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Linear programming is used across disciplines

* Linear programs (LPs) are commonly used in maximize cT x
xERM

Subjectto Ax < b

« Finance: optimizing portfolios

« Marketing: pricing advertisements
 Logistics: building travel itineraries

« Autonomy: synthesizing policies/controllers

» Typically formulated using
» Finance: budgets, company valuations
« Marketing: website traffic, ad effectiveness |
* Logistics: travel costs, destinations A M Lt

« Autonomy: system limitations, environment
information, mission specs D

)

L maximize c(D)"x

x€ERM
Subjectto A(D)x < b(D) |
z Grr g

Issue: This information is very sensitive!




Privacy is required to protect LPs Revels information!

e Solutions of LPs can reveal information about 4 /
the data used to formulate them tm I
aaD

 Hsu et al. [1] attempted to privately solve LPs
 This work allows for constraint violations

In autonomy, this means systems B i
may crash, operate unsafely, and M Iﬁ | O n F@Ju re
(o o o] D

not meet mission objectives

* Privately solving LPs with constraint In this talk: Solve
satisfaction is an open problem [2] maximize c(D)Tx
x=0
Munoz Us Subject to A(D)x < b(D)
maximize ¢’ x ma)gr(r)lize c(D)'x in a differentially private manner
: . B while guaranteeing feasibility in the
Subject to Ax < b(D) Subjectto A(D)x < b(D) originagl Constraintg /
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3 [1]Hsu, J., Roth, A., Roughgarden, T., and Uliman, J. Privately solving linear programs. In Automata, Languages, and Programming: 41st International Colloquium, pp.612-624.

Springer, 2014b.
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We use differential privacy to formulate private LPs

» Differential privacy goal: Make “ " data appear “approximately
indistinguishable”, enforced by a mechanism M
. is defined by Adjacency

Definition (Adjacency): Two databases /), D' are adjacent if they differ in at most one entry

* To be approximately indistinguishable

Definition (Differential Privacy): A mechanism M is (¢, §)-differentially private if
PM(D)€eS) <ePM(D)eS)+6

« Small ¢, § = strong privacy,
* Usually, 0.1 < <10, 0<6<0.05
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What guarantees does this give us?




Differential privacy provides useful guarantees

Definition (Differential Privacy): A
mechanism M is (¢, §)-differentially
private if

PM(D)€eS) <e‘PM(D)eES)+4

Properties of Differential Privacy:
* Immunity to post-processing
:> * Robustness to side information

- Compositions remain differentially private

We want these guarantees for

How do we make a differential privacy mechanism?

Definition (Sensitivity): Given adjacent databases

Ar1f = supl||f (D)= F(O)Il11

“The most f can change on adjacent

D,Dr
rn
,D

, D' the sensitivity of a function f: D - R™*" is

We can add calibrated noise
using the sensitivity to attain
differential privacy
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We privatize each component of an LP

Fix an LP with components A(D), b(D), c(D)

« Fixe>0,5¢€ (0,%)

Set of all possible database realizations D

Probability

- Standard Laplace

0 5
Private Outcomes ¢;

Mechanism for c¢(D):
* Generate Laplace noise z. ~ L(a,), 0, < i

e ¢=cD)+z,
* Cis (¢ 0)- differentially private

€

We can control how much information is
leaked if the private cost function is learned

The cost was easy, what about constraints
and feasibility?
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We privatize each component of an LP

Mechanism for A(D):
Compute bounds on Laplace noise

Fix an LP with components A(D), b(D), c(D)

« Fixe>0,6€ (0,%)

Set of all possible database realizations D

Mechanism for b(D):

Sp = —

Compute bounds on Laplace noise

A1b lOg (m(e;—l) + 1), Sb — [_Sb; Sb]

Generate bounded noise

€

Ab
Zp; ~ L1 (0p,Sp), 0¢c < .

b(D)l — Sp + Zp;

max{b;, inf b(d);}

bi -
bi —
d€eD

A1’1A
€

Sp =

log (m(ee—l)

S

+ 1), Sa = [—5Sa,S4]

