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• Linear programs (LPs) are commonly used in
• Finance: optimizing portfolios
• Marketing: pricing advertisements
• Logistics: building travel itineraries
• Autonomy: synthesizing policies/controllers

• Typically formulated using
• Finance: budgets, company valuations
• Marketing: website traffic, ad effectiveness
• Logistics: travel costs, destinations
• Autonomy: system limitations, environment 

information, mission specs

Linear programming is used across disciplines 

Issue: This information is very sensitive!
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maximize
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Subject to 𝐴𝐴(𝐷𝐷)𝑥𝑥 ≤ 𝑏𝑏(𝐷𝐷)
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maximize
𝑥𝑥∈ℝ𝑛𝑛

𝑐𝑐𝑇𝑇𝑥𝑥

Subject to 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏



• Solutions of LPs can reveal information about 
the data used to formulate them

• Hsu et al. [1] attempted to privately solve LPs
• This work allows for constraint violations

• Privately solving LPs with constraint 
satisfaction is an open problem [2]

Privacy is required to protect LPs

In this talk: Solve
maximize

𝑥𝑥≥0
𝑐𝑐(𝐷𝐷)𝑇𝑇𝑥𝑥

Subject to 𝐴𝐴(𝐷𝐷)𝑥𝑥 ≤ 𝑏𝑏(𝐷𝐷)
in a differentially private manner 
while guaranteeing feasibility in the 
original constraints
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In autonomy, this means systems 
may crash, operate unsafely, and 
not meet mission objectives

Mission Failure

[1] Hsu, J., Roth, A., Roughgarden, T., and Ullman, J. Privately solving linear programs. In Automata, Languages, and Programming: 41st International Colloquium, pp.612–624. 
Springer, 2014b.
[2] Munoz, A., Syed, U., Vassilvtiskii, S., and Vitercik, E. Private optimization without constraint violations. In International Conference on Artificial Intelligence and Statistics, pp. 2557–
2565. PMLR, 2021.
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Munoz Us

Revels information!



• Differential privacy goal: Make “similar” data appear “approximately 
indistinguishable”, enforced by a mechanism 𝑀𝑀 

•  Similar is defined by Adjacency

• To be approximately indistinguishable

• Small 𝜖𝜖, 𝛿𝛿 = strong privacy,
• Usually, 0.1 ≤ 𝜖𝜖 ≤ 10,  0 ≤ 𝛿𝛿 ≤ 0.05

We use differential privacy to formulate private LPs
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Definition (Adjacency): Two databases 𝐷𝐷,𝐷𝐷𝐷 are adjacent if they differ in at most one entry

Definition (Differential Privacy): A mechanism 𝑀𝑀 is (𝜖𝜖, 𝛿𝛿)-differentially private if
ℙ 𝑀𝑀 𝐷𝐷 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖ℙ 𝑀𝑀 𝐷𝐷𝐷 ∈ 𝑆𝑆 + 𝛿𝛿

What guarantees does this give us?



Differential privacy provides useful guarantees
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We want these guarantees for 𝐷𝐷

Properties of Differential Privacy:
• Immunity to post-processing
• Robustness to side information
• Compositions remain differentially private

Definition (Differential Privacy): A 
mechanism 𝑀𝑀 is (𝜖𝜖, 𝛿𝛿)-differentially 
private if
ℙ 𝑀𝑀 𝐷𝐷 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖ℙ 𝑀𝑀 𝐷𝐷𝐷 ∈ 𝑆𝑆 + 𝛿𝛿

Definition (Sensitivity): Given adjacent databases 𝐷𝐷,𝐷𝐷𝐷 the sensitivity of a function 𝑓𝑓:𝒟𝒟 → ℝ𝑚𝑚×𝑛𝑛 is
 Δ1,1𝑓𝑓 =  sup

𝐷𝐷,𝐷𝐷𝐷
||𝑓𝑓 𝐷𝐷 − 𝑓𝑓 𝐷𝐷′ ||1,1

• “The most 𝑓𝑓 can change on adjacent 𝐷𝐷,𝐷𝐷𝐷” 

How do we make a differential privacy mechanism?

