Enhancing Spacecraft Autonomy and Mission Success Via Computational Throttling and Risk Governors

Dr. Christopher "Chrispy" Petersen

Assistant Professor

Department of Mechanical & Aerospace Engineering

Go Gators!

UF

Research Group

UF

Y (km)

X (km)

3000 4000 5000 6000 7000

The Aggregate Risk Along The Trajectory

8000 9000 10000

1000 2000

Students and Work

- 3 Graduate Students
 - Faraz Abed Azad (Directly Funded)
 - Channing Ludden (2024 AFRL/RY)
 - Sarah Clees (2025 AFRL/RVS)
- 5 Undergraduates
 - Cannon Whitney (2024,2025 AFRL/RVE)
 - Sara Lin (2025, AFRL/RVS)
 - Eric Stiner (2025 AFRL/RVE)
 - Michael Madden (2025 AFRL/RVE)
 - Jonathan Tindall (2025 AFRL/RVE)
- 2 Summer Faculty Fellowships
 - 2024 AFRL/RY- Dr. Kerrianne Hobbs
 - 2025 AFRL/RV- Dr. Sean Phillip

Successes

- 5 years of invited session at American Control Conference
 - Channing Ludden (2024 AFRL/RY)
 - Sarah Clees (2025 AFRL/RVS)
- 1 Tutorial Paper
- Several Joint Papers (competed or in works)
- 1 DURIP
- UNP Bootcamp for ISAM + C3 Competition
- Several non-traditional space collaborations

Real-time Recursive Optimization

Real-time Recursive Optimization (R2O) & Computation

- Any optimization enacted <u>frequently</u>, on-board
 - Model Predictive Control
 - Reference Governors
 - AI/ML
 - Non-stabilizing optimizations
- Optimization comes in <u>different flavors</u>
 - Local: Interior-point, QP, SQP, MILP
 - Global: Random Search, Particle Swarm
- Computation is:
 - Computation time (sec)
 - CPU %
 - Memory
 - Power

How do R2O drive the computational states?

R2O Modeling

Risk-Mitigation Governor (RRG)

Department of Mechanical & Aerospace Engineering

Space Weather Risk

Satellite Safety and Operations

- Satellites need to perform a mission
- On-orbit safety often results in going to safe mode

Safe Complex Operations

- Takes time to diagnose and recover
- Takes time off mission
- Decouples safety and risk

Problem: Spacecraft autonomy needs to reflect goals and operator "risk"

Solution: Create autonomy that reflects human goals (not just controls) while **being safe.**

Risk-Mitigation Reference (RRG) Governor

Department of Mechanical & Aerospace Engineering

Department of Mechanical & Aerospace Engineering

Risk In Terms Of Space Weather

- Space weather generates risk of radiation particles hitting a spacecraft
 - Generates failures

Highly nonlinear

Electrostatic Discharge

Reboot

Restart

Spacecraft Rendezvous Problem

- **Problem:** Spacecraft in GEO to get as close as possible to goal while balancing risk
- Assume: Existing controller Risk in terms of space weather

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

What's Next

Spacecraft discrete mode switching under risk

- Incorporation of "Human-in-the-loop" that balances "stabilization" vs "risk"
 - "Bi-directional, Adaptive User Interfaces for Successful Adoption of Intelligent Decision Aids by Spacecraft Operators" – Jain, Purdue

Look beyond GNC and build Guardian Trust In Autonomy

Modes and Transition for Spacecraft

Computational Throttle

Computation and RPO

Servicing and Manufacturing

 Servicing with satellites requires a number of complex subfunctions

Complex Operations

- Dock with safety constraints and complex environment (e.g. lighting, contact mechanics)
- 20+ DoF systems (robotic arms, satellite bus...)
- Subsystem interconnections (power, GNC, thermal)

Solution: Instead of waiting for hardware to catch up, provide a software solutions with algorithms that are **computationally aware.**

R2O Optimization Breakdown

Computation States and Inputs

Department of Mechanical & Aerospace Engineering

Test Scenario

- Satellite is docking with another satellite
 - There exists an obstacle in the way
- Path is solved using two methods
 - Convex quadratic program (Simple)
 - Nonlinear interior point (Complex)
- Useful parameters
 - Satellite ~ 30 m away, stagged for docking
 - Control rate/discretization 60 seconds
 - Horizon length is 15 steps (~1/5 orbit)
- Computation metrics measured on Microsoft Surface 3, executed as if in "real time"

Computational StateComputational Inputa) CPUa) Algorithmb) Powerb) Horizonc) Solver Tol

Objective: How do the computational metrics vary and evolve temporally?

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Power Load (Simple Solver)

Asym. stable with small disturbance Results as an impulse to computation

Computational dynamics do exist!

CPU (Complex Solver)

instead of an impulse

Simple solver, Max %CPU = 45%

Though a bit noisier, complex solver still has a temporal trend of dynamics

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

What's Next

- Space robotics for in-space servicing
 - COSMIC C3 Competition
- Benchmarking on <u>space hardware</u>
 - AFRL/RY AI/ML algorithms
 - AFRL/RV inspection algorithms
 - Full in-house hardware-software digital twin
- Suboptimal, Safe Solvers & R20
 - Safe, local solvers
 - Suboptimal MPC and R20
- Hybrid, Computational-R2O Models
 - Mathematically formalize
 - Quantify solver and math parameters
 - Quantify existence and suboptimal parameters

Bridge Computation and Autonomy

In-house space robotics testbed

Benchmarking on RAD510

Questions

STAR Lab Processor Range

Arduino

- Micro-Controller
- C/C++ Uploaded through IDE
- Reduced background noise
- "Isolated" processor / breadboard

Raspberry-Pi

- Micro-Processor
- Raspbian-OS (Linux) or Command Line Interface (CLI)
- Complex Background Environment
- Interactive OS environment

NVIDIA Jetson

- Development Board
- CPU, GPU, RAM, etc.
- Stated to be a COTS option that has some RADHAZ-like features (1-5 years, though not tested)

BAE RAD510

- True Flight Rad Processor
- BAE development harness (VXWorks-like)

Off the Shelf, Simple Computationally Limited Rad Tolerant & Hardened, Custom Computationally Limited

Wide range of processors that span the complexity of spacecraft development