𝑡 ≤ log(

1

1−𝝐2) for any 𝑡 ≥ 0.



Attack Strategy I: Using Estimate of the Plant State 

𝑧𝑡
𝑎 = 𝐺 𝑥𝑡

𝑎 − 𝑠𝑡

𝑦𝑡
𝑠,𝑎 = 𝐶𝑠 𝑥𝑡

𝑎 − 𝑠𝑡 + 𝑣𝑡
𝑠

Attack dynamics: 𝑠𝑡+1 = 𝑓 ො𝑥𝑡
𝑎 − 𝑓 ො𝑥𝑡

𝑎 − 𝑠𝑡

Assumption: 𝜻 = 𝒙𝒕
𝒂 − ෝ𝒙𝒕

𝒂,   𝜻 ≤ 𝒃𝜻

Theorem: Assume that the functions 𝑓, 𝑓′ and Π′(i.e., derivatives of 𝑓 and Π) are Lipschitz with constants 
𝐿𝑓, 𝐿𝑓

′  and 𝐿Π
′ , respectively, and let us define 

𝐿1 = 𝐿𝑓
′ (𝑏𝑥 + 2𝑏𝜁 + 𝑑), 𝐿2 = 𝑚𝑖𝑛 2𝐿𝑓, 𝐿𝑓

′ (𝛼 + 𝑏𝑥 + 𝑏𝜁 and 𝐿3 = 𝐿Π
′ (𝑏𝑥 + 𝑑 + 𝑏𝑣). 

Moreover, assume that 𝑏𝑥 has the maximum value such that the inequalities 

𝐿1 + 𝐿3 𝐵 <
𝑐3

𝑐4
 and 𝐿2𝑏𝜁 <

𝑐3−(𝐿1+𝐿3 𝐵 )𝑐4

𝑐4

𝑐1

𝑐2
𝜃𝑟 for some 0 < 𝜃 < 1, are satisfied. 

Then, the system is 𝛜, 𝛂 -attackable with probability 𝛿 𝑇(𝛼 + 𝑏 + 𝑏𝑥, 𝑠0), 𝑏𝑥, 𝑏𝑣  for some 𝜖 > 0, if 𝑓 ∈

𝒰𝜌 with 𝜌 = 2𝐿𝑓(𝑏 + 𝑏𝑥 + 𝑏𝜁) and 𝑏 =
𝑐4

𝑐3−(𝐿1+𝐿3 𝐵 )𝑐4

𝑐2

𝑐1

𝐿2𝑏𝜁

𝜃
.

Attack 
injection

Idea:
Fake state e = 𝑥𝑡

𝑎 − 𝑠𝑡 , 



General Perception-Based Attacks
Stealthy & Effective Attacks (ICRA’23, TAC’24, TAC24*)

• Attack Strategy Ⅰ: Using an estimate of the plant state 

• Attack Strategy Ⅱ: Without an estimate of the state



𝑧𝑡
𝑎 = 𝐺 𝑥𝑡

𝑎 − 𝑠𝑡

𝑦𝑡
𝑠,𝑎 = 𝐶𝑠 𝑥𝑡

𝑎 − 𝑠𝑡 + 𝑣𝑡
𝑠

Attack 
injection

• How feasible are such attacks?
– Physical dynamics – time-series analysis!

• Beyond Naïve Attack: Novel Frustum Attack Three candidate realizations of the frustum attack. 
Additional configurations shown later

Stable spoof points placed in frustum

Target car in front of victim Spoofer set behind target car

Stable spoof points placed in frustum

S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, "Security Analysis of Camera-LiDAR Fusion 
Against Black-Box Attacks on Autonomous Vehicles", 31st USENIX SECURITY, 2022.

Attacking Camera-LiDAR Perception



Frustum Attacks on Camera-LiDAR Fusion 

(Usenix Security’22)

Evaluation of Multi-Frame Tracking Evaluation on industry-grade AVs: Baidu’s Apollo + SVL

Tracking case studies show only few compromised 
frames cause safety-critical predicted outcomes

Baidu case study shows even industry-level AVs are 
vulnerable to frustum attack

False positive car accelerates towards victim

Translation attack shows real object accelerating away from victim



Vulnerability Analysis of mmWave Radars

MadRadar: A Black-Box Physical Layer Attacks (NDSS’24)

False Positive Attacks

Attack Timeline

False Negative Attacks



Additional Attacks



How can we provide resiliency?

•  Use new sensing modalities

• Platform aware use of security primitives



Defending UAVs Against Acoustic Attacks

▪ Defending Unmanned Aerial Vehicles From Attacks on Inertial Sensors 
with Model-based Anomaly Detection and Recovery

Inertial Sensors

Acclerometer Gyroscope

Non-inertial Sensors

GNSS Compass

Rotor Speed Sensors

Anomaly Detection and Flight Recovery

Model-based

Resilient
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Anomaly
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Near-Hovering

Restoration

Emergency

Braking
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Control

Input
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Resilient Control

  Model-based Anomaly Detection and Recovery System (MARS)



Approach
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MARS Multi-Stage Dynamical Flight Recovery Strategy
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  Anomaly Detection
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• An intermittent IMU saturation 

attack at 2s period with 0.5s attack 

pulses. It shows MARS’s capability in 

consecutive detection and recovery 

periods.

• Monitor-Left: MARS anomaly 

detector status.

• Monitor-Middle: PX4 IMU-based 

standard angular velocity estimate 

error. 

• Monitor-Right: MARS angular 

velocity estimate error. With 

suboptimal performance, It is 

robust to attacks on IMU.

MARS real-time attack detection and recovery experiment

Real-time flight recovery



Real-World Experiments

21



mmWave Radars for Resilient Autonomy 

(ICRA’24, IROS’25*)

Goal: Low-cost (~$100), low-weight solution for 
resilient real-world autonomy on computationally 
constrained systems



Assured Autonomy with Neuro-Symbolic Perception (NeuS’25*)

Enforcing spatial and temporal consistency with neurosymbolic architectures



Trust-Informed Data Fusion (CDC24, Usenix Sec’25*, ICCPS25)

Trust-Informed Fusion

▪ Agent trust used to weight sensor fusion updates

○ (centralized) weighted Kalman updates

○ (distributed) weighted covariance intersection

▪ Track trust used to filter/single-out peculiar tracks

○ Low trust → further investigation

○ Track trust can inform motion planning



Analysis of Field-of-View Components

Probabilistic Segmentation for Robust Field of View Estimation



Uniform spoofing compromising traditional models

UNet segmentation model for FOV estimation



Defending Against Attacks



So, what did we learn?

1. Security/resilience as first-class citizens!

2. Real-world is messy – this is both good and bad news!

3. Platform-aware constraints/capabilities must be taken into account 
(long platform lifetime)

4. Trust but verify!



Thank you
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