We can add calibrated noise 
using the sensitivity to attain 
differential privacy



We privatize each component of an LP

6

We can control how much information is 
leaked if the private cost function is learned

Mechanism for 𝒄𝒄(𝑫𝑫): 

• Generate Laplace noise 𝑧𝑧𝑐𝑐 ∼ ℒ(𝜎𝜎𝑐𝑐), 𝜎𝜎𝑐𝑐 ≤
Δ1𝑐𝑐
𝜖𝜖

• 𝑐̃𝑐 = 𝑐𝑐 𝐷𝐷 + 𝑧𝑧𝑐𝑐 
• 𝑐̃𝑐 is (𝜖𝜖, 0)- differentially private

• Fix an LP with components 𝐴𝐴(𝐷𝐷), 𝑏𝑏(𝐷𝐷), 𝑐𝑐(𝐷𝐷)
• Fix 𝜖𝜖 > 0, 𝛿𝛿 ∈ 0, 1

2
• Set of all possible database realizations 𝒟𝒟 

The cost was easy, what about constraints 
and feasibility?



We privatize each component of an LP
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We can keep 
constraints private 
by only making 
them tighter, 
ensuring feasibility

Mechanism for 𝒃𝒃(𝑫𝑫): 
• Compute bounds on Laplace noise 

𝑠𝑠𝑏𝑏 = Δ1𝑏𝑏
𝜖𝜖

log 𝑚𝑚(𝑒𝑒𝜖𝜖−1)
𝛿𝛿

+ 1 , 𝑆𝑆𝑏𝑏 = [−𝑠𝑠𝑏𝑏, 𝑠𝑠𝑏𝑏]

• Generate bounded noise 

𝑧𝑧𝑏𝑏𝑖𝑖 ∼ ℒ𝑇𝑇 𝜎𝜎𝑏𝑏, 𝑆𝑆𝑏𝑏 ,𝜎𝜎𝑐𝑐 ≤
Δ1𝑏𝑏
𝜖𝜖

•  �𝑏𝑏𝑖𝑖 = 𝑏𝑏 𝐷𝐷 𝑖𝑖 − 𝑠𝑠𝑏𝑏 + 𝑧𝑧𝑏𝑏𝑖𝑖
• �𝑏𝑏𝑖𝑖 = max{�𝑏𝑏𝑖𝑖, inf

𝑑𝑑∈𝒟𝒟
𝑏𝑏 𝑑𝑑 𝑖𝑖}

Mechanism for 𝑨𝑨(𝑫𝑫): 
• Compute bounds on Laplace noise 

 𝑠𝑠𝐴𝐴 = Δ1,1𝐴𝐴
𝜖𝜖

log 𝑚𝑚(𝑒𝑒𝜖𝜖−1)
𝛿𝛿

+ 1 , 𝑆𝑆𝐴𝐴 = [−𝑠𝑠𝐴𝐴, 𝑠𝑠𝐴𝐴]

• Generate bounded noise 

   𝑧𝑧𝐴𝐴𝑖𝑖,𝑗𝑗 ∼ ℒ𝑇𝑇(𝜎𝜎𝐴𝐴, 𝑆𝑆𝐴𝐴), 𝜎𝜎𝑐𝑐 ≤
Δ1,1𝐴𝐴
𝜖𝜖

• 𝐴̅𝐴𝑖𝑖,𝑗𝑗 = 𝐴𝐴 𝐷𝐷 𝑖𝑖,𝑗𝑗 + 𝑠𝑠𝐴𝐴 + 𝑧𝑧𝐴𝐴𝑖𝑖,𝑗𝑗
• 𝐴̃𝐴𝑖𝑖,𝑗𝑗 = min{𝐴̅𝐴𝑖𝑖,𝑗𝑗 , sup

𝑑𝑑∈𝒟𝒟
𝐴𝐴 𝑑𝑑 𝑖𝑖,𝑗𝑗}

• Fix an LP with components 𝐴𝐴(𝐷𝐷), 𝑏𝑏(𝐷𝐷), 𝑐𝑐(𝐷𝐷)
• Fix 𝜖𝜖 > 0, 𝛿𝛿 ∈ 0, 1

2
• Set of all possible database realizations 𝒟𝒟 

−𝑠𝑠𝑏𝑏 𝑠𝑠𝑏𝑏



Our mechanisms enforce differential privacy
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Theorem 1: 

• Fix 𝜖𝜖 > 0, 𝛿𝛿 ∈ 0, 1
2

• Forming and solving
maximize

𝑥𝑥≥0
𝑐̃𝑐𝑇𝑇𝑥𝑥

Subject to 𝐴̃𝐴𝑥𝑥 ≤ �𝑏𝑏
is (𝜖𝜖, 𝛿𝛿)-differentially private

Example:

𝜖𝜖 = 1 𝜖𝜖 = 0.1

Solutions inside the blue: no crashing, 
completes mission, no unsafe behavior

Our mechanism produces a solution 
which is always feasible in the original 
constraints

How well does that solution perform?