Generate bounded noise

Zp. . ™~ LT(O-AI SA), Oc <

L]

Al,]

Al,]

A1’1A
€

A(D)l,] + Sy + ZAi,j
min{4; ;, sup A(d); ;}
deD

s BO U

- Stapdard Laplace

nded Laplace | |

N

-5 0

- Sb Private OQutcomes

Sh

We can keep
constraints private
by only making
them tighter,
ensuring feasibility
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Our mechanisms enforce differential privacy

) Example: maximize 2x; — 3x
Theorem 1: P TER2 1 2
e Fixe>04E€E (0 1) Subjectto x; + x, < 12,
’ 2 X1,Xy = 3
- Forming and solving e =1 e =0.1
maximize ¢T x
x20 _ _ [ Non-Private . 10122 | Non-Private ‘ 15 722
Subject to Ax < b = ey
is (¢, )-differentially private 2 21
5 5
Our mechanism produces a solution | \
which is always feasible in the original e e s
constraints
How well does that solution perform? Solutions inside the blue: no crashing,
completes mission, no unsafe behavior
. So!utlons outS|d.e t_he blge: a controller Gl" Georgia
which lead to mission failure —_—7 Tech’



We analyze the quality of solutions

maximize c(D)Tx
x=0

Subjectto A(D)x < b(D)

Our Privacy
Implementation

———————>

maximize ¢T x
x=0

Subjectto Ax < b

No privacy l l Has privacy
T~ - How far apart are these on average? -
c(D) x* c(D) x*
Theorem 2:

+ Fixe>0,5€(0,3)
2
- Fix an LP with components A(D), b(D), c(D) with A;c, A b, Ay 1 A

E[c(D)'x* — c(D)T%] < ||c(D)||.H(A, b, c)p(€, 6, A1¢, Arb, Ay 1 A)
l

J1 J
| |

Problem parameters

Privacy Implementation

* H(A,b,c): Hoffman constant of the LP, always exist/can be efficiently approximated
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We empirically trade off privacy and performance

80% -

100%

 Consider the following optimization Better
problem SOIU“Ong%

maximize D):ixi: )
imize ) ) p(D)yyx,

LE[N] jE[M]

Subject to: 2 x;j < n; fori € [N],

5

Objective Loss,

| |
0 0.p

Privacy Strength, €

| | | | | | | | |
94 06 08 1 12 14 16 18 2

—

jemM] Less Private
> p(D)yxy < b(D)forj € [M]  Beter -
Solution:
ie[N] é 40% -
 We consider p(D) and b(D) sensitive 2 oo
We always satisfy constraints while 0 02
producing a solution with 65% lower Less Private
suboptimality than the state of the art

10

| | | | | | | | |
04 06 08 1 12 14 16 1.8 2

Privacy Strength, €
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We empirically trade off privacy and problem size

11

 Consider the following optimization

problem
maximize 2 2 p(D);jx;;
x=0
ig[N] je[M]

Subject to: 2 x;j < n; fori € [N],
JE[M]

> p(D)yjxi; < b(D); for j € [M]

IE[N]

« We consider p(D) and b(D) sensitive

Solution quality is unaffected by size

Better £ sy

Solution.-

0

60% -

| | |
0 20 40 60 80 100
Number of Variables, N

Larger Problem _——

Better

80% -
Solution” %

60% — e Our Mechanism
= Hsu at al.

100%

x;
cTx*

T(*

40% —

0% W\[\/\WW—WW

| | | | |
0 20 40 60 80 100

Revenue Loss, <

Number of Sensitive Constraints, M

Larger Problem
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Our mechanism is provably private with strong performance

Takeaways Hardware Implementations

* Provably conceal mission specs  Currently: deploying on ground robots
. Concealment is future-proofed at Georgia Tech'’s Robotarium platform

- Other methods (i.e., encryption) cannotbe  ® Thi§ summer: deploying on drones
- Maintained good performance Eglin AFB's Aviary with AFRL RW

« Simulation shows strong performance
with large systems and strong privacy

e

S
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Thank you!
Email: abenvenuti3@gatech.edu
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