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Blending basic research with application to ensure deployment
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Students and Work successes

= 3 Graduate Students = 5 years of invited session at American Control
. Conference

= 5 Undergraduates

. = 1 Tutorial Paper
. = Several Joint Papers (competed or in works)
. = 1 DURIP

= 2 Summer Faculty Fellowships
. = UNP Bootcamp for ISAM + C3 Competition

= Several non-traditional space collaborations




Real-time Recursive Optimization
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Real-time Recursive Optimization (R20) & Computatlon

= Any optimization enacted frequently, on-board

= Optimization comes in different flavors ﬁrete Output y(t+k)
. ﬁg_'_'—_as-crete Input u(t+k)
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R20 Modeling

zp(t + AT) = fp(zp(t), up(t), wp(t)),

ra(k + AK) = fa(zq(k),uq(k), wq(k), AK),

= States: x4 (k) U () = States:
= CPU l = Relative Position
= Power * Relative Velocity
Processor
= Inputs = Inputs
: Plant
= Horizon length MPC = Thrusters
p
= Solver Tol ] | 1
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Risk-Mitigation Governor (RRG)
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Space Weather Risk

Satellite Safety and Operations

» Satellites need to perform a mission

’.-’3’;{‘
* On-orbit safety often results in going to “W

‘ Satellite going to safe mode

Safe Complex Operations

* Takes time to diagnose and recover |t | want to
stabilize rgizstroen

* Takes time off mission

* Decouples safety and risk

Left-Right Brain of System Engineers

» Problem: Spacecraft autonomy needs to reflect goals and operator “risk”

» Solution: Create autonomy that reflects human goals (not just controls) while being safe.




Department of Mechanical & Aerospace Engin

Risk- I\/Iltlgatlon Reference (RRG) Governor

Standard RG Standard RG
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Spacecraft Rendezvous Problem

160

= Problem: Spacecraft in GEO to get as close as possible to goal while balancing risk 140 -

= Assume: Existing controller £ 120
Risk in terms of “bubbles” (GPS sparse measurements) = 100]
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Risk In Terms Of Space Weather

Space weather generates risk of radiation particles hitting a spacecraft
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Spacecraft Rendezvous Problem

= Problem: Spacecraft in GEO to get as close as possible to goal while balancing risk

= Assume: Existing controller
Risk in terms of space weather

5700 : Objective ?ompletion \:s Space We?ther HazardIMitigation :
Trajectory And The Hazards Map in Geocentric Coordinates §
< 600 - -
—3D Trajectory . 3 p decreases
* Nominal Reference | Mod ref 8500 1
4 5 . a
x10 Optimal Reference / £ ol |
. I Hazards Map 2
Actual end Esoof .
/ 5 .
€200 . i
05 - min (h—r)"Q(h—r) +p > s(g;)
' Desired end g1oof 1=0 .
—_ g 9.64 7.;36 7.2‘)8 7f7 7.I72 7.I74 7.I76 7.78
E 0 n The Space Weather Hazards Throughout The Trajectory «10%
~ Start
-0.5 -
0 4 . .. .
1 X1 WORKS! But properties being investigated
-1 . 05 0 05 1 -1 y (km) (CDC -2025)
x10 X (km) 13




Herbert Wertheim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

What’s Next

= Spacecraft discrete mode switching under risk

Position Attitude

= |ncorporation of “Human-in-the-loop” that balances
“stabilization” vs “risk”

= “Bi-directional, Adaptive User Interfaces for
Successful Adoption of Intelligent Decision Aids
by Spacecraft Operators” — Jain, Purdue

Mode Number SCS Mode Specilications Objective Admissible Transitions to
1 ldle Mode Actuators are off Standby for the next objective all modes
2 Safe Mode Point the solar panels towards the Sun @ < ﬁ =1 1
3 Detumbling Mode k=g k=009 <y k=000 24,5
4 Attitude Pointing Mode lex] < B . léx] < Br . k=0 0.0 minimize attitude error 23.6
5 Attitude Maneuvering Mode lex] = Br . |éx] = B . k=0, 0.0 minimize attitude error 23,5
6 Orbit Correction Mode X —Xdes < ¥ minimize tracking error 287
L 0 O k b evo n d G N C an d b u i I d 7 Orbit Transfer Mode X—Xjges = ¥ minimize tracking error 2.8.0
8 Guidance Mode Avoid certain regions Navigate to objective 26,7

Guardian Trust In Autonomy

Modes and Transition for Spacecraft

14



Computational Throttle
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Computation and RPO

Servicing and Manufacturing

e Servicing with satellites requires a number of

complex subfunctions >

Complex Operations

* Dock with safety constraints and complex
environment (e.g. lighting, contact mechanics)

e 20+ DoF systems (robotic arms, satellite bus...)