maximize
𝑥𝑥∈ℝ2

2𝑥𝑥1 − 3𝑥𝑥2

Subject to 𝑥𝑥1 + 𝑥𝑥2 ≤ 12,
 𝑥𝑥1, 𝑥𝑥2 ≥ 3

Solutions outside the blue: a controller 
which lead to mission failure



We analyze the quality of solutions
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Theorem 2: 

• Fix 𝜖𝜖 > 0, 𝛿𝛿 ∈ 0, 1
2

 

• Fix an LP with components 𝐴𝐴(𝐷𝐷), 𝑏𝑏(𝐷𝐷), 𝑐𝑐(𝐷𝐷) with Δ1𝑐𝑐, Δ1𝑏𝑏, Δ1,1𝐴𝐴
𝔼𝔼 𝑐𝑐 𝐷𝐷 𝑇𝑇𝑥𝑥∗ − 𝑐𝑐 𝐷𝐷 𝑇𝑇 �𝑥𝑥∗ ≤ ||𝑐𝑐 𝐷𝐷 ||2𝐻𝐻 𝐴𝐴, 𝑏𝑏, 𝑐𝑐 𝜌𝜌(𝜖𝜖, 𝛿𝛿,Δ1𝑐𝑐, Δ1𝑏𝑏, Δ1,1𝐴𝐴)

• 𝐻𝐻 𝐴𝐴, 𝑏𝑏, 𝑐𝑐 : Hoffman constant of the LP, always exist/can be efficiently approximated

How far apart are these on average?

maximize
𝑥𝑥≥0

𝑐𝑐(𝐷𝐷)𝑇𝑇𝑥𝑥

Subject to 𝐴𝐴(𝐷𝐷)𝑥𝑥 ≤ 𝑏𝑏(𝐷𝐷)

𝑐𝑐(𝐷𝐷)𝑇𝑇𝑥𝑥∗

Our Privacy 
Implementation

maximize
𝑥𝑥≥0

𝑐̃𝑐𝑇𝑇𝑥𝑥

Subject to 𝐴̃𝐴𝑥𝑥 ≤ �𝑏𝑏

𝑐𝑐(𝐷𝐷)𝑇𝑇 �𝑥𝑥∗

Problem parameters Privacy Implementation

No privacy Has privacy



We empirically trade off privacy and performance
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• Consider the following optimization 
problem

maximize
𝑥𝑥≥0

�
𝑖𝑖∈[𝑁𝑁]

�
𝑗𝑗∈[𝑀𝑀]

𝑝𝑝 𝐷𝐷 𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

Subject to:  �
𝑗𝑗∈[𝑀𝑀]

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖  for 𝑖𝑖 ∈ 𝑁𝑁 ,

 �
𝑖𝑖∈ 𝑁𝑁

𝑝𝑝 𝐷𝐷 𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏 𝐷𝐷 𝑗𝑗 for 𝑗𝑗 ∈ [𝑀𝑀]

• We consider 𝑝𝑝 𝐷𝐷  and 𝑏𝑏(𝐷𝐷) sensitive

We always satisfy constraints while 
producing a solution with 65% lower 
suboptimality than the state of the art

Less Private

Less Private

Better 
Solution

Better 
Solution



We empirically trade off privacy and problem size
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• Consider the following optimization 
problem

maximize
𝑥𝑥≥0

�
𝑖𝑖∈[𝑁𝑁]

�
𝑗𝑗∈[𝑀𝑀]

𝑝𝑝 𝐷𝐷 𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

Subject to:  �
𝑗𝑗∈[𝑀𝑀]

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖  for 𝑖𝑖 ∈ 𝑁𝑁 ,

 �
𝑖𝑖∈ 𝑁𝑁

𝑝𝑝 𝐷𝐷 𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏 𝐷𝐷 𝑗𝑗 for 𝑗𝑗 ∈ [𝑀𝑀]

• We consider 𝑝𝑝 𝐷𝐷  and 𝑏𝑏(𝐷𝐷) sensitive

Solution quality is unaffected by size

Larger Problem

Larger Problem

Better 
Solution

Better 
Solution



Takeaways
• Provably conceal mission specs
• Concealment is future-proofed 

• Other methods (i.e., encryption) cannot be

• Maintained good performance
• Simulation shows strong performance 

with large systems and strong privacy

Hardware Implementations
• Currently: deploying on ground robots 

at Georgia Tech’s Robotarium platform
• This summer: deploying on drones 

Eglin AFB’s Aviary with AFRL RW
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Our mechanism is provably private with strong performance



Thank you!
Email: abenvenuti3@gatech.edu
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