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Our Goal: Add resiliency to controls across different/all levels of the autonomy stack
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(low-level control) ENGINEERING

What can we say in general about resiliency of
(perception-based) control & decision making?
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General Vulnerability Analysis Duke
for False Data-Injection Attacks on Control Systems (TAC24, TAC24b*) PRATT SCHOOL o
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Attack Strategy |: Using Estimate of the Plant State

Attack z¢ = G(xf — s¢) Attack dynamics: sy = f(Xf) — f(XE — sp) Idea:
injection Fake state e = x{* — s¢ ,
Vet = C(xf — s¢) + vf

Theorem: Assume that the functions f, f' and I1'(i.e., derivatives of f and II) are Lipschitz with constants
Lg, Ly and Ly, respectively, and let us define

Ly = Ly (by + 2b; + d), L = min{2Lg, Lt (a + by + bz} and L3 = Ly(by + d + by).
Moreover, assume that b, has the maximum value such that the inequalities

c3—(L1+L3l|Bl[)cy
Cy

L, + Ls3||B|l < z—3and L,b; < \/z:ler forsome 0 < 0 < 1, are satisfied.
4 2

Then, the system is (€, o)-attackable with probability (T (a + b + b, Sg), by, by,) forsome e > 0, if f €

i _ _ Cy C2 Lybg
U, with p = 2Ls(b + by + bz) and b = 63_(L1+L3”B”)C4\/:1 T



General Perception-Based Attacks

Stealthy & Effective Attacks (ICRA’23, TAC’24, TAC24%)
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» Attack Strategy I : Using an estimate of the plant state
zi = G(x{ — s¢) Serr = fRE) — fF(RE —sp)

Vo0 = Cy(xf — s,) + v§ {=xf —x¢, Il < b,

» Attack Strategy II: Without an estimate of the state
z( = G(x = st) Se+1 = f(s¢)

vt = Co(xf — s¢) + v§
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Combined Attack Architecture of Autonomous Missions
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Attacking Camera-LIDAR Perception
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e How feasible are such attacks?

— Physical dynamics — time-series analysis!

* Beyond Naive Attack: Novel Frustum Attack
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Three candidate realizations of the frustum attack.
Ad(ditional configurations shown later
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S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, "Security Analysis of Camera-LiDAR Fusion
Against Black-Box Attacks on Autonomous Vehicles", 31st USENIX SECURITY, 2022.



Frustum Attacks on Camera-LiDAR Fusion Duke
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Evaluation of Multi-Frame Tracking Evaluation on industry-grade AVs: Baidu’s Apollo + SVL
False positive car accelerates towards victim
1-Sigma projected track bounds Track over 9 ..
on [0, 1.2] seconds later subsequentinjections ' J f Cee’ befor e _' oof

Translation attack shows real object accelerating away from victim
Track over 9 1-Sigma projected track bounds
subsequentinjections on [0, 2] seconds later

. Spoofed FP
-
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_ /77 ¢ SpoofedFP Baking
After frustum spoof

Tracking case studies show only few compromised Baidu case study shows even industry-level AVs are
frames cause safety-critical predicted outcomes vulnerable to frustum attack




Vulnerability Analysis of mmWave Radars Duke
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Additional Attacks
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How can we provide resiliency?

* Use new sensing modalities

 Platform aware use of security primitives



Defending UAVs Against Acoustic Attacks
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» Defending Unmanned Aerial Vehicles From Attacks on Inertial Sensors
with Model-based Anomaly Detection and Recovery

Model-based Anomaly Detection and Recovery System (MARYS)

Inertial Sensors
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Non-inertial Sensors
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State Estimator
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____________________________




MARS Multi-Stage Dynamical Flight Recovery Strategy
Approach

Normal Emergency Near-Hovering Recovered Normal
Flight Braking Restoration Flight Flight

| Anomaly Detection
( ) Attack
MARS-PX4 Autopilot Architecture
ROS MAVLink PX4-uORB Drone
ROS-MARS . __PX4 Controllers _ FX4 Tachometers _
] : . Standard State
High-level .| Attitude N Estimator
Controllers | N Tl @ GPS
. nd : l @ P A g
Attitude setpoint  \\fAVT ink —> l@ | PX4-MARS Serial
@ >»MAVROS Strear_ner/ Attitude Rate 5 Or Anomaly Connection Compass
@ tandard estimate | Receiver ¢ el ] @\ Detector
v V¥ & | 1 @ IMU |
N i A s l@ i
Resilient estimate ! 5 " PX4-MARS ’
Position @ { Mixer J ‘_ Resilient State )
Controller | ! @\ Estimator ESC Rotors
I \ )

@ MARS high level commands @Attitude rate setpoint @ Torque and thrust setpoint @ Rotor speed command Note: only the controller related
@ Position estimate/setpoint @ Standard estimate @ MARS resilient estimate Sensor measurements MAVLink messages are shown.




Real-time flight recovery

: . . MARS real-time attack detection and recovery experiment
* Anintermittent IMU saturation
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velocity estimate error. With

_ , Setup: In this experiment, anintermittent IM saturation-attack with a 2-second period
suboptimal performance, It is -

and 0.5-second attack pulses is apphed to demc;nstrate MARS’s capability for consecutive
detection and recovery periods. E

robust to attacks on IMU.



Real-World Experiments
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mmWave Radars for Resilient Autonomy

(ICRA’24, IROS’25%)
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Goal: Low-cost (~¥$100), low-weight solution for
resilient real-world autonomy on computationally
constrained systems
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Assured Autonomy with Neuro-Symbolic Perception (NeuS’25%)

Enforcing spatial and temporal consistency with neurosymbolic architectures
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Trust-Informed Data Fusion (CDC24, Usenix Sec’25*, ICCPS25)
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Trust-Informed Fusion

= Agent trust used to weight sensor fusion updates

O (centralized) weighted Kalman updates

O (distributed) weighted covariance intersection

Track trust used to filter/single-out pecu
O Low trust = further investigation

O  Track trust can inform motion planning
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Analysis of Field-of-View Components

Probabilistic Segmentation for Robust Field of View Estimation
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Uniform spoofing compromising traditional models
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Defending Against Attacks DUke

ENGINEERING

Ground Truth MCD MCD MCD + Adv-Train MCD + Adv-Train
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O
(a) True FOV mask in BEV. g
m
N—— o
=
=
g o
E O
8 Benign Unif. Spoof Benign Unif. Spoof
(¢) (col 1) MCD performs adequately in benign data without adv. training. (col 2) MCD (w/o
e adversarial training) displays high degree of uncertainty during spoof attack which can be used to detect
attacks; however, output segmentation is compromised. (cols 3, 4) MCD with adv. training successfully
(b) Distribution of small # determines FOV from both benign and adversarial inputs. (row 2, confidence) Brighter colors (red)
“uniform spoof™ points. represent less confidence/more uncertainty.

Fig. 6: A small number of spoofed points can compromise MCD UNet without adv. training. However, confidence map
obtained from MC dropout is useful in detecting attacks due to large uncertainty. MCD with adv. training defends attack.
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So, what did we learn?

1. Security/resilience as first-class citizens!
2. Real-world is messy — this is both good and bad news!

3. Platform-aware constraints/capabilities must be taken into account
(long platform lifetime)

4. Trust but verify!
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