* Subsystem interconnections (power, GNC, thermal)

» Problem: Spacecraft autonomy is needed for a variety of future missions, but hardware is 10+
years behind terrestrial spacecraft

Solution: Instead of waiting for hardware to catch up, provide a software solutions with
algorithms that are computationally aware.
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R20 Optimization Breakdown

g;(yi,v;) <0, i=0,..,.N—1, j=1,..h
Constrai
YN € V¢

General Horizon Optimization

N—-1
m)%n Z l(yi,vi) + F(yn) Cost
i=0
Subject to :

Yo = () Real-life
Yi+1 :fp(yivviao)a ?’:011N_1 “DynamiCS”

Math Parameters

ver Parameters

Horizon = Exit Criteria

Constraints = Step-size

Result

» Two Categories for
understanding &
“throttling” computation

zp(1)
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Computation States and Inputs

gk + AK) = fa(za(k), ua(k), wq(k), AK), Tp (t+ AT) = f},j[:_’fjp(tL up(t), wp(:‘f)),

= States: x4 (k) 0 = States:
| : .
= CPU l = Relative Position
* Power = Relative Velocity
Processor
= Inputs = Inputs
. Plant
= Horizon length MPC = Thrusters
p
= Solver Tol ] | 1
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Test Scenario

= Satellite is docking with another satellite % o

Wio Obstacle

= There exists an obstacle in the way

= Path is solved using two methods

Cross-Track Position (m)

= Convex quadratic program (Simple)

= Nonlinear interior point (Complex)

= Useful parameters

= Satellite ~ 30 m away, stagged for docking

-10 -40 Radial Position (m)

= Control rate/discretization 60 seconds In-Track Positon (m)

= Horizon length is 15 steps (~1/5 orbit)

r
Computational State B ( Computational Input \
= Computation metrics measured on Microsoft a) CPU a) Algorithm
Surface 3, executed as if in “real time” b) Power b) Horizon

c) Solver Tol
\Z Y,

[ ODbjective: How do the computational metrics vary and evolve temporally? ] 19
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Power Load (Simple Solver)

IA Core (CPU Execution Cores Only) Power

IA Core (CPU Execution Cores Only) Power
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[ Computational dynamics do exist! }
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Simple solver,
More computation when it Maxes computation like a step Max %CPU = 45%
sees the obstacle instead of an impulse
[ Though a bit noisier, complex solver still has a temporal trend of dynamics ]
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Wh at,s N eXt RAD510" 3U CompactPC|
Single-board computer
0 (=]
= Space robotics for in-space servicing o
] Boam
= Benchmarking on space hardware ; 1
o * e
= e “’\‘\\ |
= Suboptimal, Safe Solvers & R20 T}
- In-house space robotics testbed Benchmarking on RAD510
= Hybrid, Computational-R20 Models o elum) =ty € R 5 € Hin de(y) < Vig) = ¢}
Y = —()ZVf(y, xk) N
. wf - Yy, € H(n)
- m14- | G(Xp) - ¢c,p(y) € V(y) +e€l,
gn: 1 T;D+ c [Atmin, At;]
- §8 D:{yPERn?¢C€¢CTTp:0}7
Ej F(Xp):hozfl]:
Bridge Computation and L LTI =] C={r €R| 7 € 0. 25},
Autonomy . Ao Hybrid, Computation-R20
Suboptimal, Safe Solvers & R20 Model 95
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STAR Lab Processor Range

Axduino Raspberry-Pi BAE RADS510

10™3U Col ctPCl

NVIDIA Jetson

* Micro-Controller = Micro-Processor * Development Board = True Flight Rad Processor

= C/C++ Uploaded through IDE
= Reduced background noise

= “Isolated” processor /
breadboard

Raspbian-OS (Linux) or Command
Line Interface (CLI)

Complex Background Environment
Interactive OS environment

Off the Shelf, Simple
Computationally Limited

= Stated to be a COTS option that
has some RADHAZ-like features
(1-5 years, though not tested)

* BAE development harness
(VXWorks-like)

Rad Tolerant & Hardened, Custom
Computationally Limited

Wide range of processors that span the complexity of spacecraft development
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